Table of contents for Principles and models of biological transport / Morton H. Friedman.


Bibliographic record and links to related information available from the Library of Congress catalog
Note: Electronic data is machine generated. May be incomplete or contain other coding.


Counter
1: Equilibrium Thermodynamics
Introduction  ..........................................................................................................................  1
1.1.    Chemical Potentials and  Activities I.........................................................................  1
1.1.I.  Thermodynamic Preliminaries. The Electrochemical
Potential......................................................................................................  2
1.1.2.  The Interphase Equilibrium Condition .....................................................  4
1.1.3. Electrochemical Potentials in Terms of Measurable Solution
Variables: Introduction, and the Effect of Electrostatic Potential...........  5
1.1.4.  The Gibbs-Duhem Equation ............a...        ..... ....................    5
1.1.5.  Dependence of the Chemical Potential on Pressure ............................  6
1.1.6. Dependence of the Chemical Potential on Composition        ......................... .  7
1.1.7.  U nits ..................................  W ............................ .....................................  11
11.8.   Activity and Activity Coefficient .........................................................  12
1.2.    Ion Equilibrium across Membranes............ ......   ......... ....... ...........  14
1.2.1.  The Nernst Equilibrium   ................................................. .... .... .  .... ....  14
1.2.2.  Origin of the Nernst Potential...................... ......   .... ...        15
1.2.3.  Specific Ion Electrodes....................................................................  17
1.2.4.  Activity Coefficient Considerations ....     .................................... ..  17
1.2.5.  The Donnan Equilibrium      .   . ............. .. ....................................  19
1.3.    Chemical Equilibrium ......       .     ...........                        .....      21
Problem  s........................... ..................... . ............................... .  ......... ........................  24
2: Free Diffusion
Introduction ............................... ............................................... .....  ..............................  29
2.1.    Free Diffusion of Nonelectrolytes .......................................................................  30
2.1.1.  The  Teorell Equation  ................................................................................  30
2.1.2. Integration of the Teorell Equation; Fick's First Law;
Solute Perm eability................... ....................... ! ................. ...................  31
2.1.3.  U nstirred  Layers .......................................................................................  36
2.1.4.  Applications of Solution Theory..............................................................  38
2.1.5.  Fick's Second Law and Convective Diffusion...................... .............  40
2.1.6. Justification of the Steady-State Assumptiont
Time Scales in Biological Transport.......................................................  41
2.2,    Free Diffusion of Electrolytes..,... ...................... ..............................................  43
2.2.1.  Differences between Electrolyte and Nonelectrolyte Diffusion ..............   43
2.2.2.  The Electrodiffusion Equation ...     ................ ......................  44
2.2.3.  Integration of the Electrodiffusion Equation ............ ... . ....................  47
2.2.4. Some Special Cases ........................... ................................  49
Equilibrium   ..................................... ...........................  49
Uniform Composition ..................................... ...............  50
Diffusion Potential of a Bi-Ionic System....................................  51
Active and Passive Exchange with a Closed Compartment.............    52
Equal Total Concentrations on the Two Sides of the
Membrane: The Constant-Field Equation................................  53
2.2.5. Ionic Permeability and the Resting Potential of the Cell .........................  57
2.2.6.  Charged  M embranes ..................................... ..................................  59
2.2.7. Limitations of the Electrodiffusion Equation and Its Solutions ..........  61
Problems ...........    ..............       ................................................  62
3: The Cell
Introduction  .............. ............      ........................... ..........................   67
3.1.    O verview  .................................... .... ..............        ......  67
3.2.    The Structure of an Animal Cell....................................................  68
3.2.1. Composition and Structure of the Plasma Membrane.............................  68
Heterogeneity of Cell Membranes ...........................................  68
The Mosaic Model of the Plasma Membrane ..................................  72
The Glycocalyx and Surface Charge ..........................................  74
3.2.2. The Internal Structure of the Cell ................................        75
3.3.    Metabolism: The Production of ATP...................................................................  78
3.4.    Intracellular Transport .................................. ... .. ............... ...................   84
3.4.1. Intracellular Diffusion ......................... .....................    84
3.4.2.  Protein  Transport ........................... .... ........... ........ ................ .....  87
Transport into  the Nucleus................................. ................ ...  87
Transport into the Mitochondrion ....................       .......   88
3.4.3. Vesicular Transport .......................... .....     .....................  90
Endocytosis.............................. .....  .........................  91
Exocytosis, Secretion and Transcytosis ........................................  95
3.5.    Cellular Motility and Locomotion ................................. ...................... 100
3.5.1. Actin-Based Movement and Chemotaxis ................................................ 100
3.5.2.  Cilia and  Flagella...............................                  ...  105
Problem s ........................... .. .. .... ... .......... ...............................   107
4: Facilitated Diffusion: Channels and Carriers
Introduction  ............................................................. ....................... ... ....................... 111
4.1.    Mechanisms of Channels and Carriers ............................     .............. 112
4.1.1. Hallmarks of Mediated Transport ...............................           112
4.1.2. Ion Selectivity of Channels ................................              114
4.1.3. Energetics of Ion Selectivity, and Steric Effects..............................   116
4.1.4. Ion Selectivity of Channels: Summary .....................................   119
4.1.5. The Structure of Ion Channels: Selectivity Filters,
Gates, and Energy Profiles.................................. 120
4.1.6. Regulation of the Gating Process .......................................................... 122
4.1.7. Classification of Ion Channels. Aquaporins and Gap Junctions................. 131
4.1.8. Carrier Models ..........   ............................                  137
4.1.9. Carriers and Channels: Convergences and Differences.......................... 139
4.2.    Kinetics of Facilitated  Transport ..........................................................................  141
4.2.1. Models of Ion Channel Transport: Overview .................................   141
4.2.2. Energy Barrier and Binding Models of Channel Transport..................... 143
Ionic Independence: Absolute Rate Theory .......................... 143
Saturable Channels: Kinetic Analysis......................................... 146
4.2.3. The Patch Clamp and Two Applications ............................................... 151
Acetylcholine Receptor Channel Kinetics               ............ ....... 152
Voltage and Current Sensitivity of a
Voltage-Activated Sodium Channel ............................................... 154
4.2.4. Stochastic Properties of Channels: Membrane Noise Analysis ............... 158
4.2.5. The Simplest Model of Carrier Transport: Assumptions.......      ..... ....... 161
4.2.6. The Simplest Model of Carrier Transport: Equations................................ 162
4.2.7. Monosaccharide Transport in the Erythrocyte ...................................... 165
4.2.8. More Complex Carrier Models .......................................................... 166
4.2.9. Exchangers and Cotransporters ................. ............................ ... 170
4.3.    Inhibition of Facilitated Transport... ..   ................. ................................................... 174
4.3.1. Inhibition of Channel Transport: Channel Block...................... .........  174
4.3.2. Inhibition of Carrier Transport .. .... ................................................  175
Problem s................................... .................................... ...................................................  179
5: Active Transport
Introduction ..................................................................................  ........................ ...:....  185
5.1.    Active Transport: General Considerations ........................... ........................... 186
5.1.1. Metabolic Coupling and Affinity....    ............  ....................... 186
5.1.2. Classification of Active Transport Processes ........................................ 188
5.1.3. Identification of Active Transport Processes...................................... .... 190
5.2.    Mechanisms of Active Transport.................................. ........ ............................. 190
5.2.1.  Scalar Active Transport: Overview ............. ..................... 191
5.2.2. Primary Scalar Transport ........................... .......................................  192
5.2.3. Secondary Scalar Transport ..............................                 193
Cotransport...... ............... ............. ...................................... ........  195
Countertransport ................ ..................... .......................................  197
5.2.4. Vectorial Active Transport, the Curie Theorem and
Substrate Activation................................ .........................................   199
5.2.5. Sodium-Potassium Exchange.....       ..... ...................            202
5.2.6. Pump Selectivity and Other Properties Shared with Passive Carriers ........ 204
5.3.    Kinetics of Active Transport .......................................... ...................................  205
5.3.1. A Simple Secondary Scalar Transport Model: Assumptions......:....I ....   206
5.3.2. A Simple Secondary Scalar Transport Model: Equations.............  ........-  208
5.3.3. More Complex Symport Models; the Sodium/Glucose Transporter.......        209
5.3.4. Primary Scalar Transport ..................................................................... 213
5.3.5. Flux Equations for Primary Scalar Transport................... ......     214
5.3.6. Relation between the Coupling Parameter F and
the Affinity of the Metabolic Reaction .....................................  215
5.3.7. Vectorial Active Transport and the Nature of Na-K Exchange............... 216
5.3.8. Pumps and Leaks ......................................... 216
Problem s ......................................................................    220
6: Nonequilibrium Thermodynamics
Introduction  ..................................................                    225
6.1.   The Basic Phenomenological Equations.........   ....................... 225
6.1.1. Conjugate Forces and Fluxes .....................................    225
6.1.2. Phenomenological Coefficients and Linear Thermodynamics ................ 227
6.1.3. Frictional Interpretation of the Phenomenological Equations.................. 229
6.1.4. A Cautionary Note before Proceeding .....................................  230
6.2.   Nonequilibrium Thermodynamic Description of Passive Transport .................... 231
6.2.1. Setting the Stage ...................................           ...... 231
6.2.2. The Chemical Potential of the Solvent .....................................   232
6.2.3. A New Set of Forces and Fluxes; Osmotic Pressure.............................  234
6.2.4. The Kedem-Katchalsky Equations ............................          235
6.2.5. Physical Significance of the Reflection Coefficient:
Semipermeable Membranes and the Osmometer,
Steric Effects and  Sieving .................................        237
6.2.6. Osmotic Pressure of Solutions; Donnan Osmotic Pressure;
Osmotic Effects on Cells .....................................       242
6.2.7. Passive Transport of Multiple Nonelectrolytes......................  246
6.2.8. Passive Transport of Electrolytes: Electrokinetic Phenomena................. 247
6.3.   Nonequilibrium Thermodynamic Description of Active Transport...................... 248
6.3.1. Definition of Active Transport ............................................. 248
6.3.2. Coupling between Nonconjugate Forces and Fluxes ............................... 250
6.3.3. Nonequilibrium Thermodynamics of Motor Proteins
and  ATP  Synthase.................................                  252
6.4.   Limitations of Nonequilibrium Thermodynamics ........................................ 254
6.4.1. Closeness to Equilibrium: A Limitation Intrinsic to
Linearized Nonequilibrium Thermodynamics .....................................  254
6.4.2. The Concentration Dependence of the Phenomenological
Coefficients.............................                            257
6.4.3. Closeness to Equilibrium in Biological Systems ..................................... 258
6.4.4. The Information Content of Nonequilibrium Thermodynamics ................. 259
6.4.5. Approximations in the Derivation of the Kedem-Katchalsky
Equations .......................................... 260
Problems................................... ... .....................................................  261
7: Models of Transport across Cell Membranes
Introduction ............................... ... ............................................. 265
7.1.   Transport across the Lipid Bilayer of Cell Membranes ........................................ 265
7.1.1. Evidence for Nonelectrolyte Diffusion across the Lipid Bilayer............. 266
7.1.2. A Simple Model of Transbilayer Diffusion ........................................ 267
7.1.3.  Potential Barriers in  the Bilayer.................................. ............................  269
7.2.    Models of Transport through Pores ...................................................................... 270
7.2.1. Classification of Pore Transport Models ..................................................... 271
7.2.2. Hydraulic Conductivity of a Pore ............  ........................................ 272
7.2.3. Hindered Diffusion; Solute Permeability as a Probe of Pore Radius......... 273
7.2.4.  Other Factors Affecting Estimated Pore Size; The Equivalent Pore........... 276
7.2.5. Hindered Convection (Sieving); the Reflection Coefficient as a
Probe  of Pore  Radius ..............................................................................  279
7.2.6. Combined Diffusion and Convection through Pores ............................... 282
7.2.7. Single-File Transport through Pores ....... ........................ .................... 283
7.2.8. The Permeability Ratio of Larger Pores .................. ............................ 287
7.3.    Electrical Analogs............................................. 289
7.3.1., Equivalent Circuit for the Passive Flux of a Single Ion.... ........................ 289
7.3.2. Equivalent Circuit for the Passive Transport of Multiple Ions ............. ... 290
7.3.3. The Electrical Analog of a Rheogenic Pump............................................ 293
7.3.4.  Som e  Final Rem arks...................................................................................  294
Problem s...............................................................................................................................  295
8: Regulation and Feedback
Introduction................ ......  .... ............. ..... ............................ ... ......... ............  299
8.1.    Regulation of Transport..........  ...      .............................. ............... 301
8.1.1. Receptor-Mediated Second Messenger Systemst Cyclic
AMP and Antidiuretic Hormone'... ..................               ....... 301
8.1.2. Direct Hormonal Regulation without an Extracellular
Receptor: Aldosterone.....................  ... .....................................  306
8.1.3. Calcium-Based Regulation ..................................................... .... 307
Maintenance of a Low Cytosolic Calcium Concentration .................. 307
Calcium Signaling.......     ..........    ............ .................... 307
Calcium Handling in Cells and Compartmental Analysis ................. 309
8.2.    Feedback in Transport Systems: Insulin ............... ........................... 315
8.3     Regulation by Transport..........  ... .......  .................................. 317
8.3.1. Regulation of Cell Volume.................................................................... 317
8.3.2 -  Regulation  of Cell pH .. ............................................ ..........................  322
Problem s.......................................................................................................  325
Appendix 81. Nonequilibrium Binding in Compartmental Analysis ................................ 327
9: Excitable Cells
Introduction'  .........................................................................................................................  329
9.1.    N erve .......................................................................................................................  330
9.1.1. The Resting Neuron........,........................................................................ 331
9.1.2. The Action Potential: Electrical Aspects.................................................... 333
The Membrane Action Potential: Resting State................................. 335
Hodgkin and Huxley's Equations for the Dependence
of Conductance on Membrane Potential......................................... 337
Excitation of the Membrane Action Potential ................................ 340
The Propagating Action Potential: Cable Theory ............................  343
The  Role  of M yelin................................................. .........................  347
9.1.3. The Action Potential: Molecular Aspects.................................   349
Hodgkin and Huxley's Channel Model .....................................   349
More Recent Models of the Potassium and
Sodium Channels of Nerve ........................................  353
9.1.4. Synaptic Transmission.............................                         359
9.2.    M uscle  ............................................... .... ............. ......... ......... ......................  367
9.2.1. The Resting Muscle Fiber...................................                368
9.2.2. Excitation and Excitation-Contraction Coupling ....................................  370
Neuromuscular Transmission and Excitation:
The Acetylcholine Receptor .....................................   370
Excitation-Contraction Coupling ........................................ 378
9.2.3. Molecular Mechanisms of Muscle Contraction ........................................ 382
Problem s............................................... ........................................... ...............   387
10: Epithelial Transport
Introduction  ...............................................                             391
10.1.   Organization of Epithelial and Endothelial Cell Layers and
Some Consequences ........................................                        392
10.1.1. The Organization of Epithelial and Endothelial Cell Layers ................... 392
10.1.2. The Pathways across Leaky and Tight Epithelia ..................................... 395
10.1.3. Transport in a Parallel Path System...............................        400
10.1.4. Coupling of Transepithelial Water Flow to Active Ion Transport ............. 405
The Curran Model.................................... 405
The Standing Gradient Model................................          407
The Sodium Recirculation Model .....................................   410
The Cotransporter Hypothesis .....................................   411
10.1.5. The Effect of Unstirred Layers on Transepithelial Diffusion
and Osmosis: Concentration Polarization ................................................ 412
10.1.6. Electrical Analogs of Cell Layers ......................................... ............... 414
10.2.   Examples of Epithelial and Endothelial Function ........................................ 418
10.2.1. Absorption  ........................................                      419
Absorption of Sugars in the Small Intestine .....................................  419
Transport of Water and Sodium in the Proximal
Tubule of the Kidney .....................................         422
Transport of Water and Sodium in the Distal Tubule
of the Kidney ........................................ 427
10.2.2. Secretion ...... ........................................ 430
10.2.3. Filtration ...... ........................................ 434
Problem s ...............................................                                 439
Appendix 10.1. Convection, Diffusion and Mass Addition in Channel Geometries ........... 443
11: Gas Transport
Introduction  ............................... . ....................................... ... ......... ...................... .  447
11.1.   Partial Pressure and the Equations for Gas Flux..................................... 448
1    Overview of the Gas Transport Process ....................
11.  Gas Exchange in the Lung..............                               449
It   Oxygen Transport in the Blood........            ................. ................453
ItL.  Transport from Red Blood Cells to Tissue ............................. ..........  455
11.5.1. Reaction-Diffusion Processes ............................................. ...............  45
11.5.2.  The  K rogh  T issue  C ylinder  .....................  "".............   459
11.5.3. Modifications to the Basic Krogh Model........ ............. 461
11.5.4. Beyond the Krogh Cylinder .................................... . ....  462
be................................                .... ....................... 480
P o l m .... ....................................... .................................................... ....  480



Library of Congress subject headings for this publication: Biological transport