Table of contents for Algorithmic topology and classification of 3-manifolds / Sergei Matveev.


Bibliographic record and links to related information available from the Library of Congress catalog
Note: Electronic data is machine generated. May be incomplete or contain other coding.


Counter
1   Simple and Special Polyhedra .....................            1
1.1  Spines of 3-M anifolds  ......... . ........... .. .. ..... .  1
1. .1  C ollapsing ... . ..................................  1
1.1.2  Spines  ........ ...... ........                  2
1.1.3  Simple and Special Polyhedra... ... ..............  4
1.1.4  Special Spines  .....l.... ........... ....... ......  5
1.1.5 Special Polyhedra and Singular Triangulations . . . . . 10
1.2 Elementary Moves on Special Spines ......................  13
1.2.1 Moves on Simple Polyhedra............             14
1.2.2 2-Cell Replacement Lemma.......                   19
1.2.3  Bubble  M ove  ............................... .....  22
1.24  Marked  Polyhedra  ... ... ......... ....... .....  25
1.3 Special Polyhedra Which are not Spines  .............. 30
1.3.1 Various Notions of Equivalence for Polyhedra ......... 31
1.3.2 Moves on Abstract Simple Polyhedra . . . . . ...... . 35
1.3.3 How to Hit the Target Without Inverse U-Turns ... .  43
1.3.4 Zeeman's Collapsing Conjecture .. . ......  . . ..  46
2   Complexity Theory of 3-Manifolds...............        ..... 59
2.1 What is the Complexity of a 3-Manifold? .................. 60
2.1.1 Almost Simple Polyhedra..................    .... 60
2.1.2 Definition and Estimation of the Complexity .... ..... 62
2.2 Properties of Complexity ..........................      67
2.2.1 Converting Almost Simple Spines into Special Ones . .. .67
22.2 The Finiteness Property...>.................. ...  70
2.2.3 The Additivity Property .........                 71
2.3 Closed Manifolds of Small Complexity .............    . 72
2.3.1 Enumeration Procedure.................            72
2.3.2  Simplification  Moves .............    ....      74
2.3.3 Manifolds of Complexity < 6..................  . 76
2.4  Graph Manifolds of Waldhausen. . ...... ... .... ... 83
2.4.1 Properties of Graph Manifolds .... ......            83
2.4.2  Manifolds of Complexity  8 ..   .......             89
2.5  Hyperbolic Manifolds       . . . . .97
25.1  Hyperbolic Manifolds of Complexity 9       . ..   .97
2.6  Lower Bounds of the Complexity .....              ... .. 100
2.6.1 Logarithmic Estimates ............            .     . 101
2.6.2  Complexity of Hyperbolic 3-Manifolds .............. 104
2.6.3  Manifolds Having Special Spines with One 2-Cell ...... 105
3   Haken Theory of Normal Surfaces ...          ..     ......... 107
3.1  Basic Notions and Haken's Scheme ................ 107
3.2  Theory of Normal Curves ...   ........ 110
3.2.1  Normal Curves and Normal Equations   .......... ..110
3.2.2   undamental Solutions and Fundamental Curves . ... 114
3.2.3  Geometric Summation .........    ........       .  115
3.2.4  An Alternative Approach to the Theory of Normal
Curves ..... 119
3,3  Normal Surfaces in 3-Manifolds ...... ....                123
3.1    ncopressible Surfaces ........... 123
3.3.2  Normal Surfaces in 3-Manifolds with Boundary Pattern 126
333   Normalization Procedure .....           .......... 127
3,3,4  Fundaental Surfaces .......       -..-. 134
.1.5  Geometric Summation ........     -.     ........     135
3.4  Normal Surfaces in Handle Decompositions . . . . . .   . 138
4   Applications of the Theory of Normal Surfaces ..       ..   . 147
4.1 Examples of Algorithms Based on Haken's Theory ..... .    . 147
4.1.1  Recognition of Splittable Links.. . .......... 148
4.1.2  Getting Rid of Clean Disc Patches .... .........  . 150
41.3  Recognizig the Unknot and Calculating the Genus
of a Circle in the Boundary of a 3-Manifold .. ........ 157
4.1,4 Is M3 Irreducibe and Boundary Irreducible?........ 160
4,1.5 Is a Proper Surface Incompressible and Boundary
Incompressible? ................................... 63
4.1.6  Is Ma Sufficiently Large? .....  .. ...     ..   . 66
4.2  Cutting 3-Manifolds along Surfaces ..              ..   . 76
4.2.1  Normal Surfaces and Spines ................ 176
4.2.2  Triangulations vs. Handle Decompositions ....   ... 188
5   Algorithmic Recognition of S3     ...I...1        ..      .. .. 191
5.1  Links in  a  3-Ball  ......... ..i . .... ) ....i  .  i .. .... ..... 192
5.1.1  Compressing Discs and One-legged Crowns ..        . 192
5.1.2 oThin Position of Links .i..  ........ .. .... 195
5.2  The Rubinstein Theorem .. .. .                .........  . 199
5.2.1 2-Normal Surfaces .. ....                        . 199
5.2.2  Proof of the Rubinstein Theorem .... ..   .... . 203
5.2.3  The Algorithm  .............             ....... . 20
6   Classification of Haken 3-Manifolds ... ........ 213
6.1 Main Theorem     ......                         .    .   213
6.2 The Waldhausen Theorem     ............. 216
6.2.1 Deforming Homotopy Equivalences of Surfaces ........ 217
6.2.2  Deforming Homotopy Equivalences of 3-Manifolds
to Homeomorphisms . ......     ..........      .. 218
6.3 Finiteness Properties for Surfaces ...... .........  ...... 224
6.3.1 Two Reformulations of the Recognition Theorem ..... 224
6.3.2 .Abstract Extension Moves ..... ...., ......... . . .227
6.3.3  First Finiteness Property and a Toy Form
of the Second  ..  . ....           .  .   . .......  228
6.34  Second Finiteness Property for Simple 3-Manifolds . . . 231
6.4 Jaco-Shalen-Johannson Decomposition ....... _..... 240
6.4.1 Improving Isotopy that Separates Surfaces.........  241
6.4.2 Does M3 Contain Essential Tori and Annuli? ....... S245
6.4.3  Different Types of Essential Tori and Annuli ........ 248
6.4.4  JSJ-Decomposition Exists and is Unique .......... 261
6.4.5  Seifert and I-Bundle Chambers ........  ........ 264
6.4.6  Third Finiteness Property .. S  .. ..i.       ... . 271
6.5 Extension Moves         ............. . .               . 273
6 5.1 Description of General Extension Moves ..,    ..... 273
6.5.2  Structure of Chambers .        ..       ........ 28
6.5.3  Special Extension Moves: Easy Case .....  .....  . 286
6.5.4  Difficult Case ......... 294
6,5,5 Recognition of Simple Stallings Manifolds
with Periodic Monodromrny ........... .. .... 298
6.5.6  Recognition of Simple Stallings Manifolds
with Nonperiodic Monodromy  ..........    . .    . 303
6 5.7 Recognition of Quasi-Stalings Manifolds .   .   . 307
6.5.8  Subdivision of Solid Tori ....  ..   .            312
6.5.9  Proof of the Recognition Theorem  ....... _       320
7   3-Manifold Recognizer ..... , . .... . . .         ... 327
7.1 Computer Presentation of 3-Manifolds .  .  .    . .... 327
7.1.1 Cell Complexes .............. 328
7.1.2  3-Manifolds as Thickened Spines .330
72   Simplifying Manifolds and Spines ......               . 332
7.2.1  Coordinate Systems on Tori  .......     ... .    . 332
7.2.2  Reduction of Cell Structures ...  ..  ......  . ..34
7.2.3  Collapses ....                        ....        335
7.2.4  Surgeries  ...  .. ....... . ........ ............ .. ... 336
7.2.5 Disc Replacement Moves .............    ....    . 343
7.3  Labeled  M olecules  .. ................. . .............347
73.1 What is a Labeled Molecule? ............ ........ .347
7.3.2  Creating a Labeled  Molecule ......................  349
7.3.3 Assembling Seifert Atoms .................. 351
7.4  The Algorithm  ....... .....  ... .....  ..................  354
7.5  Tabulation  ..........................  . .. ..... ...  355
7.5.1  Comments on  the Table  . ................... .. .   357
7.5.2 Hyperbolic Manifolds up to Complexity 12 .......... 358
7,5.3 Why the Table Contains no Duplicates? ............. 360
7.6 Other Applications of the 3-Manifold Recognizer . .... - .... 362
7.6.1 Enumeration of Heegaard Diagrams of Genus 2 ....  362
7.6.2 3-Manifolds Represented by Crystallizations
with  <  32  Vertices  ..... .......... ... .......365
7.6.3 Classification of Crystallizations of Genus 2 ...... . 367
7.6.4 Recognition of Knots and Unknots ........... .... 370
7,7 Two-Step Enumeration of 3-Manifolds ....... ............. 371
7.7.1 Relative Spines and Relative Complexity ........... 372
7.7.2  Assem bling  ............................  ....  377
7.7.3 Modified Enumeration of Manifolds and Spines . ..... 380
8   The Turaev-Viro Invariants ............................. 383
8.1 The Turaev-Viro Invariants...................... 383
8.1.1  The  Construction  .............. ............ ..... 383
8.1.2 Turaev-Viro Type Invariants of Order r < 3 ........ 386
8.1.3 Construction and Properties of the e-Invariant ........ 392
8.1.4 Turaev-Viro Invariants of Order r > 3 . ......... .. ...  395
8.1.5 Computing Turaev-Viro Invariants ................ _402
8.1.6  M ore  on  -Invariant  .. ............ ..... ......407
8.2 3-Manifolds Having the Same Invariants
of Turaev-Viro Type...........................409
"A.2 Minimal Spines of Manifolds up to Complexity 6 ............ 426
A.3 Minimal Spines of Some Manifolds of Complexity 7 ... ..... 454
A.4 Tables of Turaev-Viro Invariants .............. ........ 461
R eferences .   . ....... .............. ..... . .... . ..... .. ....481



Library of Congress subject headings for this publication: Low-dimensional topology, Three-manifolds (Topology)