Table of contents for Partial differential equations / Jürgen Jost.


Bibliographic record and links to related information available from the Library of Congress catalog
Note: Electronic data is machine generated. May be incomplete or contain other coding.


Counter
1. The Laplace Equation as t-he Prototlype of an Elliptic Partial
DifFerential Equation of Second Orde     ..    .    7
1.1  I     Fuint tim s  ipriste lton  Lorm iut, t  t   S iluin
rf tD iiciti IPtohileou the Balt (Etistnce Terichnaes 0)  7
1.2 Mea iVale Ilroprlties oft Haritmonaic FIntiloans. Sihhimsinei
1 iwM         xm    P  I   ..... u   i  .pl   ..
t he  a711i u mi P i inciple . . .  . .   . .   .
2.1  Th  M'  P1111 i  i  of ii   it  a  i         .33
2.2  he Miax iimu . Principle of Alxal ov:   andt  Bak!lman. ......  39
23    xim  Piiriciple  ir N llin-at Difitrentiatl Eq atiosa ....  44
3  Existence echniques :       Methods Based on the Maximu
Principle  .  ..  .  . .  .  . .  ...  . .  ..  .  .  .  53
t3.1  irene Mietithos: Diseizati  of tiireial EqSa-ionsa  5
Exitce Techniques II: Parabolie Methods. The Heat
EquaBion
-Ip  Teieiit E qui :  D iniio  an  Maxi - Principie. I. .. .  79)
4.2   1ie  1it n etait  Solit  i iion  of te Iieat Ev L  aiiont  Tihe  let
4.   Te. Il nial B ounda  V Ma ue PYitltm fin fte Hlil  Equattol ilt 98
5    Reaction-Diffusion Equations and Systems I.... ......
5.2 1  et t iot i  on Sisiea  .     . ..        .
5  rlelin   Mecanis..JH
6.B Tie mave Equation and its C onnections xwith the Laplace
an   e t  E quations .  ........  ........................... 13
6.Tn aeMethd:ln he We E[ai
6.3: -The Enenrv:\  Ineq~!uaity,i  arrd the·: Rela;tion
7. Th ~Heat Equation. Semigroups, and Brow nian Motion. . .153
8. he irichlet Principle. ariational Methods for the Sol-
- I 1  1  Po  IV   [I 7
ion of PEs (Existenc Thique  I)  .   ... .. . 1 83
8.1:  Dirichlct's PSa r incple~ .~ .RcrPft: .29nrr . . .  .: -I. .. ..... I: _.: .  .18
:i:i.2 ri;r The  Sobo iev: Spa. c i s W ll:ii·i! L2ip rci .f S ...  ...  ...  ...  ...  ...  8
8.3 T eikSoio o   eHi Poiitoo. i  Eacti iiinps. I .oia  o . .tio n I
l. he D Finte t nciplem n\ miato ml Method I. fo .  a .o.
86on vex1  >  (Vaiationtl  P T  i. .  I         3
9.:  Sob le : Spas: ri; and  L2 Reg' oula  it y Theor s ... ..........  2
>.; 9ilr hi >a    i l Pu:::i u11R2
9   GeneralC'  1 S o  I a     e   o         I
N  o-y  n ()11lCNi ClWFi K71r!'; .            19
9.2Ii    8 8ir  heoV : Interiot  eait           i e  Slutions
C9. 3   B u a I ai aI -  oC   lal11. 1 e tsr  So1  tit s  of
Geeal Eiea  Elliptic E quati s  . .       4
.1  ICCII:  Ii' [  I  il  11144141  4 11 74 C  CfV   5C3wi 11111
9.4   18 Exesos fSblev Funcions an  ana onayCn
II  V   l  Cs Cu )4C  44  no e            24,
13   41   Ii 13  11 o il  171 1114  11 IilC n 1411  11811 j
-1..1   he ,epu lari -   o  fo  St( 31711111on S  . . . .
If).2  4  11 I A1 Su1e ICC the £4e "ul it 1 heory  a.111  Appiaion  to
1.TIe HRegularity Th ear' of Schaudee and tle onitinutily
eto d (Lxristene Techniques IV)             - ..
1.I ICI CdRe   4ul 4t  11v 1 eo  1y   111or   1te ssonr)1 11 1< Eq ao
1.1.13 81 (xse,  [ni us I  The  on ti n 1eIhod  .. .11... .
12. Te Moser Iteration Method and the Regnlarity Theorem-
of dI  Giorgi and  Nash E, ..' . .......  . .(...  .  0
2.2 Pr operties of Solutionsi of Elliptic Equations . .. . . ... ...31
12.3 ROgait  of 'iniiizers of Vriational Probis ..... .. 321



Library of Congress subject headings for this publication: Differential equations, Partial