Table of contents for Wavelet analysis and applications / Qian Tao, Vai Mang I, Xu Yuesheng, editors.


Bibliographic record and links to related information available from the Library of Congress catalog
Note: Electronic data is machine generated. May be incomplete or contain other coding.


Counter
Part 1. Wavelet Theory
Chapter 1: Approximation and Fourier Analysis
Local Smoothness Conditions on a Function Which Guarantee Convergence
of Double Walsh-Fourier Series of This .Function
Sl. .  !B oshanskaya  and  LL. Bloshanskii.......  ......     ........    3
Linear Transformations of RN and Problems of
Convergence of Fourier Series of Functions Which Equal Zero on Some Set
L. B  loshanskii  .                ............   ..............         13
Sidon Type Inequalities for Wavelets
N.iA. Sheikh...... .. . ..25..   ..  .....                 ..  .. . .    2
Almansi Decomiposition for Dunkl-Heinholtz Operators
C. Ren  and  iif.R. Al flol nek..  .  ..  .                              35 ..... . .  ...... ..  ...........  35
An t ncertainty Principle for Operators
SG. Cowling and M    Sundari      ......                       ........  43
Uncerainy Principle for Clifford Geometric Algebras  l,,,o n = 3 (mod 4)
Based on Clifford Fourier Transform
E .SM. Hitzer and  b. Mlawardi ... i    .I  1.           ....... 47
Chapter 2: Construction of Wavelets and Frame Theory
Orthogonal Wavelet Vectors in a Hilbert Space
J.-X. Cao  and  .-M.  Ya ..... ...................                       59
Operator Frames for BHn1)
.-TY Li and H-X. Ca ....                    ..      .......     ........ 67
On the Stability of Multi-wavelet Frames
G. Wang and Z. Cheng ..............                               .....  83
Biorthogonal Wavelets Associated with
Two-Dimensional Interpolatory Function
J. Yang.,Y Y.K Tang, Z. Cheng and X. You....          ................... 91
Parameterization of Orthogonal Filter Bank
with Linear Phase
X. Feng, Z. Cheng  and  Z  Ymng ... ....  .  . . ;  ....  . . . .  , .. .......  .  99
On Multivariate Wavelets
with Trigonometric Vanishing Moments
Y. Li, Z. -D. Deng and Y.-C. Liang...                        .....    107
Directional Wavelet Analysis with Fourier-Type Bases
for Image Processing
Z. Yao,  N. Rajpoot and  R. Wilson...  .. .. .  ... ...  ...  .  ..  . .. .....  123
"Unitary Systems and Wavelet Sets
ID.R .  Larson  . ..  .t.... .  .. .  .  . ....... . . .  .. . ....  .. ,. .....  143
Clifford Analysis and the Continuous Spherical Wavelet Transform
P. Cerejeiras, M, Ferreira  and  U. Kdhler... .. ... ........... ........... ..173
Clifford-Jacobi Polynomials and the Associated Continuous
lWavelet Transform in Euclidean Space
.F Brac.k, N. De Schcpper and F. Sornen.....     ......                185
Chapter 3: Fractal and Multifractal Theory, Wavelet Algorithm, Wavelet
in Numerical Analysis
"Wavelet Leaders in Multifractal Analysis
S. Jafad, i. Lashermes and P. Abry..... 2......      ....  ....  ...01
Application of Fast Wavelet Transformation
in Parametric Systerm Identification
IK. Marlwak rdt .....  ..  .. ...2 247
Image Denoising by a Novel Digital Curvelet Reconstruction Algorithm
J. B i  and  X,-C. Feng  ............ ..... . .  . .. .s p  . ...  . i  . o  s... t t  255
Condition Number for Under-Determined Toeplitz Systems
HL Diao and Y. Wi.                                        .........    263
Powell-Sabin Spline Prewavelets on the Hexagonal Lattice
J. Maes and A. Bultheel...    .......                                  273
Chapter 4: Time-Frequency Analysis, Adaptive Representation
of Nonlinear and No i-stationary Signals
Tirne-Frequency Aspects of Nonlinear Fourier Atoms
Chen, L. L    and  T. Qi n....             ......        ...... ....  287
Mono--cornponents for Signal Decomposition
T. Qian ......                                             . .   .. .. .  299
Signal-Adaptive Aeroelastic Flight Data
Analysis with HUT
MJ. Brenner, S.L. Kukreja and R.J. Prazen I a.., ... , ........tI. ... . 321
An Adaptive Data Analysis Method for Nonlinear
and Nonstationary Time Series: The Empirical Mode Decomposition
and Hilbert Spectral Analysis
"N .E. Hc uang. . .  ....... ... .3 ..3... ....  . I.I........ I  ... .....  . ..... 363
Part 2. Wavelet Applications
Transfer Colors from CVHD to MRI Based on Wavelets Transform
X. Tian, A. Li,  Y. Sun  and  Z. Tang... . .  ...... ..  ...  .. .. ....... ..381
Medical Image Fusion by Multi-resolution Analysis of Wavelets Transform
X. Li,  X. Tian.  Y. Sun  and  Z. Tang  ....... .................. ........... 389
Salient Building Detection from a Single Nature Image
via Wavelet Decomposition
Y. Qu, C. Li, N. Zheng, Z. Yuan  and  C. Ye ..... ........ ..... . .. ... .....397
SAR Images Despeckling via Bayesian Fuzzy Shrinkage Based
on . tationary Wavelet Transform
Y.  W u, X. ' ang  and  G. Liao ..... . . . .. . ... ............ ... . ...  .  _.407
Super-Resolution Reconstruction Using Haar Wavelet Estimation
Ct S. Tong and K. T. Lung  ... ................... .. ............. .  ......419
''he Design of Hilbert Transform Pairs
in Dual-Tree Complex Wavelet Transform
F. Yan, L. Cheng  and  11. Wang . .. ........ I  .. .  ..  .. ...  .....  .  , -431
Supervised Learning Using Characteristic Generalized Gaussian Density
and Its Application to Chinese Materia Medica Identification
S.K. Choy  and  C.S. Tong . . .  ........  .... ... .... ....... . ... ... .. . 443
A Novel Algorithm of Singular Points Detection for Fingerprint Images
7'. Ta n  and  J. Huang I.. . .                           . . . . .. ..... . .  ........ .  ....... . .. ..... . 453
Wavelet Receiver: A New Receiver Scheme for Doubly-Selective Channels
G. Shi and S Peng .....                                     ......... 463
Face Retrieval with Relevance Feedback Using Lifting \Wavelets Features
C.F  Wong, J. Zhu, MI. Vai, P. U. Mak and W. Ye.......  ..x............ 477
High-Resolution Image Reconstruction Using Wavelet Lifting Scheme
S. Pei,  H. Feng  and  M . Du.  .  .. ....... ...... ......  . . .. .... .  . ..  489
Mulitiresolution Spatial Data Compression Using Lifting Scheme
B. Prdhian, K. Sandeep, S. Mansor, A.R. Rarnh and A.R.B.M. Shartf ....5.  -03
Ridgelet Transform as a Feature Extraction Method
in Remote Sensing image Recognition
Y. Ren, S. Wang, S. Yang and L. Jiao .....  .............            515
Analysis of Frequency Spectrum for Geometric Modeling
in Digital Geometry
Z. Cai, H. Ma, W. Sun and D. Qi. .....                        .......525
Detection of Spindles in Sleep EEGs jUsing a Novel Algorithm Based
on the Hilbert-Huang Transform
.  Yang,  L.  Yang  and  D .  Q ...  .................................. ........... 543
Wavelet-Domain Hidden Markov Tree Model with Localized Parameters
for Image Denoising
M.  Yang, Z. Xiao  and  S. Peng  .......... ..... . ..............   561



Library of Congress subject headings for this publication: Wavelets (Mathematics) Congresses