Table of contents for Reliable face recognition methods : system design, implementation and evaluation / by Harry Weschler.


Bibliographic record and links to related information available from the Library of Congress catalog
Note: Electronic data is machine generated. May be incomplete or contain other coding.


Counter
1   Introduction ............. .................. ..........     1
1.1 Tasks and Protocols ................... ...............  4
1.2 Biometrics System Design . .................. ......... .  7
1.3 History ..........   . .................... ............  8
1.4 Road Map ............... ........................... 13
2   The Human Face ............. ......................... 15
2.1  Cognitive Neurosciences ........... . . . .  ............... .  16
2.2 Psychophysics..................................... 19
2.3  The Social Face  .................. .......................  26
2.4 Aesthetics and Arts.............. ....... ............... 30
3   Modeling and Prediction ................ ................ 35
3.1  Bayesian Inference ............. .... ..................  .  37
3.2 Connectionism ................... ........................ 40
3.3 Regularization ...................................... 43
3.4 Structural Risk Minimization .................. ......... .  44
3.5 Transduction .......................................    48
3.6 Generative and Discriminative Methods ................. ... 50
4   Data Collection ........................................... 53
4.1 Sensing ............................................. 53
4.2 Standards ..............    ............................ 56
4.3 Data Compression ................................ .. 58
5   Face Representation .................. ........... ..    . 65
5.1 The Face Space ............ ........................    65
5.2 Scale Space .............. ........ . . ................ 68
5.3  Invariance ..............  ........................... .  72
5.4 Subspace Methods.................... .  .............. . 74
5.5  Feature Selection  .................. . .. .   ............. ..  80
5.6 Caricatures ................ ......................... 85
5.7 Kernel Methods ................... ......... .. ....... 91
5.8 Color .................................... ..............  94
6   Face Recognition ............ ......................... 97
6.1 Metrics .............. ............................ 97
6.2 Verification and Identification .................. ......... .  99
6.3  Open  Set Recognition  ................... .................. 102
6.4 Watch List and Surveillance . .................. ........ 107
6.5 Recognition-by-Parts ......... . . . . . . .................. 110
6.6 Face Selection ...................................... 115
6.7  Categorization  ............. ...........................  116
6.8 Morphometrics ..................................... 118
7   Face in a Crowd ................... .................. 121
7.1  Face Detection  ..................  ................... ... 121
7.2 Eye Detection ...............  .................... 125
7.3 Uncertainty ........................................... 128
7.4 Active Learning and Evidence Accumulation ................. 130
7.5 Video Break Detection and Key Frame Extraction ............ 135
7.6 Pose Detection and Manifolds ......... . . ......... ..... 137
7.7 Tracking and Recognition from Video ....................... 143
7.8 Spatio-Temporal Subspace Analysis Using 3D ICA............ 150
8   3D  ............. . .  ........................ ..............  155
8.1 Sensing ................... ......... .................. 156
8.2 Analysis by Synthesis . . . . . . .................  ......  . . 159
8.3  Animation ......................... ......................  160
8.4 Modeling and Recognition . . . . . .................  ....   . . 162
9   Data Fusion ............. ................ .......... 169
9.1 Multiple Cues .............    ........................ 169
9.2 Multiple Engines ............. ................... 171
9.3 Voting Schemes .................................... 174
9.4 Multiple Samples ................................... 177
9.5  Multimodal Sensory Integration  .................. . . . . . . ...  179
9.6 Soft Biometrics................. .. .................. 181
9.7  Boosting  and  Strangeness  ........... ....... ...... .  .  . . .  .   .  182
10 Denial and Deception..................... ............... 191
10.1 Human Biases...................................... 192
10.2 Camouflage ....................................... 193
10.3  Aliveness Detection  .......... . . . .  ...................   . 195
10.4  Hallucinations  ................... ........................  196
10.5 Asymmetric Faces ................ ..................... 197
10.6 Adaptive and Robust Correlation Filters .................... 199
10.7 Associative, Distributed and Holographic Memories ........... 208
11 Augmented Cognition .......................      ........... 213
11.1 Paralanguage ............... ......................... 214
11.2 Face Expressions .........     ....................... 215
11.3 W5+ ..........      . .................. ............ 218
12 Performance Evaluation ....................   ................ 223
12.1 Figures of Merit .................................... 223
12.2  Score Normalization  ................... ................... 229
12.3  Decision  Thresholds  .......... . . . .  .................. .  231
12.4 Comparative Assessment .......... . . . .    ............... 233
12.5 Data Bases .....................  ........................... 236
12.6  Virtual Samples.............. ......................... 240
13 Error Analysis ................... .   ................... 243
13.1  Confidence Intervals  .......... . . . .  .................. .  244
13.2  Prevalence and  Fallacies .......... . . . .  .. ............. .  248
13.3 Pattern Specific Error Inhomogeneities .................. ... 251
13.4 Large Scale Biometric Evaluations ......................... 255
14 Security and Privacy ................... .................... 261
14.1 Diversity and Uniqueness .................................. 264
14.2 Regeneration of Face Images from Biometric Templates ....... 266
14.3  Cryptography  ........................................... 267
14.4 Steganography and Digital Watermarking .................. 268
14.5  Anonymity  ......................... .....................  270
14.6  Photofits ......................... .......................  273



Library of Congress subject headings for this publication: Human face recognition (Computer science)Biometric identification