Table of contents for Abstract algebra / John A. Beachy, William D. Blair.


Bibliographic record and links to related information available from the Library of Congress catalog
Note: Electronic data is machine generated. May be incomplete or contain other coding.


Counter
PREFACE                                    vii
PREFACE TO THE SECOND EDITION              ix
TO THE STUDENT                            xiii
WRITING PROOFS                             xvi
HISTORICAL BACKGROUND                      xxi
1 INTEGERS                                  1
1.1  Divisors  ..................  . .... .......  3
1.2  Primes  ............... . .............. .  15
1.3  Congruences  .................... ........  24
1.4  Integers Modulo n  .............. .. . .......  35
N otes  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  46
2 FUNCTIONS                                47
2.1  Functions  ...............................  49
2.2  Equivalence Relations ................ . .......... .  62
2.3  Permutations  ..................  .........  71
Notes  ............. ......................  86
3 GROUPS                                   87
3.1  Definition of a Group  .............. . . . . ........  88
3.2  Subgroups ..............................  102
3.3  Constructing Examples  .................  ..... . .  115
3.4  Isomorphisms  ................... ........  124
3.5  Cyclic Groups ................... ........  135
3.6  Permutation Groups ............ . .... ....... ..  142
3.7  Homomorphisms  ...................   ......  152
3.8  Cosets, Normal Subgroups, and Factor Groups . ..........  164
N otes  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  177
4  POLYNOMIALS                                                   179
4.1 Fields; Roots of Polynomials ........    ........ .. . 179
4.2  Factors  ............    .....   ....  . ..  .......  .  192
4.3  Existence of Roots . .................. . ......         203
4.4  Polynomials over Z, Q, R, and C . . . . . . . .  .  .  .  .  .   .  211
Notes  .............. ......           ......... ........     222
5  COMMUTATIVE RINGS                                             223
5.1 Commutative Rings; Integral Domains . . . . . . . . . . . . ...  224
5.2  Ring Homomorphisms . .................. ...          . ..236
5.3 Ideals and Factor Rings ... . . . . . . . .  .   . .  ... .  251
5.4  Quotient Fields  ................      .   . . . .  . ... . .  262
Notes ............. .... .             ...     .........      268
6  FIELDS                                                        269
6.1 Algebraic Elements ................... . ...... .         270
6.2  Finite and Algebraic Extensions . . . . . . . . . . . . . ...  276
6.3  Geometric Constructions ................... . .      . ..283
6.4  Splitting Fields ..  . . . ........    ....  ...... . . . 289
6.5  Finite Fields  .......... . .    . ....   ........   .   295
6.6 Irreducible Polynomials over Finite Fields . . . . . . . . . . ...  301
6.7  Quadratic Reciprocity . . . . . . . . . .  . .  . . . . . . . 307
Notes ....... . ..... .......            ............ .       314
7  STRUCTURE OF GROUPS                                           315
7.1 Isomorphism Theorems; Automorphisms . . . . . . . . . . ...  316
7.2  Conjugacy .......... . . ....... ...........             323
7.3  Groups Acting on Sets .... . . . . . . .    . . . ...... .  330
7.4  The Sylow  Theorems  . ................     .   ..... . .. 338
7.5  Finite Abelian Groups .. . . . . . . . .  .   . . . . .  .  342
7.6  Solvable Groups ...... . . . . . . . . . . . .  ...... .  350
7.7  Simple Groups  . ..................        ........  . .. 357
8  GALOIS THEORY                                                 365
8.1 The Galois Group of a Polynomial . . . . . . . . . . . . ....  366
8.2  Multiplicity of Roots  . . . . . . . . . . . ...... ... ... . .  372
8.3  The Fundamental Theorem of Galois Theory  . . . . . . . . ...  376
8.4  Solvability by Radicals ..... . . . . .  . . .  .   . . . .  .  386
8.5  Cyclotomic Polynomials ..... . . . . . . . .  .   . . .  .  392
8.6  Computing Galois Groups ... . . . . . .  .    .  .   .. . . 397
9  UNIQUE FACTORIZATION                                           407
9.1  Principal Ideal Domains ................ .... . 408
9.2  Unique Factorization Domains .........    ......... . 415
9.3  Some Diophantine Equations ........ . .............      421
APPENDIX                                                         433
A.1 Sets .................            .............         . 433
A.2 Construction of the Number Systems . . . . . . ... . ...... .  436
A.3 Basic Properties of the Integers . . . . . . . . . . . . . . ...  439
A.4 Induction .................. ..          .    .  .  .  .  .  .   .  440
A.5 Complex Numbers . . . . . . . . . . . . . . .  . ...... . 444
A.6 Solution of Cubic and Quartic Equations . . . . . . . . . . ....  450
A.7 Dimension of a Vector Space .. . . . . . . . . .  . . .. . . 458
BIBLIOGRAPHY                                                      461
SELECTED ANSWERS                                                  463
INDEX OF SYMBOLS                                                  471
INDEX                                                             475



Library of Congress subject headings for this publication: Algebra, Abstract Outlines, syllabi, etc