Table of contents for Automotive control systems : for engine, driveline, and vehicle / Uwe Kiencke, Lars Nielsen.


Bibliographic record and links to related information available from the Library of Congress catalog
Note: Electronic data is machine generated. May be incomplete or contain other coding.


Counter
1  Introduction                                                          1
1.1  Overall demands  ....... . .      . ......      ...   .. . .  .  1
1.2  Historic remark  . . . . . . . . . . . . . . ... .  .  .  .  .  .   .  1
1.3  Perspectives  . . . . . . . . . . . . . .  . ..  . . . . . . . . . . .  .  2
2  Thermodynamic Engine Cycles                                           3
2.1  Introduction to Thermodynamics .. ........... . . . .            3
2.1.1  First Thermodynamic Law    . . . . . . . .  . . . . .  .  3
2.1.2  Specific Heat Constant ....    .. .   . .  .... .. .      7
2.1.3  State Changes of Ideal Gases . . . . . . . . . .  . . . . .  9
2.1.4  Thermodynamic Cycles . . . . . ...........            . 15
2.2 Ideal Combustion Engines . . .   . . . . . . . . . . . . . . .  .  19
2.2.1  Spark-ignited (SI) Engine . . . . . . . . . . . . . . . . . . . 20
2.2.2  Diesel Engine  ...............                . . ..     22
2.2.3  Seiliger  Process  .  ...  . . ..........  .......24
2.2.4  Comparison of Different Engine Concepts . . . . . . . . . . 27
2.3  Alternative Combustion Engines . . . . . . . . . . . . . . . . . . . 29
2.3.1  Gas  Turbine  ...........      .. .  .  ..   . .  .  . .  .  .. .  29
2.3.2  Stirling  Engine  .  . .  .  .  .  . .  . .. .  .  .  .  .  .  . .  .  34
2.3.3  Steam  Engine  .  .  . .  . .  .   .  . . .  . . .  . .. .  .  .  .  .  .  37
2.3.4  Potential of Different Fuels and Propulsion Systems . . . . 39
3  Engine Management Systems                                           43
3.1  Basic Engine Operation  . . . . . . . . . . . . . . . . . . .  . 43
3.1.1  Effective Work  . . .  . . . . .  .   . . . . . . .  .   43
3.1.2  Air-Fuel Ratio  .  .  .  .  .  .  .  .  .  .  .  . ..  .  .  .  .  .  .  .  .  .  47
3.1.3  Engine  Concepts  . . . . .  . . ...  . . . . . .  .  . . . ...   49
3.1.4  Inflammation of Air-Fuel Mixtures . . . . . . . . . . . .. . 51
3.1.5   Flame Propagation . . . . . . . . . . . . . . . . . . . . . .   52
3.1.6   Energy Conversion . . . . . . . . . . . . . . . . . . . . . . . 53
3.2  Engine   Control  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . .  .  .  .  .  .  .  .  .  .  .  56
3.2.1   Emissions of Internal Combustion Engines . . . . . . . . . . 56
3.2.2   Fuel Measurement ....................                      .    58
3.2.3  Intermittent Fuel Injection    . . . . . . . . . . . . . . . . . . 60
3.2.4  Injection Time Calculation     . . . . . . . . . . . . .   .     62
3.2.5   Air Mass per Combustion Cycle      . . . . . . . . . . . . . . . 63
3.2.6   Intake Manifold Dynamics . . . . . . . . . . . . . . . . . . . 65
3.2.7  Ignition Angle Control . . . . . . . . . . . . . . . . . . . .   68
3.2.8   Optimization of Engine Maps . . . . . . . . . . . . . . . . . 70
4   Diesel Engine Modeling                                                      75
4.1  Four Stroke Cycle Diesel Engine       . . . . . . . . . . . . . . . . . .  76
4.2   Charge  Exchange   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  77
4.2.1   Flow into Exhaust Pipes. . . . . . . . . . . . . . . . . . .    77
4.2.2   Flow into Combustion Chamber       . . . . . . . . . . . . . . . 78
4.3   Air-fuel Ratio .     .   .   .   .  .  .  . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  79
4.3.1   Exhaust Stroke ....       . . . .. . . . ... .. .. .. .. .      79
4.3.2   Intake  Stroke   .  .  .  .  . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  80
4.3.3   Compression and Combustion . . . . . . . . . . . . . . . . . 80
4.4   M ass  Balance  .  .  .  .  .  .  .  .  . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  81
4.5  Fuel Injection  .  .  .  .  .  .  .  .  . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  81
4.6  Fuel Evaporation    .  .  .  .  .  .  .  . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  83
4.7   Cylinder Dynamics ..... .         . . .... . . .. ... . . ....         88
4.7.1   Zero-Dimensional Modeling . . . . . . . . . . . . . . . . . . 88
4.7.2   Thermodynamic Equations       . . . . . . . . . . . . . . . . . . 89
4.7.3   Energy  Balance  .  .  .  . .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   89
4.7.4   Volumetric Work ......           .  ... . . . ..  .. . . . . .  89
4.7.5   Heat  Losses  ..   .  .  .  ....  ..  ..  .  ...  ..  .  ...  .  ..  90
4.7.6   Energy Conversion .       . . . . . . . . . . . . . . . . . . . .  91
4.7.7   Enthalpy of Mass Flows . . . . . . . . . . . . . . . . . . . . 91
4.7.8  Internal Energy of the Gas Charge . . . . . . . . . . . . . . 92
4.7.9   Calculation of State Variables . . . . . . . . . . . . . . . . . 92
4.8  Fitting of Model Parameters . . . . . . . . . . . . . . . . . . . . . . 93
4.8.1   Simulation  results  ..   ....................                  95
4.9   Soot Accruement    .  . .  .  .  .  .  . .  .  .  . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  97
5   Engine Control Systems                                                      99
5.1  Lambda Control ....                 ........................            99
5.1.1   Stoichiometric Operation of SI Engines     . . . . . . . . . . . 99
5.1.2   Oxygen Sensor . . . . . . . . . . .    . . . . . . . . . . . . .104
5.1.3   Engine Model for Lambda Control . . . . . . . . . . . . . . 105
5.1.4   Lambda Control Circuit. .       . . . . . . . . . . . . . . . . .108
5.1.5   Measurement Results     . . . . . . . . . . . . . . . . . . . . .112
5.1.6   Adaptive Lambda Control . . . . . . . . . . . . . .       . . .  113
5.2  Idle Speed Control.         .  .   . . . .  . . . . . . . . . . . . . .  .  120
5.2.1   Energy Conversion Model and Torque Balance        . .    . . .  121
5.2.2   State Space Control.          .  .  .   . . . . .  . . . . . . . . . .123
5.2.3   Measurement Results     . . . . . . . . . . . . . . . .   . . .127
5.3  Knock   Control   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . . .  .  . 128
5.3.1   Knocking at SI Engines ...       . .. ...     .. . ..  . . . .128
5.3.2   Knock Sensors    . . . . . . . . . . . .. . .   ... . . . . .132
5.3.3   Signal Processing . .   . . . . . . . . . . . . . . . . . . . . .135
5.3.4   Knock  Control   . .  .  .  .  . .  .  .  . .  .  .  . .  .  .  .  .  . .  .  .  .  .137
5.3.5   Adaptive Knock Control . . . . . . . . . . . . . . .     . . .  138
5.4  Cylinder Balancing . ...... . . ..............                   . .  142
5.4.1   Residues at Stationary Engine Operation     . . . . .    . . .  143
5.4.2   Residues at Engine Transients . . . .   . . . . . . . .  . . .  144
5.4.3  Adaptation of Injection Map     . . . . . . . . . . . . . . . . . 146
6  Diagnosis                                                                  149
6.1  Diagnosis of Automotive Engines . . . . .        . . . . . . . .   .  150
6.1.1   Why On-Board Diagnosis?       . . . . . . . . . . . . . . . . . . 150
6.2   O B D II  . .  .  .  .  .  .  .  .  .  .  .  .  . .  .  .  .  .  .  .  .  . . .  .  .  .  .  .  .  .  .  151
6.2.1   Main Characteristics . . .    . . . . . . . . . . . . . . . . . .151
6.3  Introduction to Diagnosis    . . . . .. . . . . . . . . . . . . . . . . .153
6.3.1   Basic Definitions and Concepts . . . . . . . . . . .     . . .  154
6.4  Model Based Diagnosis      . . . . . . . . . . . . . . . . . . . .   . . .156
6.4.1   Some Characteristics of Model Based Diagnosis      .     . . .  156
6.5  Faults   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . ..  .  .  .  .  . . .. .157
6.5.1   Fault  M odeling  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .159
6.6  Principles of Model Based Diagnosis . . . . . . . . . . . . . . . . . 159
6.6.1   Residual Generator Design    . . . . . . . . . . . . . . . . . . 161
6.6.2   Residual Evaluation    .     .  .   . . . .  . . . . . . . . . . . . 164
6.6.3   Examples of model based diagnosis for SI-engines . .       . .166
6.7  Application Example - Air Intake System      . . . . . . . . . . . . . . 167
6.7.1   Modeling the Air Intake System     . . . . . . . . . . . . . . . 168
6.7.2   Model Identification  . . . . .  . . . . . . . . . . . . . . . .170
6.7.3   The Diagnosis System    . . . .  . . . . . . . . . . . . . . . .172
6.7.4   Residual Generation   . . . . . .. . . . . . . . . . . . . . . .172
6.7.5   Residual Evaluation   . . . . . . . . . . . . . . . . . . . . . .174
6.7.6  Implementation . . . . . . .    . . . . . . . . . . ...   .   . 175
6.7.7   Validation of the Diagnosis System   . . . . . . . . .   . . .  175
6.8  Misfire Detection . .. . .      .  .  . ..   .  .  .   .   . .  .  . .  ..183
6.8.1   Crankshaft Moment of Inertia .       . . . . . . .  . . .    . 183
6.8.2   Crankshaft Torque Balance . . . . . . . . . . . . . . . . . . 186
6.8.3   Transformation into Linear System Representation . . . . . 186
6.8.4   Kalman Filter Design    . . . . . . . . . . . . . .. . . . . .  187
6.8.5   Results  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . .  .  .  189
6.9  Engineering of Diagnosis Systems.        .   . .  . . . . . . . . ... . .  191
7  Driveline Control                                                          193
7.1  Driveline Modeling . . . . ... . . . . . .     . .   ..  . . . . .. . . .193
7.1.1   Basic Driveline Equations . . . . . . . . . . . . . . . . . . . 194
7.1.2   A Basic Complete Model     ..  .     . . . . .  . . . . .  .  . 197
7.1.3   Combining the equations.        .   . . . . . . . . . . . . . .  . 199
7.1.4   An Illustrative Modeling Example. . . .       . . . . . . . . . 199
7.2  Modeling of Neutral Gear . . . . . . . . . . . . . . . . . . . . . . .221
7.2.1   Stationary Gear-Shift Experiments . . . . . . . . .           . 221
7.2.2   Dynamical Gear-Shift Experiments . . . . . . . . .            . 222
7.2.3   A Decoupled Model ... .         . . .... . . . .... . . . .224
7.3   Driveline  Control .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . .  . 226
7.3.1   Background ... . .       . ... .    . ... . . . . .. . . . .227
7.3.2   Field Trials for Problem Demonstration     . . . . . .    . . .  228
7.3.3   Goals of Driveline Control . . . . . . . . . . . . .  .   . .  231
7.3.4   Comment on Architectures for Driveline Control . .        . . .232
7.3.5   State-Space Formulation     . . . . . . . . . . . . . . .   . . .233
7.3.6   Controller Formulation . . . . . . . . . . . . . . . .    . . .  235
7.3.7   Some Feedback Properties . . . . . . . . . . . . . . . . . . . 236
7.3.8   Driveline Control with LQG/LTR       . . . . . . . . .       . 238
7.4  Driveline Speed Control . . . . .      . . . . . . . . . . . . . . . . . .243
7.4.1   RQV Control . . . .      . . .  . . .... . . . .. .. . . ..245
7.4.2   Problem Formulation      . .  . . . . . . . . . . . . . . . . . .246
7.4.3   Speed Control with Active Damping and RQV Behavior           . 249
7.4.4   Influence from Sensor Location . . . . . . . . . . .      . . .  252
7.4.5   Simulations    .  .  .  .  .  .  .  .  .  .  .  .  .  .  . . . . . .  .  .  .  .  .  . 258
7.4.6   Speed Controller Experiments . . . . . . . . . . . .      . . .  260
7.4.7   Sum m ary   ..  .  .  .  .  .  .  .............      . . .....264
7.5  Driveline Control for Gear-Shifting . . . . . . . . . . . . . . . . . . 264
7.5.1  Internal Driveline Torque    . . . . . . . . . . . . . . . . . . .265
7.5.2   Transmission-Torque Control Criterion . . . . . . .       . . .  270
7.5.3   Transmission-Torque Control Design . . . . . . . . ... . . .   275
7.5.4   Influence from Sensor Location    . . . . . . . . . . .   . . .  278
7.5.5   Sim ulations  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .281
7.5.6   Gear-Shift Controller Experiments . . . . . . . . .       . . .  282
7.6  Anti-Jerking Control for Passenger Cars . . . . . . . . . .       . . .  289
7.6.1   Model of the Power train of a Passenger Car      . . .    . . .  291
7.6.2   Controller Design . . . . . . . . . . . . . . . . . . .       . 295
7.6.3   System Performance . . . . . . . .... . . . . . . . . . . .298
8   Vehicle Modelling                                                           301
8.1   Introduction  .  .  .  .  .  .  . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 301
8.2   Co-ordinate Systems..       .       . . . . . .  . . . . . . . . . . . . .302
8.3   Wheel Model ...        .      .  .  .   . . .  . . .  . . . . . . . . . . . . .304
8.3.1   Wheel Ground Contact Point Velocities . . . . . .         . . .  304
8.3.2   Wheel Slip and Tire Side Slip Angle . . . . . . . .       . . .  313
8.3.3   Friction Co-efficient Calculation. . . . . . . . . . .    . . .  319
8.3.4   Calculation of Friction Forces . . . . . . . . . . . . . . . . . 322
8.3.5   Tire Characteristics.      . . . . . . . . . . . . . . . . . . . .324
8.3.6   Definition of the Wheel Radius . . . . . . . . . . .      . . .  327
8.4   The Complete Vehicle Model        . . . . . . . . . . . . . . . . . . . .327
8.4.1   Chassis Translatory Motion . . . . . . . . . . . . . . . . . . 328
8.4.2   Chassis Rotational Motion     . . . . . . . . . . . . . . . . . . 332
8.4.3   Suspension    .  .  .  .  .  .  .  .  .   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .334
8.4.4   Reduced Nonlinear Two-track Model . . . . . . . .         . . .  337
8.4.5  Vehicle Stability Analysis . . . . . . . . . . . . . . . . . . . 342
8.5  Validation of the Vehicle Model . . . . . . . . . . . . . . .   . .   .  344
8.5.1  Validation Procedure . . . . . . . . . . . . . . . . . .  . . .345
8.5.2  Validation  Results  .  .  .  .  . .  .  .  .  . .  .  .  .  .  .  .  .  .  .  .  .  .347
9  Vehicle Parameters and States                                             351
9.1  Vehicle Velocity Estimation . . . . . . . . . . . . . . . . . . . . . . 351
9.1.1  Sensor Data Preprocessing . . . . . . . . . . . . . .  . . .  352
9.1.2  Kalman Filter Approach . . . . . . . . . . . . . . .     . . .  353
9.1.3  Short Introduction to Fuzzy Logic    . . . . . . . . . . . . . . 355
9.1.4  Fuzzy  Estimator   .  .  .  .  . .  .  .  .  . .  .  .  .  . .  .  .  .  . .  . 356
9.1.5  Results of Vehicle Velocity Estimator . . . . . . . .    . . .  361
9.2  Vehicle Yaw Rate Estimation     . .  . . . . . . . . . . . . . . . . . . 364
9.2.1  Data Preprocessing     . . . . . . . . . . . . . . . . . .   . . .364
9.2.2  Yaw Rate Calculation using the Wheel Speeds      . .   .  . . 364
9.2.3  Inputs  ...     . . . .  .   . .  .  . .  .  .  .  .  .  . .  . .  .  .  .  .  .  .365
9.2.4  Outputs.      . . . .. .  .  . ... . ...    . . ..  . . . . . .366
9.2.5  The Fuzzy System. . . . . . . . . . . . . . . . . . . . .367
9.2.6  Measurement: Roundabout Traffic on Public Road . . . . . 368
9.3  Trajectory Reconstruction . . . . . . . . . . . . . . . . . . . . . . . 369
9.3.1  Vehicle  Location  .  .  . .  . .  .  . .  . .  .  .  .  . .  .  . . 369
9.3.2  Reconstructed Trajectories    . . . . . . . . . . . . .  . . .  370
9.3.3  Robustness Analysis . . . . . . . . . . . . .     . .    . . .371
9.4  Identification of Vehicle Parameters . . . . . . . . . . . . .   . . .  375
9.4.1  Friction Characteristics  . . . . . . . . . . . . . . .  . . .  375
9.4.2  Mass Moments of Inertia     . . . . . . . . . . . . . .  . . .  379
9.4.3  Shock Absorber Characteristics . . . . . . . . . . .     . . .  385
9.5  Approximation of Vehicle Parameters      . . . . . . . . . . . . . . . . 387
9.5.1  Calculation of Wheel Ground Contact Forces . . .         . . .  388
9.5.2  Adaptation of the Tire Side Slip Constants . . . .       . . .  391
9.5.3  Approximation of Pitch and Roll Angles . . . . . . . . . . . 393
9.5.4  Approximation of Vehicle Mass . . . . . . . . . . . . . . . . 394
9.6  Vehicle Body Side Slip Angle Observer . . . . . . . . . . .     . . .  396
9.6.1  Basic Theory of a Nonlinear Observer . . . . . . .       . . .396
9.6.2  Observer Design    . .. ... .     .  ..   ..  . . . . . .. . ..398
9.6.3  Validation of Vehicle Body Side Slip Angle Observer .. . .400
9.7  Determination of the Road Gradient . . . . . . . . . . . . . . . . .402
9.7.1  Method 1: Acceleration and Wheel Speed Method        . . . . . 403
9.7.2  Method 2: Model based Road Gradient Observation        . . . .404
10 Vehicle Control Systems                                                   409
10.1 ABS Control Systems     . . . . . . . . . . . . . . . . . . . . . . . . .409
10.1.1 Torque Balance at wheel-road contact . . . . . ..... ..      409
10.1.2 Control Cycles of the ABS System     . . . . . . . . . .....  410
10.1.3 ABS Cycle:Detection . . . . . . . . . . . . . . . . . . . . ..412
10.2 Control of the Yaw Dynamics ...... . . . . ..           .  . .....   415
10.2.1 Derivation of Simplified Control Law . . . . . .     . . . .416
10.2.2 Derivation of Reference Values . . . . . . . . . . . . . . . . 419
11 Road and Driver Models                                       425
11.1 Road Model .... ............. ..............425
11.1.1 Requirements of the Road Model . .......... . . 425
11.1.2 Definition of the Course Path ................. 426
11.1.3 Road Surfaces and Wind Strength .............. 429
11.2 PID Driver Model . ................. .......             430
11.3 Hybrid Driver Model ........ ...   . . . ......... .. . . . .432
11.3.1 Vehicle Control Tasks . . . . . . . . . . . . ..... .432
11.3.2 Characteristics of the Human as a Controller . .  . . . . 434
11.3.3  Information  Handling  . . . . . . . . . . . . . . . . . . . . .437
11.3.4  Complete Driver Model  . . . . . . . . . . . . . . . . . . . . 440
11.3.5 Model of Human Information Acquisition . . . . . . . . . .441
11.3.6 Inter-event Arrival and Service Times . . . . . . . . . ... 443
11.3.7  Reference Value Calculation  . . . . . . . . . . . . . . . . . . 445
11.3.8 Longitudinal and Lateral Control . . . . . . . . ..... . . 451



Library of Congress subject headings for this publication: Automobiles Automatic control, Adaptive control systems, Automobiles Motors Control systems