Table of contents for Physics of semiconductor devices / by J.P. Colinge, C.A. Colinge.


Bibliographic record and links to related information available from the Library of Congress catalog. Note: Electronic data is machine generated. May be incomplete or contain other coding.


Counter




1. Energy Band Theory                                                             
1.1. Electron in  a  crystal
1.1.1. Two examples of electron  behavior
1.1.1.1. Free electron
1.1.1.2. The particle-in-a-box approach                          
1.1.2. Energy bands of a crystal (intuitive approach)
1.1.3. Kronig-Penney model                                                
1.1.4. Valence band and conduction band
1.1.5. Parabolic band approximation
1.1.6. Concept of a hole                               
1.1.7. Effective mass of the electron in  a  crystal                
1.1.8. Density of states in energy bands
1.2. Intrinsic semiconductor                                                     
1.3. Extrinsic semiconductor
1.3.1. Ionization of impurity atoms
1.3.2. Electron-hole equilibrium
1.3.3. Calculation of the Fermi Level                                   
1.3.4. Degenerate semiconductor                                             
1.4. Alignment of Fermi levels                                                 
Important Equations
Problems               .                                                                                                      .
2. Theory of  Electrical Conduction                      
2.1. Drift of electrons in an electric field.            
2.2. Mobility
2.3. Drift current
2.3.1. Hall effect
2.4. Diffusion current                                                                                       .
2.5. Drift-diffusion  equations
2.5.1. Einstein relationships
2.6. Transport equations                                                                                                    .
2.7. Quasi-Fermi levels
Important Equations
Problems



3. Generation/Recombination Phenomena
3.1.    Introduction
3.2. Direct and indirect transitions
3.3.    Generation/recombination centers
3.4. Excess carrier lifetime
3.5. SRH recombination
3.5.1. Minority carrier lifetime
3.6. Surface recombination
Important Equations
Problems
4. The PN junction Diode
4.1.    Introduction
4.2. Unbiased PN junction
4.3. Biased PN junction
4.4. Current-voltage characteristics
4.4.1. Derivation of the ideal diode model
4.4.2. Generation/recombination current
4.4.3. Junction breakdown
4.4.4. Short-base diode
4.5. PN junction capacitance
4.5.1. Transition  capacitance
4.5.2. Diffusion  capacitance
4.5.3. Charge storage  and switching time
4.6. Models for the PN junction
4.6.1. Quasi-static, large-signal model
4.6.2. Small-signal, low-frequency  model
4.6.3. Small-signal, high-frequency  model
4.7. Solar cell
4.8. PiN diode
Important Equations
Problems
5.   Metal-semiconductor contacts
5.1. Schottky diode    .
5.1.1. Energy band    diagram
5.1.2.     Extension  of the depletion  region
5.1.3.      Schottky effect
5.1.4.     Current-voltage characteristics
5.1.5. Influence of interface states
5.1.6. Comparison with the PN junction
5.2. Ohmic contact       .
Important Equations
Problems



6. JFET and MESFET
6.1. The JFET
6.2.    The MESFET
Important Equations
7. The MOS Transistor
7.1. Introduction and    basic     principles
7.2. The   MOS capacitor
7.2.1. Accumulation
7.2.2. Depletion
7.2.3. Inversion
7.3. Threshold  voltage
7.3.1     Ideal threshold  voltage
7.3.2. Flat-band voltage
7.3.3.      Threshold  voltage
7.4. Current in the MOS transistor
7.4.1. Influence of substrate bias on threshold voltage
7.4.2. Simplified model
7.5. Surface mobility
7.6. Carrier velocity saturation
7.7. Subthreshold current - Subthreshold slope
7.8. Continuous               model
7.9. Channel length                   modulation
7.10. Numerical modeling of the MOS transistor
7.11. Short-channel effect
7.12. Hot-carrier             degradation
7.12.1. Scaling           rules
7.12.2. Hot           electrons
7.12.3. Substrate             current.
7.12.4. Gate      current
7.12.5. Degradation                   mechanism
7.13. Terminal  capacitances
7.14. Particular MOSFET structures
7.14.1. Non-Volatile Memory MOSFETs
7.14.2. SOI MOSFETs
7.15. Advanced MOSFET concepts
7.15.1. Polysilicon   depletion
7.15.2. High-k    ielectrics
7.15.3. Drain-induced       barrier lowering (DIBL)
7.15.4. Gate-induced   drain     leakage   (GIDL)
7.15.5. Reverse  short-channel effect
7.15.6. Quantization effects in the inversion channel
Important          Equations
Problems



8. The       Bipolar       Transistor
8.1. Introduction and    basic     principles
8.1.1. Long-base device
8.1.2. Short-base  device
8.1.3. Fabrication  process
8.2. Amplification  using     a  bipolar transistor
8.3. Ebers-Moll model
8.3.1. Emitter efficiency
8.3.2. Transport factor in   the   base
8.4. Regimes of operation
8.5. Transport model
8.6. Gummel-Poon   model
8.6.1. Current gain
8.6.1.1. Recombination  in   the   base
8.6.1.2. Emitter efficiency   and     current gain
8.7. Early        effect
8.8. Dependence of current gain on collector current
8.8.1. Recombination at the     emitter-base junction
8.8.2. Kirk        effect
8.9. Base resistance
8.10. Numerical simulation   of the     bipolar transistor
8.11. Collector junction  breakdown
8.11.1. Common-base  configuration
8.11.2. Common-emitter  configuration
8.12. Charge-control model  
8.12.1. Forward active  mode
8.12.2. Large-signal model
8.12.3. Small-signal model
Important Equations
Problems
9.   Heterojunction  Devices
9.1. Concept of a  heterojunction
9.1.1. Energy  band     diagram
9.2. Heterojunction              bipolar transistor   (HBT)
9.2. High electron      mobility        transistor (HEMT)
9.3. Photonic Devices
9.3.1. Light-emitting  diode      (LED)
9.3.2. Laser diode
Problems



10.    Quantum-Effect Devices                                                                         .
10.1. Tunnel Diode
10.1.1. Tunnel  effect
10.1.2. Tunnel  diode
10.2. Low-dimensional devices
10.2.1. Energy  bands
10.2.2. Density of   states
10.2.3. Conductance of a 1D semiconductor sample
10.2.4. 2D and   ID  MOS    transistors
10.3. Single-electron                transistor
10.3.1. Tunnel junction
10.3.2. Double tunnel junction
10.3.3. Single-electron  transistor
Problems
11.    Semiconductor  Processing
11.1. Semiconductor  materials
11.2. Silicon crystal growth   and     refining
11.3. Doping   techniques
11.3.1. Ion implantation
11.3.2. Doping  impurity        diffusion
11.3.3. Gas-phase  diffusion
11.4. Oxidation
11.5. Chemical vapor deposition        (CVD)
11.5.1. Silicon          deposition         and    epitaxy
11.5.2. Dielectric  layer deposition
11.6. Photolithography
11.7. Etching     
11.8. Metallization     
11.8.2. Metal deposition
11.8.3. Metal silicides  
11.9. CMOS process
11.10. NPN bipolar    process
Problems
12.    Annex  c   
Al. Physical Quantities and  Units
A2. Physical Constants               
A3. Concepts of   Quantum Mechanics
A4. Crystallography Reciprocal Space
A5. Getting Started     with  Matlab
A6. Greek           alphabet     
A7. Basic Differential Equations








Library of Congress subject headings for this publication: Semiconductors