Table of contents for Solid state physics : essential concepts / David W. Snoke.

Bibliographic record and links to related information available from the Library of Congress catalog.

Note: Contents data are machine generated based on pre-publication provided by the publisher. Contents may have variations from the printed book or be incomplete or contain other coding.


Counter
Preface}{v}
{1}Electron Bands}{1}
{1.1}Where Do Bands Come From?}{1}
{1.1.1}Energy Splitting Due to Wavefunction Overlap}{1}
{1.1.2}The LCAO Approximation}{7}
{1.2}The Kronig-Penney Model}{10}
{1.3}Bloch's Theorem}{15}
{1.4}Crystals and Bravais Lattices}{18}
{1.5}X-ray Scattering}{25}
{1.6}General Properties of Bloch Functions}{29}
{1.7}Boundary Conditions in a Finite Crystal}{33}
{1.8}Density of States}{36}
{1.9}Electron Band Calculations in Three Dimensions}{39}
{1.9.1}How to Read a Band Diagram}{40}
{1.9.2}The Tight-Binding Approximation and\\ Wannier Functions}{41}
{1.9.3}The Nearly-Free-Electron Approximation}{45}
{1.9.4}\relax \mathversion {bold}\textit {k} $\cdot $ \textit {p} Theory}{48}
{1.9.5}Other Methods of Calculating Band Structure}{53}
{1.10}Bands and Molecular Bonds}{55}
{1.10.1}Molecular Bonds}{55}
{1.10.2}Classes of Electronic Structure}{57}
{1.10.3}Molecular Bonds and Crystal Symmetry}{60}
{1.11}Surface States and Disorder}{62}
{1.12}Bibliography}{65}
{2}Electronic Quasiparticles}{66}
{2.1}Quasiparticles}{66}
{2.2}Effective Mass}{68}
{2.3}Excitons}{71}
{2.4}Metals and the Fermi Gas}{75}
{2.4.1}Isotropic Fermi Gas at \relax \mathversion {bold}{\em T} = 0\relax \mathversion {normal}}{77}
{2.4.2}Fermi Gas at Finite Temperature}{79}
{2.5}Basic Behavior of Semiconductors}{81}
{2.5.1}Equilibrium Populations of Electrons and Holes}{82}
{2.5.2}Semiconductor Doping}{85}
{2.5.3}Equilibrium Populations in Doped Semiconductors}{87}
{2.5.4}The Mott Transition}{90}
{2.6}Band Bending and Heterojunctions}{92}
{2.6.1}Metal-to-Metal Junctions}{92}
{2.6.2}Doped Semiconductor Heterojunctions}{94}
{2.6.3}Metal-Semiconductor Heterojunctions}{96}
{2.6.4}Surface Band Bending}{97}
{2.6.5}Junctions with Undoped Semiconductors}{97}
{2.7}Quantum Confinement}{99}
{2.7.1}Density of States in Quantum-Confined Systems}{101}
{2.7.2}Superlattices}{103}
{2.7.3}Disorder in Quantum-Confined Systems}{107}
{2.7.4}The Two-Dimensional Electron Gas}{108}
{2.8}Landau Levels and Quasiparticles in Magnetic Field}{110}
{2.8.1}Density of States of Landau Levels}{111}
{2.8.2}De Haas--Van Alphen and Shubnikov--De Haas\\ Oscillations}{114}
{2.8.3}The Integer Quantum Hall Effect}{116}
{2.8.4}The Fractional Quantum Hall Effect and Higher-Order Quasiparticles}{119}
{2.9}Bibliography}{122}
{3}Classical Waves in Anisotropic Media}{124}
{3.1}Harmonic Approximation of the Interatomic Potential}{124}
{3.2}Linear-Chain Model}{126}
{3.3}Vibrational Modes in Higher Dimensions}{130}
{3.5}Phase Velocity and Group Velocity in Anisotropic Media}{137}
{3.6}Acoustic Waves in Anisotropic Crystals}{139}
{3.6.1}Stress and Strain Definitions; Elastic Constants}{139}
{3.6.2}The Christoffel Wave Equation}{145}
{3.6.3}Acoustic Wave Focusing}{147}
{3.7}Electromagnetic Waves in Anisotropic Crystals}{149}
{3.7.1}Maxwell's Equations in an Anisotropic Crystal}{149}
{3.7.2}Uniaxial Crystals}{153}
{3.7.3}The Index Ellipsoid}{158}
{3.8}Electro-Optics}{161}
{3.9}Piezoelectric Materials}{164}
{3.10}Reflection and Transmission at Interfaces}{167}
{3.10.1}Optical Fresnel Equations}{167}
{3.10.2}Acoustic Fresnel Equations}{170}
{3.10.3}Surface Acoustic Waves}{173}
{3.11}Photonic Crystals and Periodic Structures}{175}
{3.12}Bibliography}{179}
{4}Quantized Waves}{180}
{4.1}The Quantized Harmonic Oscillator}{180}
{4.2}Phonons}{184}
{4.3}Photons}{189}
{4.4}Coherent States}{193}
{4.5}Spatial Field Operators}{198}
{4.6}Electron Fermi Field Operators}{201}
{4.7}First-Order Time-Dependent Perturbation Theory}{203}
{4.8}The Quantum Fokker-Planck Equation}{208}
{4.8.1}Equilibrium Distributions of Quantum Particles and the H-Theorem}{212}
{4.9}Energy Density of Solids}{215}
{4.9.1}Density of States of Phonons and Photons}{217}
{4.9.2}Planck Energy Density}{218}
{4.9.3}Heat Capacity of Phonons}{219}
{4.9.4}Total Heat Capacity}{222}
{4.10}Debye-Waller Effect}{224}
{4.11}Bibliography}{228}
{5}Interactions of Quasiparticles}{229}
{5.1}Electron-Phonon Interactions}{229}
{5.1.1}Deformation Potential Scattering}{230}
{5.1.3}Fr\"ohlich Scattering}{236}
{5.1.4}Average Electron-Phonon Scattering Time}{237}
{5.2}Electron-Photon Interactions}{239}
{5.2.1}Optical Transitions between Semiconductor Bands}{241}
{5.2.2}Multipole Expansion}{244}
{5.3}Interactions with Defects; Rayleigh Scattering}{246}
{5.4}Phonon-Phonon Interactions}{254}
{5.5}Electron-Electron Interactions}{261}
{5.5.1}Semiclassical Estimation of Screening Length}{264}
{5.5.2}Average Electron-Electron Scattering Time}{266}
{5.6}The Relaxation-Time Approximation and the Diffusion Equation}{268}
{5.7}Thermal Conductivity}{273}
{5.8}Electrical Conductivity}{275}
{5.9}The Boltzmann Transport Equation}{279}
{5.10}Magnetoresistance}{282}
{5.11}Drift of Defects and Dislocations---Plasticity}{283}
{5.12}Bibliography}{287}
{6}Group Theory}{289}
{6.1}Definition of a Group}{289}
{6.2}Representations}{293}
{6.3}Character Tables}{295}
{6.4}Equating Physical States with the Basis States of Representations}{299}
{6.5}Reducing Representations}{303}
{6.6}Multiplication Rules for Outer Products}{308}
{6.7}Getting the Terminology Straight}{314}
{6.8}Allowed and Forbidden Transitions}{315}
{6.8.1}Group Theory in \relax \mathversion {bold}{\em k} $\cdot $ {\em p} Theory\relax \mathversion {normal}}{317}
{6.8.2}Second-Order Transitions}{318}
{6.9}Effects of Lowering Symmetry}{320}
{6.10}Spin and Time-Reversal Symmetry}{327}
{6.11}Bibliography}{330}
{7}The Complex Susceptibility}{331}
{7.1}A Microscopic View of the Dielectric Constant}{331}
{7.3}The Quantum Mechanical Oscillator}{342}
{7.4}Polaritons}{346}
{7.4.2}Exciton-Polaritons}{351}
{7.5}Nonlinear Optics and Photon-Photon Interactions}{353}
{7.5.1}Second-Harmonic Generation and Three-Wave Mixing}{354}
{7.5.2}Higher-Order Effects}{357}
{7.6}Acousto-Optics and Photon-Phonon Interactions}{360}
{7.7}Raman Scattering}{364}
{7.8}Bibliography}{368}
{8}Many-Body Perturbation Theory}{369}
{8.1}Higher-Order Time-Dependent Perturbation Theory}{369}
{8.2}Polarons}{376}
{8.3}Shift of Bands with Temperature}{378}
{8.4}Line Broadening}{380}
{8.5}Rayleigh-Schr\"odinger Diagram Rules}{384}
{8.6}Feynman Perturbation Theory}{389}
{8.7}Diagram Rules for Feynman Perturbation Theory}{397}
{8.9}Physical Meaning of the Green's Function}{405}
{8.10.1}Plasmons}{413}
{8.10.2}The Conductor-Insulator Transition and Screening}{415}
{8.11}Exchange and Correlation Energy of Fermions}{418}
{8.12}Vacuum Energy}{423}
{8.13}Bibliography}{424}
{9}Coherence and Correlation}{426}
{9.1}Three Types of Coherence}{426}
{9.2}Density Matrix Formalism}{427}
{9.3}The Bloch Equations}{430}
{9.4}Magnetic Resonance}{439}
{9.5}Quantum Coherent Effects}{443}
{9.6}Correlation Functions and Noise}{449}
{9.7}Correlations in Quantum Mechanics}{455}
{9.8}Particle-Particle Correlation}{459}
{9.9}The Fluctuation-Dissipation Theorem}{464}
{9.10}Current Fluctuations and the Nyquist Formula}{467}
{9.11}The Kubo Formula and Many-Body Theory of Metals}{469}
{9.12}Mesoscopic Effects}{475}
{10}Spin and Magnetic Systems}{485}
{10.1}Overview of Magnetic Properties}{485}
{10.2}The Ising Model}{489}
{10.2.1}Zero External Magnetic Field; Spontaneous Symmetry Breaking}{490}
{10.2.2}External Magnetic Field; Hysteresis}{494}
{10.3}Critical Fluctuations}{497}
{10.3.1}Critical Exponents and Magnetic Susceptibility}{497}
{10.3.2}Landau Coarse Graining Theory}{499}
{10.4}Renormalization Group Methods}{505}
{10.5}Spin Waves and Goldstone Bosons}{509}
{10.6}Domains and Domain Walls}{513}
{10.7}Spin-Spin Interaction}{516}
{10.7.1}Ferromagnetic Instability}{519}
{10.7.2}Localized States and RKKY Exchange Interaction}{522}
{10.8}Spin Flip and Spin Dephasing}{526}
{10.9} What Is Spin, Anyway?}{532}
{10.10}Bibliography}{536}
{11}Spontaneous Coherence in Matter}{537}
{11.1}Bose-Einstein Condensation}{539}
{11.1.1}Theory of the Ideal Bose Gas}{539}
{11.1.2}The Bogoliubov Model}{542}
{11.1.3}The Stability of the Condensate. Analogy with\\ Ferromagnets}{546}
{11.1.4}Bose Liquid Hydrodynamics}{550}
{11.1.5}Superfluids versus Condensates}{554}
{11.2}Superconductors}{558}
{11.2.1}Constructing Bosons from Fermions}{558}
{11.2.2}Cooper Pairing}{562}
{11.2.3}BCS Wavefunction}{565}
{11.2.4}Excitation Spectrum of a Superconductor}{570}
{11.2.5}Magnetic Effects of Superconductors}{579}
{11.2.6}Josephson Junctions}{588}
{11.3}Optical Coherence}{591}
{11.3.1}Lasing as a Phase Transition}{591}
{11.3.2}Excitonic Condensation}{595}
{11.4}Bibliography}{598}

Library of Congress Subject Headings for this publication:

Solid state physics -- Textbooks.