Table of contents for Optical fiber communications : principles and practice / John M. Senior, assisted by M. Yousif Jamro.

Bibliographic record and links to related information available from the Library of Congress catalog.

Note: Contents data are machine generated based on pre-publication provided by the publisher. Contents may have variations from the printed book or be incomplete or contain other coding.


Counter
Contents
	Preface to the third edition	xix
	List of symbols and abbreviations	xxiii
Chapter 1: Introduction	1
1.1	Historical development	1
1.2	The general system	5
1.3	Advantages of optical fiber communication	7
	References	10
Chapter 2: Optical fiber waveguides	12
2.1	Introduction	12
2.2	Ray theory transmission	14
2.2.1	Total internal reflection	14
2.2.2	Acceptance angle	16
2.2.3	Numerical aperture	17
2.2.4	Skew rays	20
2.3	Electromagnetic mode theory for optical propagation	24
2.3.1	Electromagnetic waves	24
2.3.2	Modes in a planar guide	26
2.3.3	Phase and group velocity	28
2.3.4	Phase shift with total internal reflection and the evanescent field	30
2.3.5	Goos-Haenchen shift	35
2.4	Cylindrical fiber	35
2.4.1	Modes	35
2.4.2	Mode coupling	42
2.4.3	Step index fibers	43
2.4.4	Graded index fibers	46
2.5	Single-mode fibers	54
2.5.1	Cutoff wavelength	59
2.5.2	Mode-filed diameter and spot size	60
2.5.3	Effective refractive index	61
2.5.4	Group delay and mode delay factor	64
2.5.5	The Gaussian approximation	65
2.5.6	Equivalent step index methods	71
2.6	Photonic crystal fibers	75
2.6.1	Index-guided microstructures	75
2.6.2	Photonic bandgap fibers	77
Problems	78
References	82
Chapter 3: Transmission characteristics of optical fibers	86
3.1	Introduction	87
3.2	Attenuation	88
3.3	Material absorption losses in silica glass fibers	90
3.3.1	Intrinsic absorption	90
3.3.2	Extrinsic absorption	91
3.4	Linear scattering losses	95
3.4.1	Rayleigh scattering	95
3.4.2	Mie scattering	97
3.5	Nonlinear scattering losses	98
3.5.1	Stimulated Brillouin scattering	98
3.5.2	Stimulated Raman scattering	99
3.6	Fiber bend loss	100
3.7	Mid-infrared and far-infrared transmission	102
3.8	Dispersion	105
3.9	Chromatic dispersion	109
3.9.1	Material dispersion	110
3.9.2	Waveguide dispersion	113
3.10	Intermodal dispersion	113
3.10.1	Multimode step index fiber	114
3.10.2	Multimode graded index fiber	119
3.10.3	Modal noise	122
3.11	Overall fiber dispersion	124
3.11.1	Multimode fibers	124
3.11.2	Single-mode fibers	125
3.12	Dispersion-modified single-mode fibers	132
3.12.1	Dispersion-shifted fibers	133
3.12.2	Dispersion-flattened fibers	137
3.12.3	Nonzero-dispersion-shifted fibers	137
3.13	Polarization	140
3.13.1	Fiber birefringence	141
3.13.2	Polarization mode dispersion	144
3.13.3	Polarization-maintaining fibers	147
3.14	Nonlinear effects	151
3.14.1	Scattering effects	151
3.14.2	Kerr effects	154
3.15	Soliton propagation	155
Problems	158
References	163
Chapter 4: Optical fibers and cables	169
4.1	Introduction	169
4.2	Preparation of optical fibers	170
4.3	Liquid-phase (melting) techniques	171
4.3.1	Fiber drawing	172
4.4	Vapor-phase deposition techniques	175
4.4.1	Outside vapor-phase oxidation process	176
4.4.2	Vapor axial deposition (VAD)	178
4.4.3	Modified chemical vapor deposition	180
4.4.4	Plasma-activated chemical vapor deposition (PCVD)	181
4.4.5	Summary of vapor-phase deposition techniques	182
4.5	Optical fibers	183
4.5.1	Multimode step index fibers	184
4.5.2	Multimode graded index fibers	185
4.5.3	Single-mode fibers	187
4.5.4	Plastic-clad fibers	190
4.5.5	Plastic optical fibers	191
4.6	Optical fiber cables	194
4.6.1	Fiber strength and durability	195
4.7	Stability of the fiber transmission characteristics	199
4.7.1	Microbending	199
4.7.2	Hydrogen absorption	200
4.7.3	Nuclear radiation exposure	201
4.8	Cable design	203
4.8.1	Fiber buffering	203
4.8.2	Cable structural and strength members	204
4.8.3	Cable sheath, water barrier and cable core	206
4.8.4	Examples of fiber cables	207
Problems	212
References	213
Chapter 5: Optical fiber connections: joints, couplers and isolators	217
5.1	Introduction	217
5.2	Fiber alignment and joint loss	219
5.2.1	Multimode fiber joints	222
5.2.2	Single-mode fiber joints	230
5.3	Fiber splices	233
5.3.1	Fusion splices	234
5.3.2	Mechanical splices	236
5.3.3	Multiple splices	241
5.4	Fiber connectors	243
5.4.1	Cylindrical ferrule connectors	244
5.4.2	Biconical ferrule connectors	246
5.4.3	Double eccentric connector	247
5.4.4	Duplex and multiple-fiber connectors	248
5.4.5	Connector-type summary	250
5.5	Expanded beam connectors	253
5.5.1	GRIN rod lenses	255
5.6	Fiber couplers	257
5.6.1	Three- and four-port couplers	260
5.6.2	Star couplers	265
5.6.3	Wavelength division multiplexing couplers	270
5.7	Optical isolators and circulators	279
Problems	282
References	286
Chapter 6: Optical sources 1: the laser	292
6.1	Introduction	292
6.2	Basic concepts	295
6.2.1	Absorption and emission of radiation	295
6.2.2	The Einstein relations	297
6.2.3	Population inversion	300
6.2.4	Optical feedback and laser oscillation	301
6.2.5	Threshold condition for laser oscillation	305
6.3	Optical emission from semiconductors	307
6.3.1	The p-n junction	307
6.3.2	Spontaneous emission	309
6.3.3	Carrier recombination	311
6.3.4	Stimulated emission and lasing	315
6.3.5	Heterojunctions	321
6.3.6	Semiconductor materials	323
6.4	The semiconductor injection laser	325
6.4.1	Efficiency	326
6.4.2	Stripe geometry	328
6.4.3	Laser modes	330
6.4.4	Single-mode operation	331
6.5	Some injection laser structures	332
6.5.1	Gain-guided lasers	332
6.5.2	Index-guided lasers	334
6.5.3	Quantum-well lasers	337
6.5.4	Quantum-dot lasers	337
6.6	Single-frequency injection lasers	340
6.6.1	Short- and couple-cavity lasers	340
6.6.2	Distributed feedback lasers	342
6.6.3	Vertical cavity surface-emitting lasers	345
6.7	Injection laser characteristics	348
6.7.1	Threshold current temperature dependence	348
6.7.2	Dynamic response	352
6.7.3	Frequency chirp	353
6.7.4	Noise	354
6.7.5	Mode hopping	358
6.7.6	Reliability	359
6.8	Injection laser to fiber coupling	360
6.9	Nonsemiconductor lasers	362
6.9.1	The Nd:YAG laser	362
6.9.2	Glass fiber lasers	364
6.10	Narrow-linewidth and wavelength-tunable lasers	367
6.10.1	Long external cavity lasers	369
6.10.2	Integrated external cavity lasers	370
6.10.3	Fiber lasers	374
6.11	Mid-infrared and far-infrared lasers	376
6.11.1	Quantum cascade lasers	379
Problems	381
References	384
Chapter 7: Optical sources 2: the light-emitting diode	394
7.1	Introduction	394
7.2	LED power and efficiency	396
7.2.1	The double-heterojunction LED	403
7.3	LED structures	404
7.3.1	Planar LED	405
7.3.2	Dome LED	405
7.3.3	Surface emitter LEDs	405
7.3.4	Edge emitter LEDs	409
7.3.5	Superluminescent LEDs	412
7.3.6	Resonant cavity and quantum-dot LEDs	414
7.3.7	Lens coupling to fiber	417
7.4	LED characteristics	420
7.4.1	Optical output power	420
7.4.2	Output spectrum	423
7.4.3	Modulation bandwidth	426
7.4.4	Reliability	431
7.5	Modulation	433
Problems	434
References	437
Chapter 8: Optical detectors	442
8.1	Introduction	442
8.2	Device types	444
8.3	Optical detection principles	445
8.4	Absorption	446
8.4.1	Absorption coefficient	446
8.4.2	Direct and indirect absorption: silicon and germanium	447
8.4.3	III-V alloys	448
8.5	Quantum efficiency	449
8.6	Responsivity	449
8.7	Long-wavelength cutoff	453
8.8	Semiconductor photodiodes without internal gain	454
8.8.1	The p-n photodiode	454
8.8.2	The p-i-n photodiode	455
8.8.3	Speed of response	460
8.8.4	Noise	466
8.9	Semiconductor photodiodes with internal gain	469
8.9.1	Avalanche photodiodes	469
8.9.2	Silicon reach through avalanche photodiodes	470
8.9.3	Germanium avalanche photodiodes	471
8.9.4	III-V alloy avalanche photodiodes	474
8.9.5	Benefits and drawbacks with the avalanche photodiode	478
8.9.6	Multiplication factor	480
8.10	Mid-infrared and far-infrared photodiodes	481
8.10.1	Quantum-dot photodetectors	482
8.11	Phototransistors	484
8.12	Metal-semiconductor-metal photodetectors	487
Problems	492
References	495
Chapter 9: Direct detection receiver performance considerations	500
9.1	Introduction	500
9.2	Noise	501
9.2.1	Thermal noise	501
9.2.2	Dark current nose	502
9.2.3	Quantum noise	502
9.2.4	Digital signaling quantum noise	503
9.2.5	Analog transmission quantum noise	506
9.3	Receiver noise	508
9.3.1	The p-n and p-i-n photodiode receiver	509
9.3.2	Receiver capacitance and bandwidth	513
9.3.3	Avalanche photodiode (APD) receiver	514
9.3.4	Excess avalanche noise factor	520
9.3.5	Gain-bandwidth product	521
9.4	Receiver structures	522
9.4.1	Low-impedance front end	523
9.4.2	High-impedance (integrating) front end	524
9.4.3	The transimpedance front end	524
9.5	FET preamplifiers	528
9.5.1	Gallium arsenide MESFETs	529
9.5.2	PIN-FET hybrid receivers	530
9.6	High-performance receivers	532
Problems	540
References	543
Chapter 10: Optical amplification, wavelength conversion and regeneration	547
10.1	Introduction	547
10.2	Optical amplifiers	548
10.3	Semiconductor optical amplifiers	550
10.3.1	Theory	552
10.3.2	Performance characteristics	557
10.3.3	Gain clamping	561
10.3.4	Quantum dots	563
10.4	Fiber amplifiers	565
10.4.1	Rare-earth-doped fiber amplifiers	566
10.4.2	Raman and Brillouin fiber amplifiers	569
10.4.3	Waveguide amplifiers and amplets	573
10.4.4	Optical fiber parametric amplifier	576
10.4.5	Wideband optical fiber amplifiers	579
10.5	Wavelength conversion	581
10.5.1	Cross-gain modulation wavelength converter	582
10.5.2	Cross-phase modulation wavelength converter	584
10.5.3	Cross-absorption modulation wavelength converter	590
10.5.4	Coherent wavelength converters	591
10.6	Optical regeneration	593
Problems	596
References	598
Chapter 11: Integrated optics and photonics	604
11.1	Introduction	604
11.2	Integrated optics and photonics technologies	605
11.3	Planar waveguides	608
11.4	Some integrated optical devices	613
11.4.1	Beam splitters, directional couplers and switches	614
11.4.2	Modulators	621
11.4.3	Periodic structures for filters and injection lasers	625
11.4.4	Polarization transformers and wavelength converters	631
11.5	Optoelectronic integration	634
11.6	Photonic integrated circuits	641
11.7	Optical bistability and digital optics	646
11.8	Optical computation	653
Problems	661
References	663
Chapter 12: Optical fiber systems 1: intensity modulation/direct detection	671
12.1	Introduction	671
12.2	The optical transmitter circuit	673
12.2.1	Source limitations	674
12.2.2	LED drive circuits	677
12.2.3	Laser drive circuits	684
12.3	The optical receiver circuit	688
12.3.1	The preamplifier	689
12.3.2	Automatic gain control	692
12.3.3	Equalization	695
12.4	System design considerations	698
12.4.1	Component choice	699
12.4.2	Multiplexing	700
12.5	Digital systems	701
12.6	Digital system planning considerations	706
12.6.1	The optoelectronic regenerative repeater	706
12.6.2	The optical transmitter and modulation formats	709
12.6.3	The optical receiver	713
12.6.4	Channel losses	723
12.6.5	Temporal response	724
12.6.6	Optical power budgeting	729
12.6.7	Line coding	732
12.7	Analog systems	737
12.7.1	Direct intensity modulation (D-IM)	740
12.7.2	System planning	746
12.7.3	Subcarrier intensity modulation	748
12.7.4	Subcarrier double-sideband modulation (DSB-IM)	750
12.7.5	Subcarrier frequency modulation (FM-IM)	752
12.7.6	Subcarrier phase modulation (PM-IM)	754
12.7.7	Pulse analog techniques	756
12.8	Distribution systems	758
12.9	Multiplexing strategies	763
12.9.1	Optical time division multiplexing	763
12.9.2	Subcarrier multiplexing	764
12.9.3	Orthogonal frequency division multiplexing	766
12.9.4	Wavelength division multiplexing	769
12.9.5	Optical code division multiplexing	775
12.9.6	Hybrid multiplexing	776
12.10	Application of optical amplifiers	776
12.11	Dispersion management	784
12.12	Soliton systems	790
Problems	800
References	809
Chapter 13: Optical fiber systems 2: coherent and phase modulated	821
13.1	Introduction	821
13.2	Basic coherent system	825
13.3	Coherent detection principles	828
13.4	Practical constraints	833
13.4.1	Injection laser linewidth	833
13.4.2	State of polarization	834
13.4.3	Local oscillator power	838
13.4.4	Transmission medium limitation	841
13.5	Modulation formats	843
13.5.1	Amplitude shift keying	843
13.5.2	Frequency shift keying	844
13.5.3	Phase shift keying	845
13.5.4	Polarization shift keying	848
13.6	Demodulation schemes	849
13.6.1	Heterodyne synchronous detection	851
13.6.2	Heterodyne asynchronous detection	853
13.6.3	Homodyne detection	854
13.6.4	Intradyne detection	857
13.6.5	Phase diversity reception	858
13.6.6	Polarization diversity reception and polarization scrambling	861
13.7	Differential phase shift keying	862
13.8	Receiver sensitivities	866
13.8.1	ASK heterodyne detection	866
13.8.2	FSK heterodyne detection	869
13.8.3	PSK heterodyne detection	871
13.8.4	ASK and PSK homodyne detection	872
13.8.5	Dual-filter direct detection FSK	873
13.8.6	Interferometric direct detection DPSK	874
13.8.7	Comparison of sensitivities	875
13.9	Multicarrier systems	884
13.9.1	Polarization multiplexing	887
13.9.2	High-capacity transmission	888
Problems	892
References	895
Chapter 14: Optical fiber measurements	903
14.1	Introduction	903
14.2	Fiber attenuation measurements	907
14.2.1	Total fiber attenuation	908
14.2.2	Fiber absorption loss measurement	912
14.2.3	Fiber scattering loss measurement	915
14.3	Fiber dispersion measurements	917
14.3.1	Time domain measurement	918
14.3.2	Frequency domain measurement	921
14.4	Fiber refractive index profile measurements	924
14.4.1	Interferometric methods	925
14.4.2	Near-field scanning method	928
14.4.3	Refracted near-field method	930
14.5	Fiber cutoff wavelength measurements	932
14.6	Fiber numerical aperture measurements	936
14.7	Fiber diameter measurements	939
14.7.1	Outer diameter	939
14.7.2	Core diameter	941
14.8	Mode-field diameter for single-mode fiber	941
14.9	Reflectance and optical return loss	944
14.10	Field measurements	946
14.10.1	Optical time domain reflectometry	950
Problems	956
References	960
Chapter 15: Optical networks	965
15.1	Introduction	965
15.2	Optical network concepts	967
15.2.1	Optical networking terminology	968
15.2.2	Optical network node and switching elements	972
15.2.3	Wavelength division multiplexed networks	974
15.2.4	Public telecommunications network overview	976
15.3	Optical network transmission modes, layers and protocols	977
15.3.1	Synchronous networks	978
15.3.2	Asynchronous transfer mode	983
15.3.3	Open Systems Interconnection reference model	983
15.3.4	Optical transport network	985
15.3.5	Internet Protocol	987
15.4	Wavelength routing networks	990
15.4.1	Wavelength routing assignment	994
15.5	Optical switching networks	996
15.5.1	Optical circuit-switched networks	996
15.5.2	Optical packet-switched networks	998
15.5.3	Multiple Protocol Label Switching	1000
15.5.4	Optical burst switching networks	1002
15.6	Optical network deployment	1005
15.6.1	Long-haul networks	1006
15.6.2	Metropolitan area networks	1009
15.6.3	Access networks	1011
15.6.4	Local area networks	1021
15.7	Optical Ethernet	1026
15.8	Network protection and survivability	1032
Problems	1036
References	1039
Appendix A	The field relations in a planar guide	1049
Appendix B	Gaussian pulse response	1050
Appendix C	Variance of a random variable	1053
Appendix D	Variance of the sum of independent random variables	1053
Appendix E	Close loop transfer function for the transimpedance amplifier	1054
Index		1055

Library of Congress Subject Headings for this publication:

Optical communications.
Fiber optics.