Table of contents for Fundamentals of nuclear science and engineering / J. Kenneth Shultis, Richard E. Faw.

Bibliographic record and links to related information available from the Library of Congress catalog.

Note: Contents data are machine generated based on pre-publication provided by the publisher. Contents may have variations from the printed book or be incomplete or contain other coding.


Counter
 
Faw
Contents
1 Fundamental Concepts 1
1.1 Modern Units 1
1.1.1 Special Nuclear Units 4
1.1.2 Physical Constants 5
1.2 The Atom 5
1.2.1 The Fundamental Constituents of Ordinary Matter 6
1.2.2 Dark Matter and Energy 8
1.2.3 Atomic and Nuclear Nomenclature 9
1.2.4 Atomic and Molecular Weights 10
1.2.5 Avogadro¿s Number 10
1.2.6 Mass of an Atom 12
1.2.7 Atomic Number Density 12
1.2.8 Size of an Atom 13
1.2.9 Atomic and Isotopic Abundances 14
1.2.10 Nuclear Dimensions 14
1.3 Chart of the Nuclides 15
1.3.1 Other Sources of Atomic/Nuclear Information 15
2 Modern Physics Concepts 18
2.1 The Special Theory of Relativity 18
2.1.1 Principle of Relativity 20
2.1.2 Results of the Special Theory of Relativity 21
2.2 Radiation as Waves and Particles 24
2.2.1 The Photoelectric Effect 25
2.2.2 Compton Scattering 27
2.2.3 Electromagnetic Radiation: Wave-Particle Duality 29
2.2.4 Electron Scattering 30
2.2.5 Wave-Particle Duality 31
2.3 Quantum Mechanics 32
2.3.1 Schr¿odinger¿s Wave Equation 32
2.3.2 The Wave Function 34
2.3.3 The Uncertainty Principle 35
2.3.4 Success of Quantum Mechanics 36
vi
Contents vii
2.4 Addendum 1: Derivation of Some Special Relativity Results 36
2.4.1 Time Dilation 36
2.4.2 Length Contraction 37
2.4.3 Mass Increase 38
2.5 Addendum 2: Solutions to Schr¿odinger¿s Wave Equation 39
2.5.1 The Particle in a Box 39
2.5.2 The Hydrogen Atom 41
2.5.3 Energy Levels for Multielectron Atoms 45
3 Atomic/Nuclear Models 50
3.1 Development of the Modern Atom Model 50
3.1.1 Discovery of Radioactivity 50
3.1.2 Thomson¿s Atomic Model: The Plum Pudding Model 52
3.1.3 The Rutherford Atomic Model 53
3.1.4 The Bohr Atomic Model 54
3.1.5 Extension of the Bohr Theory: Elliptic Orbits 57
3.1.6 The Quantum Mechanical Model of the Atom 58
3.2 Models of the Nucleus 59
3.2.1 Fundamental Properties of the Nucleus 59
3.2.2 The Proton-Electron Model 61
3.2.3 The Proton-Neutron Model 62
3.2.4 Stability of Nuclei 64
3.2.5 The Liquid Drop Model of the Nucleus 66
3.2.6 The Nuclear Shell Model 70
3.2.7 Other Nuclear Models 70
4 Nuclear Energetics 73
4.1 Binding Energy 74
4.1.1 Nuclear and Atomic Masses 74
4.1.2 Binding Energy of the Nucleus 75
4.1.3 Average Nuclear Binding Energies 76
4.2 Nucleon Separation Energy 78
4.3 Nuclear Reactions 80
4.4 Examples of Binary Nuclear Reactions 80
4.4.1 Multiple Reaction Outcomes 81
4.5 Q-Value for a Reaction 82
4.5.1 Binary Reactions 83
4.5.2 Radioactive Decay Reactions 83
4.6 Conservation of Charge and the Calculation of Q-Values 83
4.6.1 Special Case for Changes in the Proton Number 84
4.7 Q-Value for Reactions Producing Excited Nuclei 85
5 Radioactivity 88
5.1 Overview 88
5.2 Types of Radioactive Decay 90
5.3 Radioactive Decay Diagrams 90
5.4 Energetics of Radioactive Decay 93
viii Contents
5.4.1 Gamma Decay 93
5.4.2 Alpha-Particle Decay 94
5.4.3 Beta-Particle Decay 96
5.4.4 Positron Decay 98
5.4.5 Electron Capture 99
5.4.6 Neutron Decay 101
5.4.7 Proton Decay 101
5.4.8 Internal Conversion 102
5.5 Characteristics of Radioactive Decay 102
5.5.1 The Decay Constant 103
5.5.2 Exponential Decay 103
5.5.3 The Half-Life 104
5.5.4 Decay Probability for a Finite Time Interval 105
5.5.5 Mean Lifetime 105
5.5.6 Activity 105
5.5.7 Half-Life Measurement 106
5.5.8 Decay by Competing Processes 107
5.6 Decay Dynamics 108
5.6.1 Decay with Production 108
5.6.2 Three Component Decay Chains 109
5.6.3 General Decay Chain 113
5.7 Naturally Occurring Radionuclides 114
5.7.1 Cosmogenic Radionuclides 114
5.7.2 Singly Occurring Primordial Radionuclides 115
5.7.3 Decay Series of Primordial Origin 115
5.7.4 Secular Equilibrium 116
5.8 Radiodating 119
5.8.1 Measuring the Decay of a Parent 119
5.8.2 Measuring the Buildup of a Stable Daughter 120
5.9 Radioactive Decay Data 122
6 Binary Nuclear Reactions 126
6.1 Types of Binary Reactions 127
6.1.1 The Compound Nucleus 127
6.2 Kinematics of Binary Two-Product Nuclear Reactions 128
6.2.1 Energy/Mass Conservation 129
6.2.2 Conservation of Energy and Linear Momentum 129
6.3 Reaction Threshold Energy 132
6.3.1 Kinematic Threshold 132
6.3.2 Coulomb Barrier Threshold 133
6.3.3 Overall Threshold Energy 134
6.4 Applications of Binary Kinematics 135
6.4.1 A Neutron Detection Reaction 135
6.4.2 A Neutron Production Reaction 135
6.4.3 Heavy Particle Scattering from an Electron 136
6.5 Reactions Involving Neutrons 137
6.5.1 Neutron Scattering 137
Contents ix
6.5.2 Neutron Capture Reactions 140
6.5.3 Fission Reactions 140
6.6 Characteristics of the Fission Reaction 142
6.6.1 Fission Products 144
6.6.2 Neutron Emission in Fission 146
6.6.3 Energy Released in Fission 150
6.7 Fusion Reactions 153
6.7.1 Thermonuclear Fusion 153
6.7.2 Energy Production in Stars 156
6.7.3 Nucleogenesis 160
7 Radiation Interactions with Matter 165
7.1 Attenuation of Neutral Particle Beams 166
7.1.1 The Linear Interaction Coefficient 167
7.1.2 Attenuation of Uncollided Radiation 168
7.1.3 Average Travel Distance Before an Interaction 168
7.1.4 Half-Thickness 169
7.1.5 Scattered Radiation 170
7.1.6 Microscopic Cross Sections 170
7.2 Calculation of Radiation Interaction Rates 172
7.2.1 Flux Density 172
7.2.2 Reaction-Rate Density 173
7.2.3 Generalization to Energy- and Time-Dependent Situations 173
7.2.4 Radiation Fluence 174
7.2.5 Uncollided Flux Density from an Isotropic Point Source 175
7.3 Photon Interactions 178
7.3.1 Photoelectric Effect 178
7.3.2 Compton Scattering 179
7.3.3 Pair Production 181
7.3.4 Photon Attenuation Coefficients 182
7.4 Neutron Interactions 182
7.4.1 Classification of Types of Interactions 185
7.4.2 Fission Cross Sections 191
7.5 Attenuation of Charged Particles 192
7.5.1 Interaction Mechanisms 192
7.5.2 Particle Range 194
7.5.3 Stopping Power 196
7.5.4 Estimating Charged-Particle Ranges 199
8 Detection and Measurement of Radiation 206
8.1 Gas-Filled Detectors 207
8.1.1 General Operation 207
8.1.2 Ion Chambers 210
8.1.3 Proportional Counters 213
8.1.4 Geiger-M¿uller Counters 219
8.2 Scintillation Detectors 221
8.2.1 Inorganic Scintillators 224
x Contents
8.2.2 Organic Scintillators 227
8.2.3 Light Collection 229
8.3 Semiconductor Detectors 232
8.3.1 Ge Detectors 235
8.3.2 Si Detectors 236
8.3.3 Compound Semiconductor Detectors 238
8.4 Personal Dosimeters 239
8.4.1 Photographic Film 239
8.4.2 Pocket Ion Chambers 239
8.4.3 TLDs and OSLs 240
8.5 Other Interesting Detectors 241
8.5.1 Cloud Chambers, Bubble Chambers, and Superheated Drop
Detectors 242
8.5.2 Cryogenic Detectors 242
8.5.3 AMANDA and IceCube 243
8.6 Measurement Theory 244
8.6.1 Types of Measurement Uncertainties 244
8.6.2 Uncertainty Assignment Based Upon Counting Statistics 244
8.6.3 Dead Time 247
8.7 Detection Equipment 248
8.7.1 Power Supply 248
8.7.2 Preamplifier 249
8.7.3 Amplifier 250
8.7.4 Oscilloscope 250
8.7.5 Discriminator/Single Channel Analyzer 251
8.7.6 Counter/Timer 251
8.7.7 Multi-Channel Analyzer 251
8.7.8 Pulser 252
8.7.9 Other NIM Components 252
9 Radiation Doses and Hazard Assessment 255
9.1 Historical Roots 255
9.2 Dosimetric Quantities 257
9.2.1 Energy Imparted to the Medium 258
9.2.2 Absorbed Dose 259
9.2.3 Kerma 259
9.2.4 Calculating Kerma and Absorbed Doses 259
9.2.5 Exposure 262
9.2.6 Relative Biological Effectiveness 263
9.2.7 Dose Equivalent 264
9.2.8 Quality Factor 264
9.2.9 Effective Dose Equivalent 265
9.2.10 Effective Dose 266
9.3 Natural Exposures for Humans 267
9.4 Health Effects from Large Acute Doses 269
9.4.1 Effects on Individual Cells 270
9.4.2 Deterministic Effects in Organs and Tissues 270
Contents xi
9.4.3 Potentially Lethal Exposure to Low-LET Radiation 273
9.5 Hereditary Effects 275
9.5.1 Classification of Genetic Effects 276
9.5.2 Summary of Risk Estimates 276
9.6 Cancer Risks from Radiation Exposures 279
9.6.1 Estimating Radiogenic Cancer Risks 280
9.6.2 Dose-Response Models for Cancer 281
9.6.3 Average Cancer Risks for Exposed Populations 282
9.6.4 Probability of Causation Calculations 284
9.7 Radon and Lung Cancer Risks 284
9.7.1 Radon Activity Concentrations 286
9.7.2 Lung Cancer Risks 287
9.8 Radiation Protection Standards 289
9.8.1 Risk-Related Dose Limits 289
9.8.2 The 1987 NCRP Exposure Limits 290
10 Principles of Nuclear Reactors 297
10.1 Neutron Moderation 298
10.2 Thermal-Neutron Properties of Fuels 298
10.3 The Neutron Life Cycle in a Thermal Reactor 299
10.3.1 Quantification of the Neutron Cycle 300
10.3.2 Effective Multiplication Factor 304
10.4 Homogeneous and Heterogeneous Cores 307
10.5 Reflectors 309
10.6 Reactor Kinetics 310
10.6.1 A Simple Reactor Kinetics Model 310
10.6.2 Delayed Neutrons 311
10.6.3 Reactivity and Delta-k 312
10.6.4 Revised Simplified Reactor Kinetics Models 313
10.6.5 Power Transients Following a Reactivity Insertion 315
10.7 Reactivity Feedback 319
10.7.1 Feedback Caused by Isotopic Changes 319
10.7.2 Feedback Caused by Temperature Changes 320
10.8 Fission Product Poisons 322
10.8.1 Xenon Poisoning 322
10.8.2 Samarium Poisoning 326
10.9 Addendum 1: The Diffusion Equation 327
10.9.1 An Example Fixed-Source Problem 330
10.9.2 An Example Criticality Problem 331
10.9.3 More Detailed Neutron-Field Descriptions 332
10.10Addendum 2: Kinetic Model with Delayed Neutrons 333
10.11Addendum 3: Solution for a Step Reactivity Insertion 335
11 Nuclear Power 340
11.1 Nuclear Electric Power 340
11.1.1 Electricity from Thermal Energy 341
11.1.2 Conversion Efficiency 341
xii Contents
11.1.3 Some Typical Power Reactors 343
11.1.4 Coolant Limitations 346
11.1.5 Industrial Infrastructure 346
11.1.6 Evolution of Nuclear Power Reactors 347
11.2 Generation II Pressurized Water Reactors 348
11.2.1 The Steam Cycle of a PWR 348
11.2.2 Major Components of a PWR 348
11.3 Generation II Boiling Water Reactors 355
11.3.1 The Steam Cycle of a BWR 355
11.3.2 Major Components of a BWR 355
11.4 Generation III Nuclear Reactor Designs 360
11.4.1 The ABWR and ESBWR Designs 360
11.4.2 The System 80+ Design 362
11.4.3 AP600 and AP1000 Designs 362
11.4.4 Other Evolutionary LWR Designs 363
11.4.5 Heavy Water Reactors 364
11.4.6 Gas-Cooled Reactors 364
11.5 Generation IV Nuclear Reactor Designs 365
11.5.1 Supercritical Water-Cooled Reactors 365
11.5.2 Lead-Cooled Fast Reactors 367
11.5.3 Molten-Salt Reactors 368
11.5.4 Gas-Cooled Fast Reactors 369
11.5.5 Very High-Temperature Fast Reactors 369
11.5.6 Sodium-Cooled Fast Reactors 369
11.6 The Nuclear Fuel Cycle 370
11.6.1 Uranium Requirements and Availability 371
11.6.2 Enrichment Techniques 373
11.6.3 Radioactive Waste 375
11.6.4 Spent Fuel 376
11.7 Nuclear Propulsion 379
11.7.1 Naval Applications 380
11.7.2 Other Marine Applications 381
11.7.3 Nuclear Propulsion in Space 382
12 Fusion Reactors and Other Conversion Devices 388
12.1 Fusion Reactors 388
12.1.1 Energy Production in Plasmas 389
12.2 Magnetically Confined Fusion (MCF) 391
12.2.1 Fusion Energy Gain Factor 391
12.2.2 Confinement Times 392
12.2.3 Triple Product Figure-of-Merit 393
12.2.4 Plasma Heating 394
12.2.5 History of Magnetically Confined Fusion Reactors 395
12.2.6 The ITER Fusion Reactor 396
12.3 Inertial Confinement Fusion (ICF) 399
12.3.1 History of ICF 400
12.3.2 ICF Technical Problems 402
Contents xiii
12.3.3 Prospects for Commercial Fusion Power 403
12.4 Thermoelectric Generators 403
12.4.1 Radionuclide Thermoelectric Generators 405
12.5 Thermionic Electrical Generators 408
12.5.1 Conversion Efficiency 408
12.5.2 In-Pile Thermionic Generator 412
12.6 AMTEC Conversion 413
12.7 Stirling Converters 415
12.8 Direct Conversion of Nuclear Radiation 416
12.8.1 Types of Nuclear Radiation Conversion Devices 416
12.8.2 Betavoltaic Batteries 418
12.9 Radioisotopes for Thermal Power Sources 419
12.10Space Reactors 421
12.10.1 The U.S. Space Reactor Program 422
12.10.2 The Russian Space Reactor Program 424
13 Nuclear Technology in Industry and Research 430
13.1 Production of Radioisotopes 430
13.2 Industrial and Research Uses of Radioisotopes and Radiation 431
13.3 Tracer Applications 433
13.3.1 Leak Detection 433
13.3.2 Pipeline Interfaces 434
13.3.3 Flow Patterns 434
13.3.4 Flow Rate Measurements 434
13.3.5 Labeled Reagents 435
13.3.6 Tracer Dilution 435
13.3.7 Wear Analyses 435
13.3.8 Mixing Times 435
13.3.9 Residence Times 436
13.3.10 Frequency Response 436
13.3.11 Surface Temperature Measurements 436
13.3.12 Radiodating 436
13.4 Materials Affect Radiation 436
13.4.1 Radiography 436
13.4.2 Thickness Gauging 439
13.4.3 Density Gauges 440
13.4.4 Level Gauges 441
13.4.5 Radiation Absorptiometry 441
13.4.6 Oil-Well Logging 442
13.4.7 Neutron Activation Analysis (NAA) 442
13.4.8 Neutron Capture-Gamma Ray Analysis 443
13.4.9 X-Ray Fluoresence Analysis 443
13.4.10 Proton Induced Gamma-Ray Emission (PIGE) 445
13.4.11 Molecular Structure Determination 445
13.4.12 Smoke Detectors 445
13.5 Radiation Affects Materials 446
13.5.1 Food Preservation 446
xiv Contents
13.5.2 Sterilization 446
13.5.3 Insect Control 447
13.5.4 Polymer Modification 447
13.5.5 Biological Mutation Studies 447
13.5.6 Chemonuclear Processing 447
13.6 Particle Accelerators 448
13.6.1 Cockcroft-Walton Accelerator 448
13.6.2 Van de Graaff Accelerator 449
13.6.3 Linear Accelerators 451
13.6.4 The Cyclotron 453
13.6.5 The Synchrocyclotron and the Isochronous Cyclotron 455
13.6.6 Proton Synchrotrons 456
13.6.7 Betatron 458
14 Medical Applications of Nuclear Technology 465
14.1 Diagnostic Imaging 467
14.1.1 X-Ray Projection Imaging 467
14.1.2 Fluoroscopy 472
14.1.3 Mammography 473
14.1.4 Bone Densitometry 473
14.1.5 X-Ray Computed Tomography (CT) 474
14.1.6 CT Detector Technology 480
14.1.7 Single Photon Emission Computed Tomography (SPECT) 480
14.1.8 Positron Emission Tomography (PET) 483
14.1.9 Magnetic Resonance Imaging (MRI) 488
14.2 Radioimmunoassay 490
14.3 Diagnostic Radiotracers 492
14.4 Radioimmunoscintigraphy 493
14.5 Radiation Therapy 494
14.5.1 Early Applications 494
14.5.2 Early Teletherapy 496
14.5.3 Accelerator Based Teletherapy 496
14.5.4 Three Dimensional Conformal Radiation Therapy (CRT) 496
14.5.5 Intensity Modulated Radiation Therapy 498
14.5.6 Electron Beam Therapy 498
14.5.7 Proton Beam Therapy 499
14.5.8 Stereotactic Radiation Therapy 501
14.5.9 Clinical Brachytherapy 501
14.5.10 Radionuclide Therapy 503
14.5.11 Boron Neutron Capture Therapy 503
A Fundamental Atomic Data 509
B Atomic Mass Table 524
C Cross Sections and Related Data 542
D Decay Characteristics of Selected Radionuclides 550

Library of Congress Subject Headings for this publication:

Nuclear engineering.