Table of contents for Biomedical optics : principles and imaging / Lihong V. Wang, Hsin-I Wu.

Bibliographic record and links to related information available from the Library of Congress catalog.

Note: Contents data are machine generated based on pre-publication provided by the publisher. Contents may have variations from the printed book or be incomplete or contain other coding.


Counter
TABLE OF CONTENTS
1.	INTRODUCTION	
1.1.	Motivation for optical imaging	1
1.2.	General behavior of light in biological tissue	3
1.3.	Basic physics of light-matter interaction	5
1.4.	Absorption and its biological origins	8
1.5.	Scattering and its biological origins	12
1.6.	Polarization and its biological origins	14
1.7.	Fluorescence and its biological origins	16
1.8.	Image characterization	18
1.9.	References	24
1.10.	Further readings	25
1.11.	Problems	26
2.	RAYLEIGH THEORY AND MIE THEORY FOR A SINGLE SCATTERER	
2.1.	Introduction	28
2.2.	Summary of the Rayleigh theory	28
2.3.	Numerical example of the Rayleigh theory	31
2.4.	Summary of the Mie theory	33
2.5.	Numerical example of the Mie theory	35
2.6.	Appendix 2.A. Derivation of the Rayleigh theory	40
2.7.	Appendix 2.B. Derivation of the Mie theory	42
2.8.	References	54
2.9.	Further readings	55
2.10.	Problems	55
3.	MONTE CARLO MODELING OF PHOTON TRANSPORT IN BIOLOGICAL TISSUE
3.1.	Introduction	57
3.2.	Monte Carlo method	57
3.3.	Definition of problem	58
3.4.	Propagation of photons	61
3.5.	Physical quantities	81
3.6.	Computational examples	89
3.7.	Appendix 3.A. Summary of MCML	95
3.8.	Appendix 3.B. Probability density function	98
3.9.	References	98
3.10.	Further readings	99
3.11.	Problems	107
4.	CONVOLUTION FOR BROAD-BEAM RESPONSES
4.1.	Introduction	110
4.2.	General formulation of convolution	110
4.3.	Convolution over a Gaussian beam	114
4.4.	Convolution over a top-hat beam	116
4.5.	Numerical solution to convolution	117
4.6.	Computational examples	126
4.7.	Appendix 4.A. Summary of CONV	129
4.8.	References	131
4.9.	Further readings	131
4.10.	Problems	134
5.	RADIATIVE TRANSFER EQUATION AND DIFFUSION THEORY
5.1.	Introduction	137
5.2.	Definitions of physical quantities	137
5.3.	Derivation of the radiative transport equation	141
5.4.	Diffusion theory	145
5.5.	Boundary conditions	164
5.6.	Diffuse reflectance	171
5.7.	Photon propagation regimes	185
5.8.	References	187
5.9.	Further readings	188
5.10.	Problems	190
6.	HYBRID MODEL OF MONTE CARLO METHOD AND DIFFUSION THEORY
6.1.	Introduction	194
6.2.	Definition of problem	194
6.3.	Diffusion theory	195
6.4.	Hybrid model	198
6.5.	Numerical computation	202
6.6.	Computational examples	203
6.7.	References	216
6.8.	Further readings	216
6.9.	Problems	219
7.	SENSING OF OPTICAL PROPERTIES AND SPECTROSCOPY
7.1.	Introduction	220
7.2.	Collimated transmission method	220
7.3.	Spectrophotometry	226
7.4.	Oblique-incidence reflectometry	228
7.5.	White-light spectroscopy	234
7.6.	Time-resolved measurement	237
7.7.	Fluorescence spectroscopy	238
7.8.	Fluorescence modeling	240
7.9.	References	242
7.10.	Further readings	243
7.11.	Problems	248
8.	BALLISTIC IMAGING AND MICROSCOPY
8.1.	Introduction	251
8.2.	Characteristics of ballistic light	251
8.3.	Time-gated imaging	252
8.4.	Spatial-frequency filtered imaging	256
8.5.	Polarization-difference imaging	258
8.6.	Coherence-gated holographic imaging	260
8.7.	Optical heterodyne imaging	264
8.8.	Radon transformation and computed tomography	269
8.9.	Confocal microscopy	270
8.10.	Two-photon microscopy	278
8.11.	Appendix 8.A. Holography	282
8.12.	References	288
8.13.	Further readings	290
8.14.	Problems	295
9.	OPTICAL COHERENCE TOMOGRAPHY
9.1.	Introduction	299
9.2.	Michelson interferometry	299
9.3.	Coherence length and coherence time	303
9.4.	Time-domain OCT	305
9.5.	Fourier-domain rapid scanning optical delay line	323
9.6.	Fourier-domain OCT	326
9.7.	Doppler OCT	338
9.8.	Group velocity dispersion	340
9.9.	Monte Carlo modeling of OCT	345
9.10.	References	351
9.11.	Further readings	352
9.12.	Problems	358
10.	MUELLER OPTICAL COHERENCE TOMOGRAPHY
10.1.	Introduction	362
10.2.	Mueller calculus versus Jones calculus	362
10.3.	Polarization state	363
10.4.	Stokes vector	367
10.5.	Mueller matrix	371
10.6.	Mueller matrices for a rotator, a polarizer, and a retarder	372
10.7.	Measurement of Mueller matrix	375
10.8.	Jones vector	377
10.9.	Jones matrix	379
10.10.	Jones matrices for a rotator, a polarizer, and a retarder	380
10.11.	Eigenvectors and eigenvalues of Jones matrix	381
10.12.	Conversion from Jones calculus to Mueller calculus	386
10.13.	Degree of polarization in OCT	388
10.14.	Serial Mueller OCT	389
10.15.	Parallel Mueller OCT	391
10.16.	References	399
10.17.	Further readings	400
10.18.	Problems	406
11.	DIFFUSE OPTICAL TOMOGRAPHY
11.1.	Introduction	409
11.2.	Modes of diffuse optical tomography	409
11.3.	Time-domain system	412
11.4.	Direct-current system	415
11.5.	Frequency-domain system	416
11.6.	Frequency-domain theory: basics	422
11.7.	Frequency-domain theory: linear image reconstruction	431
11.8.	Frequency-domain theory: general image reconstruction	442
11.9.	Appendix 11.A. ART and SIRT	453
11.10.	References	455
11.11.	Further readings	456
11.12.	Problems	462
12.	PHOTOACOUSTIC TOMOGRAPHY
12.1.	Introduction	466
12.2.	Motivation for photoacoustic tomography	466
12.3.	Initial photoacoustic pressure	468
12.4.	General photoacoustic equation	472
12.5.	General forward solution	474
12.6.	Delta-pulse excitation of a slab	480
12.7.	Delta-pulse excitation of a sphere	488
12.8.	Finite-duration pulse excitation of a thin slab	496
12.9.	Finite-duration pulse excitation of a small sphere	498
12.10.	Dark-field confocal photoacoustic microscopy	498
12.11.	Synthetic aperture image reconstruction	504
12.12.	General image reconstruction	508
12.13.	Appendix 12.A. Derivation of acoustic wave equation	515
12.14.	Appendix 12.B. Green's function approach	520
12.15.	References	521
12.16.	Further readings	523
12.17.	Problems	528
13.	ULTRASOUND-MODULATED OPTICAL TOMOGRAPHY
13.1.	Introduction	531
13.2.	Mechanisms of ultrasonic modulation of coherent light	531
13.3.	Time-resolved frequency-swept UOT	536
13.4.	Frequency-swept UOT with parallel-speckle detection	542
13.5.	Ultrasonically modulated virtual optical source	546
13.6.	Reconstruction-based UOT	547
13.7.	UOT with Fabry-Perot interferometry	552
13.8.	References	557
13.9.	Further readings	559
13.10.	Problems	564
APPENDIX A. DEFINITIONS OF OPTICAL PROPERTIES
APPENDIX B. ACRONYMS USED IN THE BOOK

Library of Congress Subject Headings for this publication:

Imaging systems in medicine.
Lasers in medicine.
Optical detectors.
Optics.
Diagnostic Imaging -- methods.
Light.
Models, Theoretical.
Tomography, Optical -- methods.