Table of contents for Sensors and actuators in mechatronics : design and applications / Andrzej M. Pawlak.

Bibliographic record and links to related information available from the Library of Congress catalog.

Note: Contents data are machine generated based on pre-publication provided by the publisher. Contents may have variations from the printed book or be incomplete or contain other coding.


Counter
 
Contents
Preface to the First Edition
1.	Introduction
1.1.	Magnetic Materials and Technology
1.1.1.	Soft Magnetic Materials
1.1.2.	Hard Magnetic Materials 
1.1.3.	Coating Technologies
1.1.4.	Magnetic Materials Markets and Applications
1.2.	Mechatronic Devices
1.2.1.	Clasification and Overview
1.2.2.	Magnetic Sensors
1.2.3.	Linear Actuators
1.2.4.	Latching Solenoids
1.2.5.	Stepper Motors
1.2.6.	Special Magnetic Devices
1.2.7.	Rotary Actuators
2.	Magnetic Sensors
2.1. Theory of Magnetic Sensors 
2.2. Magnetic Sensors Analysis
2.3. Variable Reluctance Sensors
2.3.1.	Conventional Variable Reluctance Sensors 
2.3.2.	High Performance Variable Reluctance Sensors
2.3.3.	Sensors with Inserted Magnet
2.3.4.	Sensors with Front-Mounted Magnet
2.3.5.	Sensors with E-Shaped Magnetic Structure
2.3.6.	Sensors with U-Shaped Magnetic Structure
2.3.7.	Multiple Magnets Variable Reluctance Sensors
2.3.8.	Dual-Magnet Sensors
2.3.9.	Two Dual Magnet Sensors
2.3.10.	Distributed Variable Reluctance Sensors
2.4.	Solid State Sensors
2.4.1.	Solid State Sensors Analysis
2.4.2.	Solid State Sensors Design
Numerical Solutions 2.1
Numerical Solutions 2.2
Numerical Solutions 2.3
3. Linear Actuators
3.1. Mathematical Model for Linear Actuators
3.1.1. Symmetrical Analysis of Electromagnetic Devices.
 	3.1.2. Electrical Network Equations.
3.1.3. Mechanical Equations
3.1.4. Magnetic Forces
	3.1.5. Pulse Width Modulation Analysis
		3.1.6. Solenoid Simulation
3.2. Fast Acting Actuators
	3.2.1. Disc Solenoids
	3.2.2. Plunger Solenoids
	3.2.3. Ball Solenoids
3.2.4.	 Conical Solenoids
3.2.5.	 Optimization of Fast Acting Actuators
3.3. Solenoid Applications
3.3.1. Solenoid Fuel Pumps
3.3.2. Gasoline Injectors
3.3.3. Natural Gas Injectors
3.3.4. Diesel Fuel Injectors
	3.4.5. Compressor Solenoids Valves
3.3.6. Transmission Solenoids
Numerical Solutions 3.1
Numerical Solutions 3.2
Numerical Solutions 3.3
4.	Latching Solenoid Actuators
4.1. Latching Relays
4.1.1. Dynamics of Latching Relays.
4.1.2. Bipolar Latching Relays
4.1.3. Unipolar Latching Relays
4.1.4. Latching Relay Controls
4.1.5. Latching Relay Analysis and Tests
4.2. Latching Solenoids
4.2.1. Latching Solenoids with Moving Magnet
4.2.2. Latching Solenoids with Stationary Magnet
4.3.	Latching Solenoid Actuator Applications
Numerical Examples 4.1
Numerical Examples 4.2
Numerical Examples 4.3
 5. 5. Stepper Motors
	5.1. Principles of Operation
	5.2. Static Analysis of Stepper Motor
		5.2.1. Static Torque Analysis
5.2.2. Magnetic Circuit Analysis
5.2.3. Magnet Operating Point
5.2.4. Temperature Effect
5.2.5. Armature Reaction Effect
		5.2.6. Experimental Results of Static Performance
	5.3. Dynamic Analysis of Stepper Motor
5.3.1. Math Model of the Dynamic Operation
5.3.2. Stepper Motor Dynamic Simulation
		5.3.3. Validation of the Dynamic Model 
5.3.4. Effects of Various Parameters on Motor Performance
5.3.5. Experimental Results of Dynamic Performance
		5.3.6. Evaluation of Viscous Damping Coefficient
		5.3.7. Effect of Load Torque on Performance of Stepper Motor
		5.3.8. Stepper Motor Inductance in Dynamic Operation
	Numerical Examples 5.1
	Numerical Examples 5.2
	Numerical Examples 5.3
6.	Special Magnetic Devices
6.1.	Magnetic Valves
6.1.1.	Background
6.1.2.	Heart Valve Requirements
6.1.3.	Heart Valve Design Concept
6.1.4.	Mathematical Model and Simulations
6.1.5.	Optimized Design
6.1.6.	Comparison and Test Results
6.2.	Heart Pump
6.2.1.	Background
6.2.2.	Heart Pump Requirements
6.2.3.	Heart Pump Design Concept
6.2.4.	Mathematical Model and Simulations
6.2.5.	Optimized Design
6.2.6.	Comparison and Test Results
6.3.	MR Fluid Solenoids
6.3.1.	Background
6.3.2.	MR Fluid Solenoids Requirements
6.3.3.	MR Fluid Solenoids Design Concept
6.3.4.	Mathematical Model and Simulations
6.3.5.	Optimized Design
6.3.6.	Comparison and Test Results
	Numerical Example 6.1.
	Numerical Example 6.2.
	Numerical Example 6.3.
7.	Rotary Actuators
7.1.	Disc Rotary Actuators
7.1.1.	Disc Rotary Actuator Analysis
7.1.2.	Disc Rotary Actuator Design
7.1.3.	Disc Rotary Actuator Excitation Electromagnetic Circuit
7.1.4.	Disc Rotary Actuator Toothed Magnetic Part
7.1.5.	Disc Rotary Actuator Permanent Magnet
7.1.6. Disc Rotary Actuator Test Results.
7.2.	Claw Pole Rotary Actuators
7.2.1.	Claw Pole Rotary Actuator Analysis
7.2.2.	Claw Pole Rotary Actuator Design
7.2.3.	Claw Pole Rotary Actuator Excitation Electromagnetic Circuit
7.2.4.	Claw Pole Rotary Actuator Toothed Magnetic Part
7.2.5.	Claw Pole Rotary Actuator Permanent Magnet
7.2.6.	Claw Pole Rotary Actuator Design Improvement Steps 
7.2.7. Claw Pole Rotary Actuator Test Results.
7.3.	Cylindrical Rotary Actuator
7.3.1.	Cylindrical Rotary Actuator Analysis
7.3.2.	Cylindrical Rotary Actuator 2D Analysis
7.3.3.	Cylindrical Rotary Actuator 3D Analysis and Test Results.
7.3.4.	Cylindrical Rotary Actuator Design
7.3.5.	Cylindrical Rotary Actuator Permanent Magnet
7.3.6.	Cylindrical Rotary Actuator Excitation Electromagnetic Circuit
7.3.7.	Cylindrical Rotary Actuator Toothed Magnetic Part
7.4.	Rotary Actuator Applications
7.4.1.	Disc Rotary Actuator Application
7.4.2.	Claw Pole Rotary Actuator Application
7.4.3.	Cylindrical Rotary Actuator Application
	Numerical Example 7.1.
	Numerical Example 7.2.
	Numerical Example 7.3.
8.	Addendum
Bibliography
Symbols and Abbreviations

Library of Congress Subject Headings for this publication:

Mechatronics.
Optical detectors.