Bibliographic record and links to related information available from the Library of Congress catalog.

Note: Contents data are machine generated based on pre-publication provided by the publisher. Contents may have variations from the printed book or be incomplete or contain other coding.

```Contents
Preface ix
A note to the student (and instructor) xiv
A note to the instructor (and student) xvi
Acknowledgements xix
0 Introduction 1
Part I Basic Probability 7
1 Combinatorics 9
1.1 Basic counting 9
1.2 Generalized binomial coefficients 13
1.3 Combinatoric identities and the use of induction 15
1.4 The binomial and multinomial theorems 18
1.4.1 The binomial theorem 18
1.4.2 An extension of the binomial theorem 23
1.4.3 The multinomial theorem 27
1.5 The gamma and beta functions 28
1.5.1 The gamma function 28
1.5.2 The beta function 31
1.6 Problems 36
2 Probability spaces and counting 43
2.1 Introducing counting and occupancy problems 43
2.2 Probability spaces 47
2.2.1 Introduction 47
2.2.2 Definitions 49
2.3 Properties 58
2.3.1 Basic properties 58
2.3.3 A theoretical property 67
2.4 Problems 68
3 Symmetric spaces and conditioning 73
3.1 Applications with symmetric probability spaces 73
3.2 Conditional probability and independence 85
3.2.1 Total probability and Bayes? rule 87
3.2.2 Extending the law of total probability 93
3.2.3 Statistical paradoxes and fallacies 96
3.3 The problem of the points 97
3.3.1 Three solutions 97
3.3.2 Further gambling problems 99
3.3.3 Some historical references 100
3.4 Problems 101
Part II Discrete Random Variables 111
4 Univariate random variables 113
4.1 Definitions and properties 113
4.1.1 Basic definitions and properties 113
4.1.2 Further definitions and properties 117
4.2 Discrete sampling schemes 120
4.2.1 Bernoulli and binomial 121
4.2.2 Hypergeometric 123
4.2.3 Geometric and negative binomial 125
4.2.4 Inverse hypergeometric 128
4.2.5 Poisson approximations 130
4.2.6 Occupancy distributions 133
4.3 Transformations 140
4.4 Moments 141
4.4.1 Expected value of X 141
4.4.2 Higher-order moments 143
4.4.3 Jensen?s inequality 151
4.5 Poisson processes 154
4.6 Problems 156
5 Multivariate random variables 165
5.1 Multivariate density and distribution 165
5.1.1 Joint cumulative distribution functions 166
5.1.2 Joint probability mass and density functions 168
5.2 Fundamental properties of multivariate random variables 171
5.2.1 Marginal distributions 171
5.2.2 Independence 173
5.2.3 Exchangeability 174
5.2.4 Transformations 175
5.2.5 Moments 176
5.3 Discrete sampling schemes 182
5.3.1 Multinomial 182
5.3.2 Multivariate hypergeometric 188
5.3.3 Multivariate negative binomial 190
5.3.4 Multivariate inverse hypergeometric 192
5.4 Problems 194
6 Sums of random variables 197
6.1 Mean and variance 197
6.2 Use of exchangeable Bernoulli random variables 199
6.2.1 Examples with birthdays 202
6.3 Runs distributions 206
6.4 Random variable decomposition 218
6.4.1 Binomial, negative binomial and Poisson 218
6.4.2 Hypergeometric 220
6.4.3 Inverse hypergeometric 222
6.5 General linear combination of two random variables 227
6.6 Problems 232
Part III Continuous Random Variables 237
7 Continuous univariate random variables 239
7.1 Most prominent distributions 239
7.2 Other popular distributions 263
7.3 Univariate transformations 269
7.3.1 Examples of one-to-one transformations 271
7.3.2 Many-to-one transformations 273
7.4 The probability integral transform 275
7.4.1 Simulation 276
7.4.2 Kernel density estimation 277
7.5 Problems 278
8 Joint and conditional random variables 285
8.1 Review of basic concepts 285
8.2 Conditional distributions 290
8.2.1 Discrete case 291
8.2.2 Continuous case 292
8.2.3 Conditional moments 304
8.2.4 Expected shortfall 310
8.2.5 Independence 311
8.2.6 Computing probabilities via conditioning 312
8.3 Problems 317
9 Multivariate transformations 323
9.1 Basic transformation 323
9.2 The t and F distributions 329
9.3 Further aspects and important transformations 333
9.4 Problems 339
Appendices 343
A Calculus review 343
A.1 Sets, functions and fundamental inequalities 345
A.2 Univariate calculus 350
A.2.1 Limits and continuity 351
A.2.2 Differentiation 352
A.2.3 Integration 364
A.2.4 Series 382
A.3 Multivariate calculus 413
A.3.1 Neighborhoods and open sets 413
A.3.2 Sequences, limits and continuity 414
A.3.3 Differentiation 416
A.3.4 Integration 425
B Notation tables 435
C Distribution tables 441
References 451
Index 461
```

Library of Congress Subject Headings for this publication:

Probabilities -- Data processing.