Bibliographic record and links to related information available from the Library of Congress catalog
Information from electronic data provided by the publisher. May be incomplete or contain other coding.
Preface to the second edition Introduction Part I. The Foundations of Mathematics: 1. The logicist foundations of mathematics Rudolf Carnap 2. The intuitionist foundations of mathematics Arend Heyting 3. The formalist foundations of mathematics Johann von Neumann 4. Disputation Arend Heyting 5. Intuitionism and formalism L. E. J. Brouwer 6. Consciousness, philosophy, and mathematics L. E. J. Brouwer 7. The philosophical basis of intuitionistic logic Michael Dummett 8. The concept of number Gottlob Frege 9. Selections from Introduction to Mathematical Philosophy Bertrand Russell 10. On the infinite David Hilbert 11. Remarks on the definition and nature of mathematics Haskell B. Curry 12. Hilbert's programme Georg Kreisel Part II. The Existence of Mathematical Objects: 13. Empiricism, semantics, and ontology Rudolf Carnap 14. On Platonism in mathematics Paul Bernays 15. What numbers could not be Paul Benacerraf 16. Mathematics without foundations Hilary Putnam Part III. Mathematical Truth: 17. The a priori Alfred Jules Ayer 18. Truth by convention W. V. Quine 19. On the nature of mathematical truth Carl G. Hempel 20. On the nature of mathematical reasoning Henri Poincare; 21. Mathematical truth Paul Benacerraf 22. Models and reality Hilary Putnam Part IV. The Concept of Set: 23. Russell's mathematical logic Kurt Gödel 24. What in Cantor's continuum problem? Kurt Gödel 25. The iterative concept of set George Boolos 26. The concept of set Hao Wang Bibliography.