Microbial Inhabitants of Humans
Their ecology and role in health and disease

Michael Wilson
University College London
Contents

Preface xvii
Abbreviations used for microbial genera xix

Chapter 1 | An introduction to the human–microbe symbiosis

1.1 Overview of the distribution and nature of the indigenous microbiota of humans 2
1.1.1 Difficulties associated with determining microbial community composition 4
1.1.2 Structural aspects of residential microbial communities 6
1.1.3 Communication between members of microbial communities 11
1.2 Environmental determinants affecting the distribution and composition of the indigenous microbiota 12
1.2.1 Nutritional determinants 13
1.2.2 Physicochemical determinants 19
1.2.3 Mechanical determinants 23
1.2.4 Biological determinants 24
1.3 Host characteristics affecting the indigenous microbiota 26
1.3.1 Effect of age 26
1.3.2 Effect of host genotype 28
1.3.3 Effect of gender 29
1.4 Analytical methods used in characterising the indigenous microbiota 29
1.4.1 Microscopy 29
1.4.2 Culture 31
1.4.3 Molecular approaches 33
1.4.4 Metabolic approaches 34
1.5 The epithelium – site of host–microbe interactions 35
1.5.1 Structure of epithelia 36
1.5.2 The epithelium as an excluder of microbes 38
1.5.3 Mucus and mucins 39
1.5.4 Innate and acquired immune responses at the mucosal surface 43
1.6 Further reading 47

Chapter 2 | The skin and its indigenous microbiota

2.1 Anatomy and physiology of human skin 51
2.2 Antimicrobial defence mechanisms of the skin 55
2.3 Environmental determinants at different regions of the skin 58
2.4 The indigenous microbiota of the skin 65
2.4.1 Main characteristics of key members of the cutaneous microbiota 65
2.4.1.1 *Corynebacterium* spp. 65
2.4.1.2 *Propionibacterium* spp. 68
2.4.1.3 *Staphylococcus* spp. 69
2.4.1.4 *Micrococcus* spp. 73
2.4.1.5 *Malassezia* spp. 73
Contents

2.4.1.6 *Acinetobacter* spp. 75
2.4.1.7 *Brevibacterium* spp. 75
2.4.1.8 *Dermabacter hominis* 76
2.4.2 Acquisition of the cutaneous microbiota 76
2.4.3 Community composition at different sites 78
 2.4.3.1 Scalp 82
 2.4.3.2 Forehead 82
 2.4.3.3 Toe interspace 83
 2.4.3.4 Perineum 83
 2.4.3.5 Axillae 84
 2.4.3.6 Sole of the foot 86
 2.4.3.7 Forearm and leg 87
 2.4.3.8 Hands 87
 2.4.3.9 Outer ear 88
2.4.4 Interactions among members of the cutaneous microbiota 89
2.4.5 Dissemination of organisms from the skin 92
2.4.6 Effect of antibiotics and other interventions on the indigenous microbiota of the skin 93
 2.4.6.1 Antibiotics 93
 2.4.6.2 Occlusion 95
 2.4.6.3 Skin cleansing 96
2.5 Diseases caused by members of the cutaneous microbiota 98
 2.5.1 Acne 98
 2.5.2 Intravascular catheter-associated infections 99
 2.5.3 Infections associated with implanted prosthetic devices 100
 2.5.4 Wound infections 101
 2.5.5 Urinary tract infections 101
 2.5.6 Infective endocarditis 102
 2.5.7 Diseases caused by *Malassezia* spp. 102
 2.5.8 Erythrasma 103
 2.5.9 Odour 103
 2.5.10 Pitted keratolysis 104
 2.5.11 Trichomycosis 104
2.6 Further reading 104

Chapter 3 The eye and its indigenous microbiota 107

3.1 Anatomy and physiology of the eye 107
3.2 Antimicrobial defence mechanisms of the eye 108
3.3 Environmental determinants at different regions of the eye 113
3.4 The indigenous microbiota of the eye 116
 3.4.1 Main characteristics of key members of the ocular microbiota 116
 3.4.2 Acquisition of the ocular microbiota 116
 3.4.3 Composition of the indigenous microbiota of the eye 118
 3.4.4 Interactions among members of the ocular microbiota 119
 3.4.5 Dissemination of organisms from the eye 120
 3.4.6 Effect of antibiotics and other interventions on the ocular microbiota 120
 3.4.6.1 Antibiotic administration 120
 3.4.6.2 Contact lens wear 121
3.5 Diseases caused by members of the ocular microbiota

3.5.1 Conjunctivitis
3.5.2 Blepharitis
3.5.3 Keratitis
3.5.4 Endophthalmitis
3.5.5 Orbital cellulitis
3.5.6 Dacryocystitis

3.6 Further reading

Chapter 4 The respiratory system and its indigenous microbiota

4.1 Anatomy and physiology of the respiratory tract
4.1.1 Nose
4.1.2 Pharynx
4.1.3 Larynx
4.1.4 Trachea
4.1.5 Bronchi and bronchioles
4.1.6 Alveolus

4.2 Antimicrobial defence mechanisms of the respiratory tract
4.2.1 Nasal cavity
4.2.2 Conducting portion of respiratory tract other than the nasal cavity
4.2.3 Respiratory portion

4.3 Environmental determinants at different regions of the respiratory tract
4.3.1 Composition of nasal fluid
4.3.2 Composition of airway surface liquid
4.3.3 Composition of alveolar lining fluid
4.3.4 Contribution of microbial residents of the respiratory tract to nutrient availability

4.4 Indigenous microbiota of the respiratory tract
4.4.1 Main characteristics of key members of the respiratory microbiota
4.4.1.1 Neisseria spp.
4.4.1.2 Haemophilus spp.
4.4.1.3 Streptococcus spp.
4.4.1.3.1 Streptococcus pyogenes
4.4.1.3.2 Streptococcus pneumoniae
4.4.1.3.3 Viridans group streptococci
4.4.1.4 Moraxella catarrhalis
4.4.1.5 Staphylococcus aureus
4.4.1.6 Mollicutes

4.4.2 Acquisition of the respiratory microbiota
4.4.3 Community composition at different sites within the respiratory tract
4.4.3.1 External nares
4.4.3.2 Nasal cavity
4.4.3.3 Nasopharynx
4.4.3.4 Oropharynx
4.4.3.5 Lower respiratory tract
4.4.4 Interactions among members of the respiratory microbiota 167
4.4.5 Dissemination of organisms from the respiratory tract 168
4.4.6 Effects of antibiotics and other interventions on the respiratory microbiota
4.4.6.1 Antibiotics 169
4.4.6.2 Vaccination 170
4.4.6.3 Intubation 170
4.4.6.4 Radiation therapy 171
4.5 Diseases caused by members of the respiratory microbiota 171
4.5.1 Meningitis 171
4.5.2 Pneumonia 172
4.5.3 Sinusitis 173
4.5.4 Otitis media 173
4.5.5 Epiglottitis 174
4.5.6 Diseases due to Staph. aureus 174
4.5.7 Diseases due to Strep. pyogenes 175
4.6 Further reading 178

Chapter 5 | The urinary system and its indigenous microbiota 182
5.1 The urinary system of females 182
5.1.1 Anatomy and physiology 182
5.1.2 Antimicrobial defence mechanisms of the urinary system 182
5.1.3 Environmental determinants within the urethra 185
5.1.4 The indigenous microbiota of the female urethra 186
5.1.4.1 Main characteristics of key members of the urethral microbiota 186
5.1.4.2 Acquisition of the urethral microbiota 187
5.1.4.3 Community composition within the female urethra 188
5.1.4.4 Dispersal of organisms from the urethra 190
5.1.4.5 Effect of antibiotics and other interventions on the urethral microbiota
5.1.4.5.1 Antibiotics 190
5.1.4.5.2 Catheterisation 191
5.1.5 Diseases caused by members of the urethral microbiota of females
5.1.5.1 Infections due to Gram-positive anaerobic cocci 192
5.1.5.2 Urethral syndrome 192
5.2 The urinary system of males 192
5.2.1 Anatomy and physiology 192
5.2.2 Antimicrobial defence mechanisms 194
5.2.3 Environmental determinants within the male urethra 195
5.2.4 The indigenous microbiota of the male urethra 196
5.2.4.1 Main characteristics of key members of the microbiota 196
5.2.4.2 Acquisition of the microbiota of the male urethra 197
5.2.4.3 Community composition of the microbiota of the male urethra 197
5.2.4.4 Dispersal of organisms from the urethra 201
5.2.4.5 Effect of antibiotics and other interventions on the urethral microbiota 201
CONTENTS

5.2.4.5.1 Antibiotic use 201
5.2.4.5.2 Catheterisation 201

5.2.5 Diseases caused by members of the urethral microbiota of males 202
5.2.5.1 Urethritis 202
5.2.5.2 Prostatitis 202
5.2.5.3 Balanitis 203

5.3 Further reading 203

Chapter 6 | The reproductive system and its indigenous microbiota 206

6.1 Anatomy and physiology of the female reproductive system 206
6.2 Antimicrobial defence mechanisms of the female reproductive system 209
6.2.1 Innate defence mechanisms of the female reproductive system 209
6.2.2 Acquired immune defence mechanisms of the female reproductive system 212

6.3 Environmental determinants at different regions of the reproductive system 213
6.3.1 Vagina 213
6.3.2 Cervix 216
6.3.3 Vulva 217
6.3.4 Contribution of microbial residents of the reproductive system to nutrient availability 218

6.4 The indigenous microbiota of the female reproductive system 219
6.4.1 Main characteristics of key members of the microbiota 219
6.4.1.1 Lactobacillus spp. 219
6.4.1.2 Ureaplasma urealyticum 219
6.4.1.3 Gardnerella vaginalis 221
6.4.1.4 Candida albicans 221
6.4.1.5 Streptococcus agalactiae (Group B streptococcus) 222

6.4.2 Acquisition of the microbiota of the female reproductive system 223
6.4.3 Community composition at different sites within the female reproductive system 223
6.4.3.1 Vagina 223
6.4.3.1.1 Microbiota of post-menarchal/pre-menopausal women 224
6.4.3.1.2 Microbiota of pre-menarchal girls 231
6.4.3.1.3 Microbiota of post-menopausal women 232
6.4.3.2 Cervix 234
6.4.3.3 Vulva 234

6.4.4 Dissemination of organisms from the female reproductive system 238
6.4.5 Effect of antibiotics and other interventions and events on the indigenous microbiota of the female reproductive system 238
6.4.5.1 Antibiotics 238
6.4.5.2 Contraceptives 240
6.4.5.3 Sexual intercourse 240
6.4.5.4 Pregnancy 241
6.4.5.5 Douching 241

6.5 Diseases caused by members of the indigenous microbiota of the female reproductive system 242
6.5.1 Infections of the vagina 242
 6.5.1.1 Bacterial vaginosis 243
 6.5.1.2 Vaginal candidiasis 244
6.5.2 Infections at sites other than the vagina 246
 6.5.2.1 Pelvic inflammatory disease 246
 6.5.2.2 Endometritis 246
 6.5.2.3 Chorioamnionitis 246
 6.5.2.4 Pre-term birth 247
 6.5.2.5 Neonatal infections 247
 6.5.2.6 Bartholinitis 248

6.6 Further reading 248

Chapter 7 The gastrointestinal tract and its indigenous microbiota 251
7.1 Anatomy and physiology of the gastrointestinal tract 251
7.2 Antimicrobial defence mechanisms of the gastrointestinal tract 258
 7.2.1 Innate defence systems 258
 7.2.2 Acquired immune defence system 260
7.3 Environmental determinants within different regions of the gastrointestinal tract 261
 7.3.1 Oesophagus 262
 7.3.2 Stomach 262
 7.3.3 Small intestine 263
 7.3.4 Large intestine 264
7.4 The indigenous microbiota of the gastrointestinal tract 267
 7.4.1 Main characteristics of key members of the intestinal microbiota 269
 7.4.1.1 Bacteroides spp. 269
 7.4.1.2 Eubacterium spp. 270
 7.4.1.3 Clostridium spp. 271
 7.4.1.4 Bifidobacterium spp. 271
 7.4.1.5 Enterococcus spp. 272
 7.4.1.6 Helicobacter pylori 273
 7.4.1.7 Enterobacteriaceae 275
 7.4.1.8 Ruminococcus spp. 277
 7.4.1.9 Methanogenic bacteria 277
 7.4.1.10 Desulphovibrio spp. 277
 7.4.2 Acquisition of the intestinal microbiota 278
7.4.3 Community composition at different sites 282
 7.4.3.1 Oesophagus 282
 7.4.3.2 Stomach 283
 7.4.3.3 Small intestine 284
 7.4.3.4 Large intestine 287
7.4.4 Microbial interactions in the gastrointestinal tract 294
 7.4.4.1 Positive interactions 295
 7.4.4.2 Negative interactions 296
CONTENTS

7.4.5 Dissemination of organisms from the gastrointestinal tract 297
7.4.6 Effect of antibiotics and other interventions on the microbiotas of the gastrointestinal tract 298
7.4.6.1 Antibiotics 298
7.4.6.2 Artificial nutrition 300
7.4.6.3 Probiotics and prebiotics 300
7.5 Diseases caused by members of the intestinal microbiota 300
7.5.1 Diseases due to *Helicobacter pylori* 300
7.5.2 Irritable bowel syndrome 301
7.5.3 Inflammatory bowel disease 302
7.5.4 Diseases due to *Clostridium* spp. 302
7.5.5 Intra-abdominal infections 303
7.5.6 Diseases due to *Enterobacteriaceae* 303
7.5.7 Urinary tract infections 303
7.5.7.1 Urinary tract infections in females 303
7.5.7.2 Urinary tract infections in males 310
7.5.8 Colorectal cancer 311
7.5.9 Systemic infections resulting from bacterial translocation 312
7.5.10 Contaminated small bowel syndrome 312
7.6 Further reading 313

Chapter 8 | The oral cavity and its indigenous microbiota

8.1 Anatomy and physiology of the oral cavity 318
8.2 Antimicrobial defence mechanisms of the oral cavity 323
8.3 Environmental determinants at the various sites within the oral cavity 325
8.3.1 Mechanical determinants 325
8.3.2 Nutritional determinants 326
8.3.3 Physicochemical determinants 329
8.4 The indigenous microbiota of the oral cavity 332
8.4.1 Main characteristics of key members of the oral microbiota 333
8.4.1.1 Oral streptococci and other Gram-positive cocci 333
8.4.1.2 *Actinomyces* spp. 334
8.4.1.3 *Veillonella* spp. 336
8.4.1.4 Anaerobic Gram-negative bacilli 336
8.4.1.5 Spirochaetes 337
8.4.1.6 Facultatively anaerobic Gram-negative bacilli 338
8.4.2 Acquisition of the oral microbiota 339
8.4.3 Community composition at different sites 340
8.4.3.1 Supragingival plaque 341
8.4.3.2 Gingival crevice 353
8.4.3.3 Tongue 355
8.4.3.4 Other mucosal surfaces 358
8.4.4 Dissemination of organisms from the mouth 359
8.4.5 Effect of antibiotics and other interventions on the oral microbiota 360
8.4.5.1 Antibiotics 360
8.4.5.2 Mechanical oral-hygiene measures 362
8.4.5.3 Prosthetic devices 362
8.4.5.4 Immunosuppressive chemotherapy 363
CONTENTS

8.5 Diseases caused by members of the oral microbiota
 364
 8.5.1 Dental caries
 364
 8.5.2 Periodontal diseases
 365
 8.5.2.1 Chronic gingivitis
 366
 8.5.2.2 Acute necrotising ulcerative gingivitis
 366
 8.5.2.3 Periodontitis
 367
 8.5.3 Bacterial endocarditis and other extra-oral infections
 369
 8.5.4 Denture stomatitis
 370
 8.5.5 Halitosis
 370
 8.5.6 Endodontic infections
 371
 8.5.7 Actinomycosis
 371
 8.6 Further reading
 372

Chapter 9 Role of the indigenous microbiota in maintaining human health

 375
9.1 Colonisation resistance
 375
 9.1.1 Exclusion of exogenous microbes
 375
 9.1.2 Mechanisms involved in colonisation resistance
 377
 9.1.2.1 Occupation of adhesion sites
 377
 9.1.2.2 Alteration of the physico-chemical environment
 378
 9.1.2.3 Production of antagonistic substances
 378
 9.1.2.4 Utilisation of the available nutrients within a site
 379
 9.1.3 Disruption of colonisation resistance
 380
 9.1.3.1 Role of microbial factors
 380
 9.1.3.2 Role of host factors
 382
 9.2 Host development
 382
 9.3 Host nutrition
 387
 9.3.1 Short-chain fatty acids
 388
 9.3.2 Vitamins
 390
 9.4 Detoxification
 391
 9.5 Further reading
 392

Chapter 10 Manipulation of the indigenous microbiota

 395
10.1 Probiotics
 395
 10.1.1 Probiotics and gastrointestinal health
 397
 10.1.2 Probiotics and vaginal health
 400
 10.1.3 Prevention of dental caries using probiotics
 401
 10.2 Prebiotics
 402
 10.3 Inhibition of microbial adhesion
 403
 10.3.1 Inhibition of adhesion using antibodies
 404
 10.3.2 Inhibition of adhesion using adhesins or adhesin
 analogues
 405
 10.3.3 Inhibition of adhesion using receptors or receptor
 analogues
 405
 10.3.4 Prevention of medical-device-associated infections
 406
 10.4 Replacement therapy
 407
 10.4.1 Prevention of infections due to Staphylococcus aureus
 408
 10.4.2 Prevention of pharyngeal colonisation and infection
 409
 10.4.3 Prevention of dental caries
 410
CONTENTS

10.4.4 Prevention of otitis media 411
10.4.5 Prevention of urinary tract infections 412
10.4.6 Treatment of infections due to \textit{Clostridium difficile} 414
10.5 Localised modification of the host environment 414
10.6 Further reading 416

Index 421
An introduction to the human–microbe symbiosis

The first 9 months of our existence – the time we spend in our mother’s womb – is the only period of our life during which we are free of microbes. Our delivery from this parasitic existence into the outside world exposes us to an enormous range of microbes from a variety of environments – our first encounter with life forms which have an anatomy, physiology, and metabolism very different from those of our own. Hence, our immediate companions on life’s long journey include organisms from (1) the vagina, gastrointestinal tract (GIT), skin, oral cavity, and respiratory tract of our mother; (2) the skin, respiratory tract, and oral cavity of other individuals present at the delivery; (3) the instruments and equipment used during delivery; and (4) the immediate environment. These will include, therefore, not only microbes from other human beings, but also organisms from soil, water, and vegetation that may be present. All of the studies that have been carried out on neonates have shown that, within a very short time following delivery, microbes are detectable on most of those surfaces of the baby that are exposed to the external environment (i.e., the skin, respiratory tract, GIT, and oral cavity). Despite the fact that we are exposed to a wide variety of microbes at birth, only a limited number of species are able to permanently colonise the various body sites available, and each site is colonised predominantly by only certain microbial species (i.e., the microbes display “tissue tropism”). The organisms found at a particular site constitute what is known as the indigenous (or “normal”) microbiota of that site. It is important to note that the term “indigenous microbiota” will include all of the bacteria, viruses, fungi, and protoctists that are able to colonise any of the body surfaces. However, the vast majority of studies undertaken so far have been concerned with identifying only the bacteria present at a particular site, and so we know very little about the distribution or frequency of occurrence of Archaea, viruses, fungi, or protoctists on healthy individuals. This book, therefore, is concerned only with the bacterial members of the indigenous microbiota and with those fungi (e.g., Candida albicans and Malassezia spp.) which the available data suggest are also indigenous to humans.

It is appropriate at this point to define what is meant by “symbiosis”. Strictly speaking, the term means “living together” and so can be applied to any association between two (or more) organisms. However, it is possible to recognise at least three types of symbiosis: (1) mutualism – when both members of the association benefit, (2) commensalism – when one member benefits while the other is unaffected, and (3) parasitism – when one member suffers at the expense of the other. Confusingly, however, many scientists now use the term “symbiosis” to mean only the first of these three
The indigenous microbiota of humans consists of a number of microbial communities, each with a composition characteristic of a particular body site. With few exceptions (the stomach and duodenum being two examples), the communities consist of large numbers of microbes and have a complex composition. As can be seen from Table 1.1, the microbial component of the average human being weighs approximately 1.25 kg. In terms of cell numbers, the figures are even more astonishing, with microbes outnumbering mammalian cells by a factor of 10 – the average human consists of 10^{13} mammalian cells and 10^{14} microbial cells. Some appreciation of the complexity of the indigenous microbiota can be gained by considering the number of different taxa (or phylotypes) that have been detected at various sites. Hence, the number of microbial taxa that are able to colonize the oral cavity has been estimated to be between
1.1 DISTRIBUTION AND NATURE OF THE INDIGENOUS MICROBIOTA

Oral cavity
- very densely populated
- different regions (e.g., teeth, tongue) are colonised by different types of bacteria
- complex microbiota
- many species not yet identified

Skin
- sparsely populated, but has a large surface area
- dominated by Gram-positive species

Urinary tract
- usually sterile except for distal region of urethra

Vagina
- densely populated
- microbiota dominated by lactobacilli

Upper respiratory tract (anterior nares, nasopharynx, oropharynx)
- complex microbiota
- composition depends on anatomical site

Lung
- normally sterile

Internal tissues
- normally sterile

Gastrointestinal tract (stomach, duodenum, jejunum, ileum, colon)
- population density varies with anatomical site – stomach is sparsely populated while colon is very densely populated
- contains most of the bacteria (10^{14}) inhabiting humans
- very complex microbiota
- many species have not been identified

Figure 1.1 The nature of the microbial communities found inhabiting various sites on the human body.

500 and 700, whereas, for the colon, the number lies between 500 and 1,000 – these figures, however, are continually being revised upwards as detection methods improve. Fortunately, the numbers of different organisms detected in an individual at any one time are usually considerably lower – no more than approximately 100 in the more complex communities such as those found in the colon, dental plaque, and vagina.

Although many of those body surfaces that are exposed to the external environment are colonised by microbes, some are not (e.g., the lungs), and the population density of those sites that are colonised varies markedly from site to site (Figure 1.1). Hence, the oral cavity, the colon, and the vagina are densely colonised, whereas the eyes, stomach, and urethra have much sparser microbial communities. The density of colonisation and the community composition can vary enormously at different sites within an organ system. For example, the upper regions of the respiratory tract are more densely populated than the lower regions – in fact, the bronchi and alveoli are usually sterile. The skin is generally rather sparsely populated, but regions such as the axillae and the perineum support more substantial microbial communities. In the GI tract, the stomach, duodenum, and ileum have low population densities, whereas the jejunum, caecum, and colon are densely populated.
4 AN INTRODUCTION TO THE HUMAN–MICROBE SYMBIOSIS

Table 1.2 Problems with defining the indigenous microbiota of a body site

| Technical problems due to complexity of the microbial community |
| Generally only small numbers of samples can be processed – limits the statistical reliability of the data obtained |
| Difficulty in obtaining appropriate, uncontaminated samples from many body sites |
| Variations between individuals related to genotype, age, sex, diet, hygiene practices, health status, type of clothing, occupation, prevailing climate, etc. |
| Difficulties in comparing results obtained using different methodologies |
| Changes in microbial nomenclature – renders comparisons with previous studies difficult |

1.1.1 Difficulties associated with determining microbial community composition

Communities with a large diversity pose considerable technical problems when it comes to identifying all of the species present, and herein lies one of the problems associated with trying to define the indigenous microbiota of a body site. Until relatively recently, analysis of such communities relied on the cultivation of the species present. Such an approach is fraught with problems, and these are described in greater detail in Section 1.4.2. The application of modern molecular means of identifying microbes has added greatly to our knowledge (but not necessarily to our understanding) of the composition of the microbial communities inhabiting humans (Section 1.4.3). Unfortunately, however, few such studies have been carried out to date, and most of these have been restricted to samples taken from the oral cavity and the colon. It is important to emphasise at this point that, in addition to the technical difficulties associated with analysing such complex communities, there are a number of other problems inherent in attempting to determine the indigenous microbiota of a body site (Table 1.2). Firstly, regardless of whether culture-based or culture-independent methodologies are being used in a study, the work involved in processing a single sample is considerable, and this limits the number of samples that can be handled, which, in turn, reduces the statistical reliability of the results obtained. Secondly, comparisons between studies are often difficult because of the different methodologies involved – not only between culture-based and culture-independent studies, but also among studies using similar approaches. Hence, culture-based studies often use different media with differing abilities to grow or select different species, whereas culture-independent studies often use primers or probes with different specificities. Changes in microbial nomenclature and taxonomy (particularly among the anaerobic Gram-positive cocci and rods and the anaerobic Gram-negative rods) have exacerbated the problem by making comparisons with previous studies difficult. While obtaining samples from some sites (e.g., the skin) is relatively easy, it can be extremely difficult to obtain samples from other sites. Hence, obtaining samples from the stomach and duodenum that are uncontaminated by microbes inhabiting adjacent sites is very difficult. This can be exacerbated by problems arising from the attitude of the individuals being sampled who are, naturally, reluctant to undergo any procedure that is uncomfortable, painful, or embarrassing. Studies have shown that the numbers and types of microbes present at a site may be affected by the age, gender, sexual maturity, diet, hygiene practices, type of clothing worn,
1.1 DISTRIBUTION AND NATURE OF THE INDIGENOUS MICROBIOTA

occupation, prevailing climate, and so forth. This means that a properly designed study should minimise such variations between the participants in the study – this is seldom done because of the difficulty in recruiting sufficient numbers. Even if all of the previously described problems can be overcome, the scientific community is then faced with the problem of deciding whether or not a particular organism detected should be regarded as being a member of the indigenous microbiota of the site under investigation. This can be a very difficult and – because there are no rigid rules – controversial issue. If an organism A is isolated in large proportions from a particular body site in every participant in a large group of age- and gender-matched individuals and similar results are obtained on a number of different sampling occasions, then it would be reasonable to regard it as being a member of the indigenous microbiota of that site. However, what should be the status of organisms B and C if they are isolated from 50% and 5% of these individuals, respectively? Or what if B and C are isolated from all individuals on one occasion but not on another occasion? Attempts have been made to distinguish between microbes that are “residents” of a site and those that are “transients”. Residents of a site should be able to grow and reproduce under the conditions operating at the site, whereas organisms that cannot do so, but are found at the site, are regarded as transients. However, the complexity of the microbial communities at many sites, the paucity of longitudinal studies of most sites, and the difficulties associated with trying to establish whether an organism is actively growing or reproducing at a site often make such distinctions difficult to make.

Once an organism has been designated as being a member of the indigenous microbiota of a body site, it is important to try and understand why it is present at that site. It is reasonable to assume that the organism must be adhering to some substratum within the site – this may be a host cell, the extracellular matrix, some molecule secreted by the host, some structure produced by the host (e.g., a tooth or hair), or another microbe. The predilection of many organisms for a particular host site has been known for many years, and this phenomenon is termed “tissue tropism”. The presence of a receptor on a host tissue able to recognise the complementary adhesin on the bacterium is considered to be the mechanism underlying tissue tropism. However, this alone cannot explain the presence of an organism at a specific body site because it does not take into account the fact that, as well as acting as a substratum for adhesion, the site must also be able to satisfy all of the nutritional and other needs of the organism. Furthermore, the organism must also be able to withstand any antimicrobial defences being mounted by the host at that site. An understanding of such host–microbe interactions can be gained only by considering the anatomy and physiology of the site which are largely responsible for creating the unique environment existing there. As Pasteur remarked more than 120 years ago, “The germ is nothing. It is the terrain in which it is found that is everything”. The author has tried, therefore, to provide information on the environmental factors operating at each of the body sites colonised by microbes. Unfortunately, in many cases, such data do not appear to be available – this being due to the difficulties in accessing the site or in analysing the small quantities of fluid and/or tissue that can be obtained from the site. Although the environment provided by the host is the dominant factor dictating whether or not an organism can colonise a particular site, once colonisation has occurred, the environment is altered by microbial activity. This results in the phenomenon of microbial succession in which organisms previously unable to colonise the original site are now provided with an
environmentsuitableforthegrowthandreproduction. This process is fundamental to understanding the development of microbial communities at the various body sites and will be referred to repeatedly throughout this book.

1.1.2 Structural aspects of residential microbial communities

As well as determining the numbers and types of microbes found at a particular anatomical site, it is also important to consider the structural organisation of the communities inhabiting these sites. Adhesion of an organism to a substratum is followed by its growth and reproduction – if the habitat has a suitable environment and can satisfy the nutritional requirements of the organism. This may result in the production of adherent microbial aggregates known as microcolonies, which are often enclosed within some microbial extracellular polymer (see Figures 1.2, 2.12, and 6.13). Microcolonies
1.1 DISTRIBUTION AND NATURE OF THE INDIGENOUS MICROBIOTA

Figure 1.3 Epithelial cells from the cheek mucosa viewed by (a) confocal laser scanning microscopy and (b) scanning electron microscopy (bar = 10 μm). Pairs of bacteria and individual cells can be seen attached to the epithelial cells. Images kindly supplied by: (a) Dr. Chris Hope and (b) Mrs. Nicola Mordan, Eastman Dental Institute, University College London.

have been detected on the surface of the skin and on mucosal surfaces such as the respiratory, urogenital, and intestinal tracts. However, this does not happen in all cases, as the development of such aggregates is often limited by mechanical and hydrodynamic forces tending to disrupt or dislodge such structures (see Section 1.2.3). Furthermore, if the organism is motile, reproduction often leads to one or more of the daughter cells detaching and moving to another site within the habitat. Many epithelial cells, therefore, may only have small numbers of individual microbial cells on their surfaces (Figure 1.3). Another factor limiting the growth of microbial aggregates is that most of the surfaces exposed to the external environment (apart from the teeth) consist of epithelial cells which are continually being shed, taking the aggregates with them.

Sometimes however, the microcolony produced can grow further and develop into a larger structure known as a “biofilm” (Figure 1.4) – this occurs particularly on the non-shedding surfaces of the teeth and on mucosal surfaces with suitable anatomical features (e.g., the crypts of the tongue and tonsils and in the vagina). They are
also found on particulate matter in the colon and on medical devices and prostheses (e.g., catheters, artificial joints, limbs, and heart valves). A biofilm is defined as a matrix-enclosed microbial community attached to a surface. Because most surfaces in nature are coated with an adsorbed layer of macromolecules, the biofilm is usually attached to this layer (termed a “conditioning film”) rather than directly to the surface itself. The matrix consists of polymers produced by the constituent microbes, as well as molecules derived from the host. An organism growing within a biofilm has a phenotype different from that which it displays when it grows planktonically (i.e., in an aqueous suspension) and the collective properties of a biofilm differ considerably from those of a simple aqueous suspension of the same organism(s) (Table 1.3). Furthermore, the utilisation of oxygen and nutrients from the environment by cells in the outermost layers of the biofilm, together with impeded diffusion of such molecules by the biofilm matrix, results in chemical and physicochemical gradients within the biofilm (Figure 1.5). Other gradients will be generated with respect to metabolites produced by the organism present inside the biofilm. Within the biofilm, therefore, an enormous variety of microhabitats exist, thereby providing conditions suitable for colonisation by a variety of physiological types of microbes.

Table 1.3. General properties of biofilms

- reduced susceptibility to antimicrobial agents
- reduced susceptibility to host defence mechanisms
- contain a range of microhabitats due to chemical and physico-chemical gradients
- constituent organisms display novel phenotypes
- facilitates nutritional interactions between constituent organisms
- facilitates quorum sensing
1.1 DISTRIBUTION AND NATURE OF THE INDIGENOUS MICROBIOTA

Biofilms are highly hydrated structures, and the bacteria within them may occupy only between 10% and 50% of the total volume. This means that the staining and dehydration techniques used to prepare biofilms for examination by light and/or electron microscopy grossly distort their structure. Fortunately, the advent of confocal laser scanning microscopy (CLSM) – which enables the examination of biofilms in their native, hydrated state – has enabled a more accurate estimation of their structure and dimensions. Until CLSM began to be used for studying biofilm structure, there was little evidence that biofilms displayed any organised structure – bacteria were thought to be more or less randomly distributed throughout the matrix. However, CLSM (and other modern microscopic techniques such as differential interference contrast microscopy) has enabled us to view biofilms in their living, hydrated state, and this has revealed structures that are both complex and beautiful (Figure 1.6). Because a number of factors can affect biofilm structure, there is no single, unifying structure that can be said to characterise all biofilms. The key variables involved include the nature of the organism (or community), the concentration of nutrients present, the hydrodynamic properties of the environment, and the presence (and nature) of any mechanical forces operating at the site. Hence, the structure of a biofilm can range from the relatively featureless, flat type to one consisting of a more complex organisation involving tower-like “stacks” (consisting of microbes enclosed in an extracellular matrix) separated by water channels (Figure 1.6). The latter are characteristic of biofilms formed under the...