The Philosophy of Gottlob Frege

RICHARD L. MENDELSOHN
Lehman College and the Graduate School, CUNY
<table>
<thead>
<tr>
<th>Contents</th>
</tr>
</thead>
</table>

**List of Principles**  
**Preface**  
**1 Biography**  
**2 Function and Argument**  
2.1 Introduction  
2.2 What Is a Function?  
2.3 Function and Argument  
2.4 Extensions of the Notation  
2.5 The Substitution Principle for Reference  
2.6 Formal Mode and Material Mode  
**3 Sense and Reference**  
3.1 Introduction  
3.2 The Paradox of Identity  
3.3 The Sharpened Paradox  
3.4 The Generalized Paradox  
3.5 Three Solutions  
3.6 Sense and Reference  
**4 Frege’s *Begriffsschrift* Theory of Identity**  
4.1 Introduction  
4.2 The *Begriffsschrift* Semantic Theory  
4.3 Criticism: The Received View  
4.4 Criticism: Church-Langford Considerations  
4.5 Criticism: The Alleged Regress  
4.6 Criticism: Use/Mention Confusion  

*page xi*  
xv  
1  
7  
7  
8  
9  
13  
19  
23  
27  
27  
28  
29  
30  
30  
33  
41  
41  
42  
49  
52  
58  
60
Contents

5 Concept and Object
   5.1 Introduction 63
   5.2 Objects 63
   5.3 The Combining Tie 65
   5.4 Logical Grammar 67
   5.5 Metaphors 69
   5.6 The Puzzle of the Concept Horse 71
   5.7 An Analysis of the Puzzle 73
   5.8 A Solution to the Puzzle 74
   5.9 Morals 77

6 Names and Descriptions
   6.1 Introduction 81
   6.2 Russell's Theory of Descriptions 84
   6.3 The Scope Distinction 85
   6.4 Russell's Three Puzzles 87
   6.5 Frege and Russell on Definite Descriptions 90

7 Existence
   7.1 Introduction 100
   7.2 The Frege/Russell View About 'Existence' 102
   7.3 Is 'Exists' a Predicate? 104
   7.4 Russell's Machinery 105
   7.5 Frege's Mistake 110
   7.6 Nonreferring Singular Terms 118
   7.7 Kant on Being 121

8 Thought, Truth Value, and Assertion
   8.1 Introduction 125
   8.2 The Frege Argument 125
   8.3 A Sharpening of Frege's Argument 126
   8.4 A Problematic Use of Frege's Argument 127
   8.5 A Way out of Frege's Argument 130
   8.6 Truth and Assertion 133
   8.7 Is 'True' a Predicate? 135
   8.8 The Correspondence Theory of Truth 137

9 Indirect Reference
   9.1 Introduction 140
   9.2 The Sense/Reference Story 140
   9.3 Some Loose Ends 144
   9.4 The Infinite Hierarchy 149
   9.5 Collapsing the Hierarchy 151
   9.6 Russell's Other Shoe 154
   9.7 Reflections on the Argument 158
# Contents

10 Through the Quotation Marks  
10.1 Introduction 163  
10.2 Quine: Structureless Names 166  
10.3 Davidson: Demonstrative Names 170  
10.4 Parsons: Fregean Names 173  
10.5 A Formalism 180  
10.6 Philosophical Remarks 181  

*Appendix A.* Begriffsschrift in Modern Notation: (1) to (51) 185  
*Appendix B.* Begriffsschrift in Modern Notation: (52) to (68) 198  
Notes 203  
Bibliography 217  
Index 223
List of Principles

Principle 2.2.1 (Fundamental Property of Functions)  
For any \( x, y \) in the domain of \( f \), if \( x = y \), then \( f(x) = f(y) \)  

Principle 2.2.2 (Generalized Fundamental Property of Functions)  
If \( x_1 = y_1, \ldots, x_n = y_n \), then \( g(x_1, \ldots, x_n) = g(y_1, \ldots, y_n) \)

Principle 2.3.1 (Compositionality for Reference)  
For any function-expression \( \theta(\Omega) \) and any name \( \alpha \), \( r(\theta(\alpha)) = r(\theta)[r(\alpha)] \)  

Principle 2.3.2 (Informal Compositionality for Reference)  
The reference of a complex is a function of the reference of its parts

Principle 2.3.3 (Extensionality for Reference)  
For any function-expression \( \theta(\Omega) \) and any names \( \alpha, \beta \), if \( r(\alpha) = r(\beta) \), then \( r(\theta(\alpha)) = r(\theta(\beta)) \)

Principle 2.3.4 (Generalized Compositionality for Reference)  
For any \( n \)-place function-expression \( \theta(\Omega_1, \Omega_2, \ldots, \Omega_n) \) and any names \( \alpha_1, \alpha_2, \ldots, \alpha_n \), \( r(\theta(\alpha_1, \alpha_2, \ldots, \alpha_n)) = r(\theta)[r(\alpha_1), r(\alpha_2), \ldots, r(\alpha_n)] \)

Principle 2.3.5 (Generalized Extensionality for Reference)  
For any \( n \)-place function-expression \( \theta(\Omega_1, \Omega_2, \ldots, \Omega_n) \) and any names \( \alpha_1, \alpha_2, \ldots, \alpha_n, \beta_1, \beta_2, \ldots, \beta_n \), if \( r(\alpha_1) = r(\beta_1), \ldots, r(\alpha_n) = r(\beta_n) \), then \( r(\theta(\alpha_1, \alpha_2, \ldots, \alpha_n)) = r(\theta(\beta_1, \beta_2, \ldots, \beta_n)) \)

Principle 2.5.1 (Substitution for Reference)  
If \( r(\alpha) = r(\beta) \), \( \theta(\alpha) \) and \( \theta(\beta) \) have the same truth value

Principle 2.5.2 (Leibniz’s Law)  
\( \forall x (\forall y (x = y \supset (Fx \equiv Fy))) \)
List of Principles

Principle 2.5.3 (Aboutness) \( \alpha \) is about \( r(\alpha) \)

Principle 2.5.4 (Corrected Substitution for Reference)

If \( \alpha \) is about \( r(\alpha) \), then if \( r(\alpha) = r(\beta) \), then \( \alpha \) and \( \alpha/\beta \) have the same truth value

Principle 3.3.1 (Begriffsschrift Substitution) If \( \alpha \) is about \( r(\alpha) \), then if \( r(\alpha) = r(\beta) \), \( \alpha \) and \( \alpha/\beta \) have the same cognitive value

Principle 3.6.1 (Sense Determines Reference) \( r(\eta) = r(\eta) \)

Principle 3.6.2 (Reference Is a Function) If \( s(\eta) = s(\xi) \), then \( r(\eta) = r(\xi) \)

Principle 3.6.3 (Compositionality for Sense) \( s(\theta(\alpha)) = s(\theta)[s(\alpha)] \)

Principle 3.6.4 (Extensionality for Sense) If \( s(\alpha) = s(\beta) \), then \( s(\theta(\alpha)) = s(\theta(\alpha/\beta)) \)

Principle 3.6.5 (Substitution for Sense) If \( \alpha \) is about \( r(\alpha) \), then if \( s(\alpha) = s(\beta) \), then \( \alpha \) and \( \alpha/\beta \) have the same cognitive value

Principle 4.2.1 (Begriffsschrift Substitution) If \( \alpha \) is about \( r(\alpha) \), then if \( r(\alpha) = r(\beta) \), then \( \alpha \) has the same conceptual content as \( \alpha/\beta \)

Principle 4.4.1 (Church-Langford Translation) If \( oR\omega \), then \( T(\omega) \cdot T(\omega) \)

Principle 4.4.2 (Single-Quote Translation) Expressions inside single quotes are not to be translated

Principle 7.2.1 (FregE/Russell on ‘Existence’) To assert that Fs exist is to say that there are Fs, and to deny that Fs exist is to say that there aren’t any Fs

Principle 7.2.2 (FregE/Russell on Existence) (i) ‘x exists’ is not a first-order predicate; (ii) Existence is not a property of objects but of properties; and (iii) Existence is completely expressed by means of the quantifier ‘There is’

Principle 7.3.1 (Redundancy Theory of Existence)

\[
(\exists x)F(x) \equiv (\exists x)(\exists x \land Fx)
\]

\[
\neg(\exists x)F(x) \equiv \neg(\exists x)(\exists x \land Fx)
\]

Principle 9.2.1 (Indirect Reference) \( r_i(\theta) = r_i(\theta) \)

Principle 9.2.2 (Compositionality for Indirect Reference) \( r_i(\theta(\alpha)) = r_i(\theta)[r_i(\alpha)] \)
List of Principles

Principle 9.2.3 (THAT) \( r_0(\Theta(\theta(\alpha))) = r_0(\Theta(\theta)) r_0((\Theta (\alpha))) \)
Principle 9.2.4 (Compositionality for THAT) \( r_0(\Theta(t)) = r_0(\theta)(r_1(t)) \)
Principle 9.2.5 (Extensionality for THAT) If \( r_1(\alpha) = r_1(\beta) \), then \( r_0(\theta((\Theta(\alpha)))) = r_0(\theta((\Theta(\beta)))) \)
Principle 9.4.1 (No Self-Reference) \( s(t) \neq r(t) \)
Principle 9.6.1 (\Theta Collapse) \( \Theta(\Theta(\alpha)) = \Theta(\Theta(\alpha)) \)
Principle 10.2.1 (Quine No Self-Reference) A name must be distinct from the object it names
Principle 10.5.1 (Quotation-Name Denotation) For any expression \( e \in \mathcal{V}^n \), \( \langle \ell q, e, rq \rangle \) denotes \( e \)
Biography

The known details of the personal side of Frege’s life are few. Friedrich Ludwig Gottlob Frege was born November 8, 1848, in Wismar, a town in Pomerania. His father, Karl Alexander (1809–1866), a theologian of some repute, together with his mother, Auguste (d. 1878), ran a school for girls there. Our knowledge of the remainder of Frege’s personal life is similarly impoverished. He married Margarete Lieseberg (1856–1904) in 1887. They had several children together, all of whom died at very early ages. Frege adopted a child, Alfred, and raised him on his own. Alfred, who became an engineer, died in 1945 in action during the Second World War. Frege himself died July 26, 1925, at age seventy-seven.

We can say somewhat more about his intellectual life. Frege left home at age twenty-one to enter the University at Jena. He studied mathematics for two years at Jena, and then for two more at Göttingen, where he earned his doctorate in mathematics in December 1873 with a dissertation, supervised by Ernst Schering, in geometry. Although mathematics was clearly his primary study, Frege took a number of courses in physics and chemistry, and, most interestingly for us, philosophy. At Jena, he attended Kuno Fischer’s course on Kant’s Critical Philosophy, and in his first semester at Göttingen, he attended Hermann Lotze’s course on the Philosophy of Religion. The influence and importance of Kant is evident throughout Frege’s work, that of Lotze’s work on logic is tangible but largely circumstantial.

After completing his Habilitationsschrift on the theory of complex numbers, Frege returned to Jena in May of 1874 in the unsalaried position of lecturer [Privatdozent]. The position was secured for him by the mathematician Ernst Abbé, his guardian angel at Jena from the time he arrived
as a student to his ultimate honorary professorship. Abbé controlled the Carl Zeiss foundation, which received almost half of all the profits from the Zeiss lens and camera factory (which Abbé had helped the Zeiss family establish). Frege’s unsalaried honorary professorship at Jena was made possible because he received a stipend from the Zeiss foundation.

Frege taught mathematics at Jena and his first published writings were mainly reviews of books on the foundations of mathematics. In 1879, five years after returning to Jena, he published his *Begriffsschrift*. It was not well received. For one thing, the notation was extraordinarily cumbersome and difficult to penetrate. Also Frege failed to mention, and contrast with his own system, the celebrated advances in logic by Boole and Schröder, in which both classical truth-functional logic and the logic of categorical statements were incorporated into a single mathematical system. In his review of *Begriffsschrift*, Schröder ridiculed the idiosyncratic symbolism as incorporating ideas from Japanese, and as doing nothing better than Boole and many things worse. Schröder had not realized how far Frege had penetrated, and neither did many of his contemporaries.

For three years, Frege worked hard to explain and defend his *Begriffsschrift*, though not with much success. The fault lies in no small measure with Frege himself, for he failed to distinguish in importance the specifics of his notation (which has, thankfully, been totally abandoned) from the logical syntax and semantics it instantiated. What Frege had created, of course, was a formal language in which he axiomatized higher-order quantificational logic; derived many theorems of propositional logic, first-order logic, and second-order logic; and defined the ancestral relation. *Begriffsschrift* represents a milestone, not only in the history of logic and, thereby, in the history of philosophy, but also in the history of modern thought, for it was one of the first sparks in a hundred-year explosion of research into the foundations of mathematics, and into the application of mathematical representation to structures other than numbers and shapes.

Frege soon broke away from this engagement and returned to his creative project announced in *Begriffsschrift*:

[We] divide all truths that require justification into two kinds, those whose proof can be given purely logically and those whose proof must be grounded on empirical facts. . . . Now, in considering the question of to which of these two kinds arithmetical judgments belong, I first had to see how far one could get in arithmetic by inferences alone, supported only by the laws of thought that transcend all particulars. The course I took was first to seek to reduce the concept of ordering in a series to that of logical consequence, in order then to progress to the concept of number. . . . (Frege 1879: 48)
Having codified the notion of proof, of logical consequence, and of ordering in a sequence in Begriffsschrift, Frege pursued his investigation into the notion of cardinal number, publishing his philosophical strategy in 1884 in Grundlagen. Unlike his Begriffsschrift, Grundlagen is almost devoid of formal symbolism and is otherwise directly engaged with the main views current about arithmetic. His polemic against contemporary empiricist and naturalist views of the concept of number is devastating. It is not only the specifics of these views that Frege believes to be wrong, but also the methodology of seeking a foundation for mathematics by identifying referents for the number words, whether they be material objects, psychological ideas, or Kantian intuitions. This is the cash value of his injunction against looking for the meaning of number words in isolation. The numbers, along with sets and the truth values, are logical objects: their meaning is intimately bound up with our conceptualization of things. He codified this attitude in his famous Context Principle – never to look to the meaning of a word in isolation, but only in the context of a proposition. For Frege, the foundations of mathematics were to be found in the new logic he had created, the language of which was adequate to express all elementary arithmetic statements, so that the truths of logic could be seen to be, when spelled out, truths of logic. Grundlagen is widely regarded as a masterpiece written by a philosopher at the height of his powers: in the years from 1884 through the publication of Grundgesetze, in 1893, we see Frege at his creative height.

Frege’s Grundlagen, although free from the symbolism of his more technical works, did not receive much notice, and the little it did receive was, as usual, full of misconceptions. It is not entirely clear why this is so. Perhaps Frege appeared too philosophical for the mathematicians who were working in related areas – he was ignored by Dedekind, roundly criticized by Cantor, and dismissed by Hilbert – and too technical for the philosophers. Only the direct interaction with Husserl – Frege (1894) demolished Husserl’s early psychologism in a review – had a clear and immediate impact on active philosophers of his day. Husserl abandoned his psychologism shortly thereafter, but he was none too generous in later life when he recalled Frege to be a man of little note who never amounted to much.

Frege’s own philosophical education and his knowledge of historical and contemporary philosophers is extremely problematic. When he quotes from some of the classical philosophers like Descartes, Hobbes, and Leibniz, it is frequently from a popular anthology put together by Baumann (1868) of writings on the philosophy of space and time. Kant gets a great many footnotes, though largely for his work on arithmetic.
Biography

and geometry. It is never clear how much of a philosopher’s work Frege was familiar with because he picked and chose discussions that were directly related to the problems he was working on. As with an autodidact, there appear to be immense holes in Frege’s knowledge of the history of philosophy; this, plus the single-mindedness with which he approached issues, as if with blinders to what was irrelevant, just underscored his intellectual isolation.

Grundlagen could not, of course, represent the end of his project. Frege would never be satisfied until he demonstrated his position formally. And it was the effort to formalize his view that forced significant changes in the Grundlagen story. Frege had tried to make do earlier in Begriffsschrift without the notion of set; he had yet to convince himself that the notion was legitimate and that it belonged in logic. At any rate, with the publication of Grundlagen, Frege’s course was clear: to fill in the logical details of the definition of number he there presented in the manner of his Begriffsschrift. What had been missing was a conception of a set; this Frege won through to. Along the way, a sharpening of his philosophical semantics led to the mature views in philosophy of language for which he has been justly celebrated. “Über Sinn und Bedeutung” was published in 1892, and its companion essays appeared in print about that same time.

Grundgesetze was published in 1893 by Hermann Pohle, in Jena. Frege had had difficulty finding a publisher for the book, after the poor reception given to his other works. Pohle agreed to publish the work in two parts: if the first volume was received well, he would publish the second one. Unfortunately it was not received well, to the extent that it was acknowledged by anyone at all. Pohle refused to publish the second volume, and Frege paid for its publication out of his own pocket some ten years later.

Just as Volume 2 of Grundgesetze was going to press in 1902, Russell communicated to Frege the famous contradiction he had discovered. Here is the beginning of the first letter to Frege, dated June 16, 1902:

Dear Colleague,
I have known your Basic Laws of Arithmetic for a year and a half, but only now have I been able to find the time for the thorough study I intend to devote to your writings. I find myself in full accord with you on all main points, especially in your rejection of any psychological element in logic and in the value you attach to a conceptual notation for the foundations of mathematics and of formal logic, which, incidentally, can hardly be distinguished. On many questions of detail, I find discussions, distinctions and definitions in your writings for which one looks in vain in other logicians. On functions in particular (sect. 9 of your Conceptual
Notation) I have been led independently to the same views even in detail. I have encountered a difficulty only on one point. You assert (p. 17) that a function could also constitute the indefinite element. This is what I used to believe, but this view now seems to me dubious because of the following contradiction: Let \( w \) be the predicate of being a predicate which cannot be predicated of itself. Can \( w \) be predicated of itself? From either answer follows its contradictory. We must therefore conclude that \( w \) is not a predicate. Likewise, there is no class (as a whole) of those classes which, as wholes, are not members of themselves. From this I conclude that under certain circumstances a definable set does not form a whole. (Frege 1980: 130–1)

From his Axiom 5,

\[
\{x \mid Fx\} = \{x \mid Gx\} \equiv (\forall x)(Fx \equiv Gx),
\]

which lays out the identity conditions for sets, Frege (1893) derives Proposition 91:

\[
Fy \equiv ye \{x \mid Fx\}. 
\]

Russell’s contradiction is immediate when, in this proposition, the property \( F \) is taken to be \textit{is not an element of itself} and the object \( y \) is taken to be \textit{the set of all sets that are not elements of themselves}:\(^8\)

\[
\neg\{x \mid \neg x \in x\}\in \{x \mid \neg x \in x\} \equiv \{x \mid \neg x \in x\} \in \{x \mid \neg x \in x\}.
\]

Unlike Peano, to whom Russell had also communicated the paradox, Frege acknowledged it with his deep intellectual integrity and attempted to deal with it in an appendix – but to no avail, as he himself acknowledged. He was deeply shaken by this contradiction, which emerged from an axiom about which he had, as he said, always been somewhat doubtful. His life’s work in a shambles, Frege’s creative energies withered. The foundational paradoxes became a source of immense intellectual stimulation (as Frege himself had surmised in a letter to Russell) and his achievements were soon surpassed by the work of Ernst Zermelo and others. By the time the young Ludwig Wittgenstein came to see him in 1911 to study foundations of mathematics, Frege referred him to Russell. There was a brief flurry of activity in 1918–19 when Frege published some work in philosophy of logic in an Idealist journal. They appear to represent the first chapters of a planned book on logic. These essays remain among the most influential writings of the twentieth century. But the foundations of arithmetic are a different story. We find him saying, in the early 1920s, that he doubts whether sets exist at all. And he is trying to see if the roots
of arithmetic are to be found in geometry, a complete turnaround from his earlier views.

That we know of Frege today is largely through his influence on the giants of modern analytic philosophy. Russell was the first to become aware of his work in the philosophy of language and logic. He included an appendix describing Frege’s views in his *Philosophy of Mathematics* of 1903. Indeed, immediately afterward, Russell appears to have been most deeply preoccupied with working out Frege’s sense/reference theory, an enterprise he abandoned because he thought there were insuperable difficulties with the view and also because he had an alternative in his theory of descriptions. Wittgenstein, too, had been deeply influenced by Frege’s views, and many parts of the *Tractatus* are devoted to them. Finally, we mention Rudolf Carnap, who had attended Frege’s lectures at Jena – he describes how Frege lectured into the blackboard so that the handful of students in the room could barely hear him – and whose book *Meaning and Necessity* resuscitated interest in Frege and formal semantics.

Frege retired from Jena in 1918. He had became increasingly involved with right-wing political organizations toward the latter part of his life, and the journal he kept in spring 1924 reveals a side of him that is not very appealing.