Gear Geometry and Applied Theory

SECOND EDITION

Faydor L. Litvin
University of Illinois at Chicago

Alfonso Fuentes
Polytechnic University of Cartagena
Contents

Foreword by Graziano Curti
Preface
Acknowledgments

1 Coordinate Transformation
1.1 Homogeneous Coordinates
1.2 Coordinate Transformation in Matrix Representation
1.3 Rotation About an Axis
1.4 Rotational and Translational 4×4 Matrices
1.5 Examples of Coordinate Transformation
1.6 Application to Derivation of Curves
1.7 Application to Derivation of Surfaces

2 Relative Velocity
2.1 Vector Representation
2.2 Matrix Representation
2.3 Application of Skew-Symmetric Matrices

3 Centrodes, Axodes, and Operating Pitch Surfaces
3.1 The Concept of Centrodes
3.2 Pitch Circle
3.3 Operating Pitch Circles
3.4 Axodes in Rotation Between Intersected Axes
3.5 Axodes in Rotation Between Crossed Axes
3.6 Operating Pitch Surfaces for Gears with Crossed Axes

4 Planar Curves
4.1 Parametric Representation
4.2 Representation by Implicit Function
4.3 Tangent and Normal to a Planar Curve
4.4 Curvature of Planar Curves

5 Surfaces
5.1 Parametric Representation of Surfaces
5.2 Curvilinear Coordinates
5.3 Tangent Plane and Surface Normal
Contents

5.4 Representation of a Surface by Implicit Function 82
5.5 Examples of Surfaces 82

6 Conjugated Surfaces and Curves 97
6.1 Envelope to a Family of Surfaces: Necessary Conditions of Existence 97
6.2 Basic Kinematic Relations 102
6.3 Conditions of Nonundercutting 103
6.4 Sufficient Conditions for Existence of an Envelope to a Family of Surfaces 107
6.5 Contact Lines; Surface of Action 110
6.6 Envelope to Family of Contact Lines on Generating Surface Σ_1 112
6.7 Formation of Branches of Envelope to Parametric Families of Surfaces and Curves 114
6.8 Wildhaber's Concept of Limit Contact Normal 118
6.9 Fillet Generation 119
6.10 Two-Parameter Enveloping 124
6.11 Axes of Meshing 128
6.12 Knots of Meshing 134
6.13 Problems 137

7 Curvatures of Surfaces and Curves 153
7.1 Introduction 153
7.2 Spatial Curve in 3D-Space 153
7.3 Surface Curves 164
7.4 First and Second Fundamental Forms 175
7.5 Principal Directions and Curvatures 180
7.6 Euler's Equation 188
7.7 Gaussian Curvature; Three Types of Surface Points 189
7.8 Dupin's Indicatrix 193
7.9 Geodesic Line; Surface Torsion 194

8 Mating Surfaces: Curvature Relations, Contact Ellipse 202
8.1 Introduction 202
8.2 Basic Equations 203
8.3 Planar Gearing: Relation Between Curvatures 204
8.4 Direct Relations Between Principal Curvatures of Mating Surfaces 218
8.5 Direct Relations Between Normal Curvatures of Mating Surfaces 226
8.6 Diagonalization of Curvature Matrix 231
8.7 Contact Ellipse 234

9 Computerized Simulation of Meshing and Contact 241
9.1 Introduction 241
9.2 Predesign of a Parabolic Function of Transmission Errors 242
9.3 Local Synthesis 245
Contents

9.4 Tooth Contact Analysis 249
9.5 Application of Finite Element Analysis for Design of Gear Drives 257
9.6 Edge Contact 260

10 Spur Involute Gears 267
10.1 Introduction 267
10.2 Geometry of Involute Curves 268
10.3 Generation of Involute Curves by Tools 273
10.4 Tooth Element Proportions 278
10.5 Meshing of Involute Gear with Rack-Cutter 280
10.6 Relations Between Tooth Thicknesses Measured on Various Circles 285
10.7 Meshing of External Involute Gears 287
10.8 Contact Ratio 292
10.9 Nonstandard Gears 294

11 Internal Involute Gears 304
11.1 Introduction 304
11.2 Generation of Gear Fillet 305
11.3 Conditions of Non undercutting 309
11.4 Interference by Assembly 314

12 Noncircular Gears 318
12.1 Introduction 318
12.2 Centrodes of Noncircular Gears 318
12.3 Closed Centrodes 323
12.4 Elliptical and Modified Elliptical Gears 326
12.5 Conditions of Centr ode Convexity 329
12.6 Conjugation of an Eccentric Circular Gear with a Noncircular Gear 330
12.7 Identical Centrodes 331
12.8 Design of Combined Noncircular Gear Mechanism 333
12.9 Generation Based on Application of Noncircular Master-Gears 335
12.10 Enveloping Method for Generation 336
12.11 Evolute of Tooth Profiles 341
12.12 Pressure Angle 344
Appendix 12.A: Displacement Functions for Generation by Rack-Cutter 345
Appendix 12.B: Displacement Functions for Generation by Shaper 348

13 Cycloidal Gearing 350
13.1 Introduction 350
13.2 Generation of Cycloidal Curves 350
13.3 Equations of Cycloidal Curves 354
13.4 Camus’ Theorem and Its Application 355
13.5 External Pin Gearing 359
13.6 Internal Pin Gearing 365
Contents

13.7 Overcentrode Cycloidal Gearing 367
13.8 Root's Blower 369

14 Involute Helical Gears with Parallel Axes

14.1 Introduction 375
14.2 General Considerations 375
14.3 Screw Involute Surface 377
14.4 Meshing of a Helical Gear with a Rack 382
14.5 Meshing of Mating Helical Gears 392
14.6 Conditions of Nonundercutting 396
14.7 Contact Ratio 398
14.8 Force Transmission 399
14.9 Results of Tooth Contact Analysis (TCA) 402
14.10 Nomenclature 403

15 Modified Involute Gears

15.1 Introduction 404
15.2 Axodes of Helical Gears and Rack-Cutters 407
15.3 Profile-Crowned Pinion and Gear Tooth Surfaces 411
15.4 Tooth Contact Analysis (TCA) of Profile-Crowned Pinion and Gear Tooth Surfaces 414
15.5 Longitudinal Crowning of Pinion by a Plunging Disk 419
15.6 Grinding of Double-Crowned Pinion by a Worm 424
15.7 TCA of Gear Drive with Double-Crowned Pinion 430
15.8 undercutting and Pointing 432
15.9 Stress Analysis 435

16 Involute Helical Gears with Crossed Axes

16.1 Introduction 441
16.2 Analysis and Simulation of Meshing of Helical Gears 443
16.3 Simulation of Meshing of Crossed Helical Gears 452
16.4 Generation of Conjugated Tooth Surfaces of Crossed Helical Gears 455
16.5 Design of Crossed Helical Gears 458
16.6 Stress Analysis 465
Appendix 16.A: Derivation of Shortest Center Distance for Canonical Design 467
Appendix 16.B: Derivation of Equation of Canonical Design
\[f(\gamma_0, \alpha_{ot1}, \lambda_{h1}, \lambda_{h2}) = 0 \] 472
Appendix 16.C: Relations Between Parameters \(\alpha_{pt}\) and \(\alpha_{pn}\) 473
Appendix 16.D: Derivation of Equation (16.5.5) 473
Appendix 16.E: Derivation of Additional Relations Between \(\alpha_{ot1}\) and \(\alpha_{ot2}\) 474

17 New Version of Novikov–Wildhaber Helical Gears

17.1 Introduction 475
17.2 Axodes of Helical Gears and Rack-Cutter 478
17.3 Parabolic Rack-Cutters 479
17.4 Profile-Crowned Pinion and Gear Tooth Surfaces 482
Contents

17.5 Tooth Contact Analysis (TCA) of Gear Drive with Profile-Crowned Pinion 485
17.6 Longitudinal Crowning of Pinion by a Plunging Disk 487
17.7 Generation of Double-Crowned Pinion by a Worm 491
17.8 TCA of a Gear Drive with a Double-Crowned Pinion 497
17.9 Undercutting and Pointing 500
17.10 Stress Analysis 502

18 Face-Gear Drives 508
18.1 Introduction 508
18.2 Axodes, Pitch Surfaces, and Pitch Point 510
18.3 Face-Gear Generation 512
18.4 Localization of Bearing Contact 512
18.5 Equations of Face-Gear Tooth Surface 515
18.6 Conditions of Nonundercutting of Face-Gear Tooth Surface (Generated by Involute Shaper) 519
18.7 Pointing of Face-Gear Teeth Generated by Involute Shaper 522
18.8 Fillet Surface 524
18.9 Geometry of Parabolic Rack-Cutters 525
18.10 Second Version of Geometry: Derivation of Tooth Surfaces of Shaper and Pinion 527
18.11 Second Version of Geometry: Derivation of Face-Gear Tooth Surface 529
18.12 Design Recommendations 529
18.13 Tooth Contact Analysis (TCA) 531
18.14 Application of Generating Worm 535
18.15 Stress Analysis 541

19 Worm-Gear Drives with Cylindrical Worms 547
19.1 Introduction 547
19.2 Pitch Surfaces and Gear Ratio 548
19.3 Design Parameters and Their Relations 552
19.4 Generation and Geometry of ZA Worms 557
19.5 Generation and Geometry of ZN Worms 561
19.6 Generation and Geometry of ZI (Involute) Worms 574
19.7 Geometry and Generation of K Worms 581
19.8 Geometry and Generation of F-I Worms (Version I) 590
19.9 Geometry and Generation of F-II Worms (Version II) 597
19.10 Generalized Helicoid Equations 601
19.11 Equation of Meshing of Worm and Worm-Gear Surfaces 603
19.12 Area of Meshing 606
19.13 Prospects of New Developments 609

20 Double-Enveloping Worm-Gear Drives 614
20.1 Introduction 614
20.2 Generation of Worm and Worm-Gear Surfaces 614
20.3 Worm Surface Equations 618
20.4 Equation of Meshing 620
Contents

- **20.5 Contact Lines** 622
- **20.6 Worm-Gear Surface Equations** 622

21 Spiral Bevel Gears 627
- **21.1 Introduction** 627
- **21.2 Basic Ideas of the Developed Approach** 628
- **21.3 Derivation of Gear Tooth Surfaces** 633
- **21.4 Derivation of Pinion Tooth Surface** 644
- **21.5 Local Synthesis and Determination of Pinion Machine-Tool Settings** 649
- **21.6 Relationships Between Principal Curvatures and Directions of Mating Surfaces** 656
- **21.7 Simulation of Meshing and Contact** 661
- **21.8 Application of Finite Element Analysis for the Design of Spiral Bevel Gear Drives** 665
- **21.9 Example of Design and Optimization of a Spiral Bevel Gear Drive** 666
- **21.10 Compensation of the Shift of the Bearing Contact** 676

22 Hypoid Gear Drives 679
- **22.1 Introduction** 679
- **22.2 Axodes and Operating Pitch Cones** 679
- **22.3 Tangency of Hypoid Pitch Cones** 680
- **22.4 Auxiliary Equations** 682
- **22.5 Design of Hypoid Pitch Cones** 685
- **22.6 Generation of Face-Milled Hypoid Gear Drives** 690

23 Planetary Gear Trains 697
- **23.1 Introduction** 697
- **23.2 Gear Ratio** 697
- **23.3 Conditions of Assembly** 703
- **23.4 Phase Angle of Planet Gears** 707
- **23.5 Efficiency of a Planetary Gear Train** 709
- **23.6 Modifications of Gear Tooth Geometry** 711
- **23.7 Tooth Contact Analysis (TCA)** 712
- **23.8 Illustration of the Effect of Regulation of Backslash** 716

24 Generation of Helicoids 718
- **24.1 Introduction** 718
- **24.2 Generation by Finger-Shaped Tool: Tool Surface is Given** 718
- **24.3 Generation by Finger-Shaped Tool: Workpiece Surface is Given** 723
- **24.4 Generation by Disk-Shaped Tool: Tool Surface is Given** 726
- **24.5 Generation by Disk-Shaped Tool: Workpiece Surface is Given** 730

25 Design of Flyblades 734
- **25.1 Introduction** 734
- **25.2 Two-Parameter Form Representation of Worm Surfaces** 735
Contents

25.3 Three-Parameter Form Representation of Worm Surfaces 737
25.4 Working Equations 738

26 Generation of Surfaces by CNC Machines 746

26.1 Introduction 746
26.2 Execution of Motions of CNC Machines 747
26.3 Generation of Hypoid Pinion 750
26.4 Generation of a Surface with Optimal Approximation 752

27 Overwire (Ball) Measurement 769

27.1 Introduction 769
27.2 Problem Description 769
27.3 Measurement of Involute Worms, Involute Helical Gears, and Spur Gears 773
27.4 Measurement of Asymmetric Archimedes Screw 779

28 Minimization of Deviations of Gear Real Tooth Surfaces 782

28.1 Introduction 782
28.2 Overview of Measurement and Modeling Method 783
28.3 Equations of Theoretical Tooth Surface Σ_t 784
28.4 Coordinate Systems Used for Coordinate Measurements 785
28.5 Grid and Reference Point 786
28.6 Deviations of the Real Surface 787
28.7 Minimization of Deviations 787

References 789

Index 795
Coordinate Transformation

1.1 HOMOGENEOUS COORDINATES

A position vector in a three-dimensional space (Fig. 1.1.1) may be represented (i) in vector form as

\[\mathbf{r}_m = \overline{0_mM} = x_m \mathbf{i}_m + y_m \mathbf{j}_m + z_m \mathbf{k}_m \]

(1.1.1)

where \((\mathbf{i}_m, \mathbf{j}_m, \mathbf{k}_m)\) are the unit vectors of coordinate axes, and (ii) by the column matrix

\[\mathbf{r}_m = \begin{bmatrix} x_m \\ y_m \\ z_m \end{bmatrix}. \]

(1.1.2)

The subscript “\(m\)” indicates that the position vector is represented in coordinate system \(S_m(x_m, y_m, z_m)\). To save space while designating a vector, we will also represent the position vector by the row matrix,

\[\mathbf{r}_m = [x_m \ y_m \ z_m]^T. \]

(1.1.3)

The superscript “T” means that \(\mathbf{r}_m^T\) is a transpose matrix with respect to \(\mathbf{r}_m\).

A point—the end of the position vector—is determined in Cartesian coordinates with three numbers: \(x, y, z\). Generally, coordinate transformation in matrix operations needs mixed matrix operations where both multiplication and addition of matrices must be used. However, only multiplication of matrices is needed if position vectors are represented with homogeneous coordinates. Application of such coordinates for coordinate transformation in theory of mechanisms has been proposed by Denavit & Hartenberg [1955] and by Litvin [1955]. Homogeneous coordinates of a point in a three-dimensional space are determined by four numbers \((x^*, y^*, z^*, t^*)\) which are not equal to zero simultaneously and of which only three are independent. Assuming that \(t^* \neq 0\), ordinary coordinates and homogeneous coordinates may be related as follows:

\[x = \frac{x^*}{t^*}, \quad y = \frac{y^*}{t^*}, \quad z = \frac{z^*}{t^*}. \]

(1.1.4)
Coordinate Transformation

Figure 1.1.1: Position vector in Cartesian coordinate system.

With \(t^* = 1 \), a point may be specified by homogeneous coordinates such as \((x, y, z, 1)\), and a position vector may be represented by

\[
\mathbf{r}_m = \begin{bmatrix} x_m \\ y_m \\ z_m \\ 1 \end{bmatrix}
\]

or

\[
\mathbf{r}_m = [x_m \ y_m \ z_m \ 1]^T.
\]

1.2 COORDINATE TRANSFORMATION IN MATRIX REPRESENTATION

Consider two coordinate systems \(S_m(x_m, y_m, z_m) \) and \(S_n(x_n, y_n, z_n) \) (Fig. 1.2.1). Point \(M \) is represented in coordinate system \(S_m \) by the position vector

\[
\mathbf{r}_m = [x_m \ y_m \ z_m \ 1]^T. \tag{1.2.1}
\]

The same point \(M \) can be determined in coordinate system \(S_n \) by the position vector

\[
\mathbf{r}_n = [x_n \ y_n \ z_n \ 1]^T \tag{1.2.2}
\]

with the matrix equation

\[
\mathbf{r}_n = M_{nm}\mathbf{r}_m. \tag{1.2.3}
\]
1.2 Coordinate Transformation in Matrix Representation

Matrix M_{nm} is represented by

$$
M_{nm} = \begin{bmatrix}
 a_{11} & a_{12} & a_{13} & a_{14} \\
 a_{21} & a_{22} & a_{23} & a_{24} \\
 a_{31} & a_{32} & a_{33} & a_{34} \\
 0 & 0 & 0 & 1
\end{bmatrix}
$$

$$
= \begin{bmatrix}
 (i_n \cdot i_m) & (i_n \cdot j_m) & (i_n \cdot k_m) & (\vec{O}_n \vec{O}_m \cdot \hat{i}_n) \\
 (j_n \cdot i_m) & (j_n \cdot j_m) & (j_n \cdot k_m) & (\vec{O}_n \vec{O}_m \cdot \hat{j}_n) \\
 (k_n \cdot i_m) & (k_n \cdot j_m) & (k_n \cdot k_m) & (\vec{O}_n \vec{O}_m \cdot \hat{k}_n) \\
 0 & 0 & 0 & 1
\end{bmatrix}
$$

$$
= \begin{bmatrix}
 \cos(x_n, \vec{x}_m) & \cos(x_n, \vec{y}_m) & \cos(x_n, \vec{z}_m) & x_n^{(O_m)} \\
 \cos(y_n, \vec{x}_m) & \cos(y_n, \vec{y}_m) & \cos(y_n, \vec{z}_m) & y_n^{(O_m)} \\
 \cos(z_n, \vec{x}_m) & \cos(z_n, \vec{y}_m) & \cos(z_n, \vec{z}_m) & z_n^{(O_m)} \\
 0 & 0 & 0 & 1
\end{bmatrix}.
$$

Here, (i_n, j_n, k_n) are the unit vectors of the axes of the “new” coordinate system; (i_m, j_m, k_m) are the unit vectors of the axes of the “old” coordinate system; \vec{O}_n and \vec{O}_m are the origins of the “new” and “old” coordinate systems; subscript “nm” in the designation M_{nm} indicates that the coordinate transformation is performed from S_m to
4 Coordinate Transformation

The determination of elements a_{kl} ($k = 1, 2, 3; l = 1, 2, 3$) of matrix M_{nm} is based on the following rules:

(i) Elements of the 3×3 submatrix

$$L_{nm} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$$

(1.2.5)

represent the direction cosines of the “old” unit vectors (i_m, j_m, k_m) in the “new” coordinate systems S_n. For instance, $a_{21} = \cos(\hat{y}_n, \vec{x}_m)$, $a_{32} = \cos(\hat{z}_n, \vec{y}_m)$, and so on. The subscripts of elements a_{kl} in matrix (1.2.5) indicate the number l of the “old” coordinate axis and the number k of the “new” coordinate axis. Axes x, y, z are given numbers 1, 2, and 3, respectively.

(ii) Elements a_{14}, a_{24}, and a_{34} represent the “new” coordinates $x_n^{(O_m)}$, $y_n^{(O_m)}$, $z_n^{(O_m)}$ of the “old” origin O_m.

Recall that nine elements of matrix L_{nm} are related by six equations that express the following:

1. Elements of each row (or column) are direction cosines of a unit vector. Thus,

$$a_{11}^2 + a_{12}^2 + a_{13}^2 = 1, \quad a_{21}^2 + a_{22}^2 + a_{23}^2 = 1, \quad \cdots.$$

(1.2.6)

2. Due to orthogonality of unit vectors of coordinate axes, we have

$$[a_{11} \ a_{12} \ a_{13}][a_{21} \ a_{22} \ a_{23}]^T = 0$$

$$[a_{11} \ a_{21} \ a_{31}][a_{12} \ a_{22} \ a_{32}]^T = 0.$$

(1.2.7)

An element of matrix L_{nm} can be represented by a respective determinant of the second order [Strang, 1988]. For instance,

$$a_{11} = \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix}, \quad a_{23} = (-1)^3 \begin{vmatrix} a_{11} & a_{12} \\ a_{31} & a_{32} \end{vmatrix}.$$

(1.2.8)

To determine the new coordinates $(x_n, y_n, z_n, 1)$ of point M, we have to use the rule of multiplication of a square matrix (4×4) and a column matrix (4×1). (The number of rows in the column matrix is equal to the number of columns in matrix M_{nm}.) Equation (1.2.3) yields

$$x_n = a_{11}x_m + a_{12}y_m + a_{13}z_m + a_{14}$$

$$y_n = a_{21}x_m + a_{22}y_m + a_{23}z_m + a_{24}$$

$$z_n = a_{31}x_m + a_{32}y_m + a_{33}z_m + a_{34}.$$

(1.2.9)

The purpose of the inverse coordinate transformation is to determine the coordinates (x_m, y_m, z_m), taking as given coordinates (x_n, y_n, z_n). The inverse coordinate transformation is represented by

$$r_m = M_{nm}r_n.$$

(1.2.10)

The inverse matrix M_{nm} indeed exists if the determinant of matrix M_{nm} differs from zero.
1.2 Coordinate Transformation in Matrix Representation

There is a simple rule that allows the elements of the inverse matrix to be determined in terms of elements of the direct matrix. Consider that matrix M_{nm} is given by

$$ M_{nm} = \begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ 0 & 0 & 0 & 1 \end{bmatrix}. \quad (1.2.11) $$

It is necessary to determine the elements of matrix M_{mn} represented by

$$ M_{mn} = \begin{bmatrix} b_{11} & b_{12} & b_{13} & b_{14} \\ b_{21} & b_{22} & b_{23} & b_{24} \\ b_{31} & b_{32} & b_{33} & b_{34} \\ 0 & 0 & 0 & 1 \end{bmatrix}. \quad (1.2.12) $$

Here,

$$ M_{mn} = M_{nm}^{-1}, \quad M_{mn}M_{nm} = I $$

where I is the identity matrix.

The submatrix L_{mn} of the order (3×3) is determined as follows:

$$ L_{mn} = \begin{bmatrix} b_{11} & b_{12} & b_{13} \\ b_{21} & b_{22} & b_{23} \\ b_{31} & b_{32} & b_{33} \end{bmatrix} = \begin{bmatrix} a_{11} & a_{21} & a_{31} \\ a_{12} & a_{22} & a_{32} \\ a_{13} & a_{23} & a_{33} \end{bmatrix} = L_{nm}^T. \quad (1.2.13) $$

The remaining elements ($b_{14}, b_{24},$ and b_{34}) are determined with the following equations:

$$ b_{14} = -(a_{11}a_{14} + a_{21}a_{24} + a_{31}a_{34}) \Rightarrow - \begin{bmatrix} : & a_{11} : & a_{12} : & a_{13} : & a_{14} : \\ : & a_{21} : & a_{22} : & a_{23} : & a_{24} : \\ : & a_{31} : & a_{32} : & a_{33} : & a_{34} : \\ 0 : & 0 : & 0 : & 1 : \end{bmatrix}. \quad (1.2.14) $$

The columns to be multiplied are marked.

To perform successive coordinate transformation, we need only to follow the product rule of matrix algebra. For instance, the matrix equation

$$ r_p = M_{p(p-1)}M_{(p-1)(p-2)} \cdots M_{32}M_{21}r_1 \quad (1.2.15) $$

represents successive coordinate transformation from S_1 to S_2, from S_2 to S_3, ..., from S_{p-1} to S_p.
6 Coordinate Transformation

To perform transformation of components of free vectors, we need only to apply 3×3 submatrices L, which may be obtained by eliminating the last row and the last column of the corresponding matrix M. This results from the fact that the free-vector components (projections on coordinate axes) do not depend on the location of the origin of the coordinate system.

The transformation of vector components of a free vector A from system S_m to S_n is represented by the matrix equation

$$A_n = L_{nm} A_m$$ (1.2.16)

where

$$A_n = \begin{bmatrix} A_{xn} \\ A_{yn} \\ A_{zn} \end{bmatrix}, \quad L_{nm} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}, \quad A_m = \begin{bmatrix} A_{xm} \\ A_{ym} \\ A_{zm} \end{bmatrix}. \quad (1.2.17)$$

A normal to the gear tooth surface is a sliding vector because it may be translated along its line of action. However, we may transform the surface normal as a free vector if the surface point where the surface normal is considered will be transferred simultaneously.

1.3 ROTATION ABOUT AN AXIS

Two Main Problems

We consider a general case in which the rotation is performed about an axis that does not coincide with any axis of the employed coordinate system. We designate the unit vector of the axis of rotation by c (Fig. 1.3.1) and assume that the rotation about c may be performed either counterclockwise or clockwise.

Henceforth we consider two coordinate systems: (i) the fixed one, S_a; and (ii) the movable one, S_b. There are two typical problems related to rotation about c. The first one can be formulated as follows.

Consider that a position vector is rigidly connected to the movable body. The initial position of the position vector is designated by $OA = \rho$ (Fig. 1.3.1). After rotation through an angle ϕ about c, vector ρ will take a new position designated by $OA^* = \rho^*$. Both vectors, ρ and ρ^* (Fig. 1.3.1), are considered to be in the same coordinate system, say S_a. Our goal is to develop an equation that relates components of vectors ρ_a and ρ_a^*. (The subscript “a” indicates that the two vectors are represented in the same coordinate system S_a.) Matrix equation

$$\rho_a^* = L_a \rho_a$$ (1.3.1)

describes the relation between the components of vectors ρ and ρ^* that are represented in the same coordinate system S_a.

The other problem concerns representation of the same position vector in different coordinate systems. Our goal is to derive matrix L_{ba} in matrix equation

$$\rho_b = L_{ba} \rho_a.$$ (1.3.2)
1.3 Rotation About an Axis

The designations \(\rho_a \) and \(\rho_b \) indicate that the same position vector \(\rho \) is represented in coordinate systems \(S_a \) and \(S_b \), respectively. Although the same position vector is considered, the components of \(\rho \) in coordinate systems \(S_a \) and \(S_b \) are different and we designate them by

\[
\rho_a = a_1 i_a + a_2 j_a + a_3 k_a \quad \text{(1.3.3)}
\]

and

\[
\rho_b = b_1 i_b + b_2 j_b + b_3 k_b. \quad \text{(1.3.4)}
\]

Matrix \(L_{ba} \) is an operator that transforms the components \([a_1 \ a_2 \ a_3]^T \) into \([b_1 \ b_2 \ b_3]^T \). It will be shown below that operators \(L_a \) and \(L_{ba} \) are related.

Problem 1. Relations between components of vectors \(\rho_a \) and \(\rho_a^* \).

Recall that \(\rho_a \) and \(\rho_a^* \) are two position vectors that are represented in the same coordinate system \(S_a \). Vector \(\rho \) represents the initial position of the position vector, before rotation, and \(\rho^* \) represents the position vector after rotation about \(c \). The following derivations are based on the assumption that rotation about \(c \) is performed counterclockwise. The procedure of derivations (see also Suh & Radcliffe, 1978, Shabana, 1989, and others) is as follows.

Step 1: We represent \(\rho_a^* \) by the equation (Fig. 1.3.1)

\[
\rho_a^* = OM + MN + NA^* \quad \text{(1.3.5)}
\]
Coordinate Transformation

where

\[\overrightarrow{OM} = (c_a \cdot \rho_a) c_a = (c_a \cdot \rho_a^*) c_a \] \hspace{1cm} (1.3.6)

and \(c_a \) is the unit vector of the axis of rotation that is represented in \(S_a \).

Step 2: Vector \(\rho_a \) is represented by the equation

\[\rho_a = \overrightarrow{OM} + \overrightarrow{MA} = (c_a \cdot \rho_a) c_a + \overrightarrow{MA} \] \hspace{1cm} (1.3.7)

that yields

\[\overrightarrow{MA} = \rho_a - (c_a \cdot \rho_a) c_a. \] \hspace{1cm} (1.3.8)

We emphasize that a vector being rotated about \(c \) generates a cone with an apex angle \(\alpha \). Thus, both vectors, \(\rho \) and \(\rho^* \), are the generatrices of the same cone, as shown in Fig. 1.3.1.

Step 3: Vector \(\overrightarrow{MN} \) has the same direction as \(\overrightarrow{MA} \) and this yields

\[|\overrightarrow{MN}| = |\overrightarrow{MA}| \cos \phi = |\overrightarrow{MA}| \cos \phi = \rho \sin \alpha \cos \phi \] \hspace{1cm} (1.3.9)

where \(\alpha \) is the apex angle of the generated cone, \(|\overrightarrow{MA}| = \rho \sin \alpha \), and \(\rho \) is the magnitude of \(\rho \).

Equations (1.3.8) and (1.3.9) yield

\[\overrightarrow{MN} = |\overrightarrow{MN}| \frac{\overrightarrow{MA}}{|\overrightarrow{MA}|} = [\rho_a - (c_a \cdot \rho_a) c_a] \cos \phi. \] \hspace{1cm} (1.3.10)

Step 4: Vector \(\overrightarrow{NA^*} \) has the same direction as \((c_a \times \rho_a) \) and may be represented by

\[\overrightarrow{NA^*} = \frac{c_a \times \rho_a}{|c_a \times \rho_a|} |\overrightarrow{NA^*}| = \sin \phi (c_a \times \rho_a). \] \hspace{1cm} (1.3.11)

Here,

\[|\overrightarrow{NA^*}| = |\overrightarrow{MA^*}| \sin \phi = \rho \sin \alpha \sin \phi, \hspace{1cm} |c_a \times \rho_a| = \rho \sin \alpha. \]

Step 5: Equations (1.3.5), (1.3.6), (1.3.10), and (1.3.11) yield

\[\rho_a^* = \rho_a \cos \phi + (1 - \cos \phi)(c_a \cdot \rho_a) c_a + \sin \phi(c_a \times \rho_a). \] \hspace{1cm} (1.3.12)

Step 6: It is easy to prove that

\[(c_a \cdot \rho_a) c_a = c_a \times (c_a \times \rho_a) + \rho_a \] \hspace{1cm} (1.3.13)

because

\[c_a \times (c_a \times \rho_a) = (c_a \cdot \rho_a) c_a - \rho_a (c_a \cdot c_a). \]

Step 7: Equations (1.3.12) and (1.3.13) yield

\[\rho_a^* = \rho_a + (1 - \cos \phi)[c_a \times (c_a \times \rho_a)] + \sin \phi(c_a \times \rho_a). \] \hspace{1cm} (1.3.14)

Equation (1.3.14) is known as the Rodrigues formula. According to the investigation by Cheng & Gupta [1989], this equation deserves to be called the Euler–Rodrigues, formula.
1.3 Rotation About an Axis

Step 8: Additional derivations are directed at representation of the Euler–Rodrigues formula in matrix form. The cross product \((c_a \times \rho_a)\) may be represented in matrix form by

\[
c_a \times \rho_a = C' \rho_a
\]

where \(C'\) is the skew-symmetric matrix represented by

\[
C' = \begin{bmatrix}
0 & -c_3 & c_2 \\
c_3 & 0 & -c_1 \\
-c_2 & c_1 & 0
\end{bmatrix}.
\]

Vector \(c_a\) is represented by

\[
c_a = c_1 i_a + c_2 j_a + c_3 k_a.
\]

Step 9: Equations (1.3.14), (1.3.15), and (1.3.16) yield the following matrix representation of the Euler–Rodrigues formula:

\[
\rho_s^* = \left[I + (1 - \cos \phi)(C')^2 + \sin \phi C' \right] \rho_a = L_a \rho_a
\]

where \(I\) is the 3 × 3 identity matrix. While deriving Eqs. (1.3.14) and (1.3.18), we assumed that the rotation is performed counterclockwise. For the case of clockwise rotation, it is necessary to change the sign preceding \(\sin \phi\) to its opposite. The expression for matrix \(L_a\) that will cover two directions of rotation is

\[
L_a = I + (1 - \cos \phi)(C')^2 \pm \sin \phi C'.
\]

The upper sign preceding \(\sin \phi\) corresponds to counterclockwise rotation and the lower sign corresponds to rotation in a clockwise direction. In both cases the unit vector \(c\) must be expressed by the same Eq. (1.3.17) that determines the orientation of \(c\) but not the direction of rotation. The direction of rotation is identified with the proper sign preceding \(\sin \phi\) in Eq. (1.3.19).

Problem 2. Recall that our goal is to derive the operator \(L_{ba}\) in matrix equation (1.3.2) that transforms components of the same vector (see Eqs. (1.3.3) and (1.3.4)). It will be shown below that the sought-for operator is represented as

\[
L_{ba} = L_{a}^T = I + (1 - \cos \phi)(C')^2 \mp \sin \phi C'.
\]

Operator \(L_{ba}\) can be obtained from operator \(L_a\) given by Eq. (1.3.19) by changing the sign of the angle of rotation, \(\phi\). The upper and lower signs preceding \(\sin \phi\) in Eq. (1.3.20) correspond to the cases where \(S_a\) will coincide with \(S_b\) by rotation counterclockwise and clockwise, respectively. The proof is based on the determination of components of the same vector, say vector \(^O\!}
About \(c \). After rotation through angle \(\phi \), position vector \(\overrightarrow{OA} \) will take the position \(\overrightarrow{OA}' \) and can be represented in \(S_b \) as
\[
\overrightarrow{OA}' = a_1i_b + a_2j_b + a_3k_b.
\] (1.3.22)

It is obvious that vector \(\overrightarrow{OA}' \) has in \(S_b \) the same components as vector \(\overrightarrow{OA} \) has in \(S_a \).

Step 3: We consider now in \(S_b \) two vectors \(\overrightarrow{OA}' \) and \(\overrightarrow{OA} \). Vector \(\overrightarrow{OA}' \) will coincide with \(\overrightarrow{OA} \) after clockwise rotation about \(c \). The components of vectors \(\overrightarrow{OA}' \) and \(\overrightarrow{OA} \) in \(S_b \) are related by an equation that is similar to Eq. (1.3.19). The difference is that we now have to consider that the rotation from \(\overrightarrow{OA}' \) to \(\overrightarrow{OA} \) is performed clockwise. Then we obtain
\[
(\overrightarrow{OA})_b = L_{ba}(\overrightarrow{OA}')_b = [I + (1 - \cos \phi)(C\mathbf{c})^2 - \sin \phi C\mathbf{c}](\overrightarrow{OA}')_b.
\] (1.3.23)

Designating components of \((\overrightarrow{OA})_b \) by \([b_1 \ b_2 \ b_3]^T\), we receive
\[
[b_1 \ b_2 \ b_3]^T = [I + (1 - \cos \phi)(C\mathbf{c})^2 - \sin \phi C\mathbf{c}][a_1 \ a_2 \ a_3]^T.
\] (1.3.24)

Step 4: We have now obtained components of the same vector \(\overrightarrow{OA} \) in coordinate systems \(S_a \) and \(S_b \), respectively. The matrix equation that describes transformation of components of \(\overrightarrow{OA} \) is
\[
(\overrightarrow{OA})_b = L_{ba}(\overrightarrow{OA})_a.
\] (1.3.25)

For the case in which rotation from \(S_a \) to \(S_b \) is performed counterclockwise we have obtained that
\[
L_{ba} = I + (1 - \cos \phi)(C\mathbf{c})^2 - \sin \phi C\mathbf{c}.
\] (1.3.26)

Similarly, for the case in which rotation from \(S_a \) to \(S_b \) is performed clockwise, we obtain
\[
L_{ba} = I + (1 - \cos \phi)(C\mathbf{c})^2 + \sin \phi C\mathbf{c}.
\] (1.3.27)

The general description of operator \(L_{ba} \) and the respective coordinate transformation are as follows:
\[
\rho_b = L_{ba} \rho_a = [I + (1 - \cos \phi)(C\mathbf{c})^2 \pm \sin \phi C\mathbf{c}] \rho_a.
\] (1.3.28)

The upper and lower signs preceding \(\sin \phi \) correspond to the cases in which rotation from \(S_a \) to \(S_b \) is performed counterclockwise and clockwise, respectively.

In our identification of coordinate systems \(S_a \) and \(S_b \) we do not use the terms fixed and movable. We just consider that \(S_a \) is the previous coordinate system and \(S_b \) is the new one, and we take into account how the rotation from \(S_a \) to \(S_b \) is performed: counterclockwise or clockwise.

Matrix \(L_{ba} \)

Using Eqs. (1.3.26) and (1.3.27), we may represent elements of matrix \(L_{ba} \) in terms of components of unit vector \(\mathbf{c} \) of the axis of rotation and the angle of rotation \(\phi \). Thus,
1.3 Rotation About an Axis

Figure 1.3.2: Derivation of coordinate transformation by rotation.

we obtain

\[
L_{ba} = \begin{bmatrix}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{bmatrix}.
\] (1.3.29)

Here,

\[
a_{11} = \cos \phi \left(1 - c_1^2\right) + c_1^2,
\]
\[
a_{12} = (1 - \cos \phi)c_1c_2 \pm \sin \phi c_3,
\]
\[
a_{13} = (1 - \cos \phi)c_1c_3 \mp \sin \phi c_2,
\]
\[
a_{21} = (1 - \cos \phi)c_1c_2 \mp \sin \phi c_3,
\]
\[
a_{22} = \cos \phi \left(1 - c_2^2\right) + c_2^2,
\]
\[
a_{23} = (1 - \cos \phi)c_2c_3 \mp \sin \phi c_1,
\]
\[
a_{31} = (1 - \cos \phi)c_1c_3 \pm \sin \phi c_2,
\]
\[
a_{32} = (1 - \cos \phi)c_2c_3 \pm \sin \phi c_1,
\]
\[
a_{33} = \cos \phi \left(1 - c_3^2\right) + c_3^2.
\] (1.3.30)

When the axis of rotation coincides with a coordinate axis of \(S_a\), we have to make two components of unit vector \(c_a\) equal to zero in Eqs. (1.3.30). For instance, in the case in which rotation is performed about the \(z_a\) axis (Fig. 1.3.2), we have

\[
c_a = k_a = [0 \ 0 \ 1]^T.
\] (1.3.31)

We emphasize again that in all cases of coordinate transformation only elements (1.3.30) of matrix \(L_{ba}\), and not the components of \(c_a\), depend on the direction of rotation. The unit vector \(c\) can be represented in either of the two coordinate systems, \(S_a\) and \(S_b\), by the equations

\[
c = c_1i_a + c_2j_a + c_3k_a = c_1i_b + c_2j_b + c_3k_b.
\] (1.3.32)

This means that the unit vector \(c\) of the axis of rotation has the same components in both coordinate systems, \(S_a\) and \(S_b\). It is easily verified that

\[
[c_1 \ c_2 \ c_3]^T = L_{ba}[c_1 \ c_2 \ c_3]^T.
\] (1.3.33)