German Industry and Global Enterprise

BASF: The History of a Company

WERNER ABELSHAUSER
Bielefeld University

WOLFGANG VON HIPPEL
University of Mannheim

JEFFREY ALLAN JOHNSON
Villanova University

RAYMOND G. STOKES
University of Glasgow
Contents

Introduction by the Editor \hspace{1cm} page 1
From New Industry to the New Economy \hspace{1cm} 1

I Becoming a Global Corporation – BASF from 1865 to 1900 \hspace{1cm} 5
Wolfgang von Hippel

1. The Prehistory \hspace{1cm} 7
 Friedrich Engelhorn – Pioneering Enterprise
 A Massive Market – The Beautiful World of the New Dyestuffs
 One of the First Coal-Tar Dye Factories in Germany \hspace{1cm} 12

2. The Early Years (1865–1873) \hspace{1cm} 15
 Mannheim or Ludwigshafen? The Dramatic Establishment of the Corporation
 The Large-Scale Project to Begin Anew in Ludwigshafen \hspace{1cm} 19
 From Imitation to Independent Research – Heinrich Caro \hspace{1cm} 23
 The First Synthesis of a Natural Dyestuff: Alizarin \hspace{1cm} 26
 On an Expansion Course: The Fusion with the Stuttgart Firms of Knosp and Siegle in 1873 \hspace{1cm} 31

3. Between Science and the Marketplace – BASF in the “Dyestuffs Age,” 1873–1900 \hspace{1cm} 36
 An Overview \hspace{1cm} 36
 The Centers of Developments – Top Management and Organizational Problems \hspace{1cm} 38
 The Heart of the Company – Research and Production \hspace{1cm} 60
 Science as a Factor of Production – Laboratory Work \hspace{1cm} 52
 The Stony Path to the Marketplace – Dyeing Works as Testing Stations \hspace{1cm} 55
 “The Age of Dyestuffs” I: Aniline Dyes \hspace{1cm} 57
 “The Age of Dyestuffs” II: Azo-dyes \hspace{1cm} 59
 “The Age of Dyestuffs” III: Alizarin Dyes \hspace{1cm} 63
Contents

“The Age of Dyestuffs” IV: Indigo 65
A Promising Future as a Supplier to the Industry: Inorganic Production 70
Structural Development, Technical Service Facilities 72
The Ecological Costs of Production – Environmental Problems? 76
Intellectual Property as a Factor of Production: Patent Issues 79
Integration into the Marketplace 82
The Expression of Economic Success: Sales Turnover, Markets, and Profits and Their Use 93
The Human Factor in Production: Firm Personnel – High-Ranking Salaried Employees (“Beamte”) and Workers 102
Economy and Politics 112

II The Power of Synthesis (1900–1925) 115
Jeffrey Allan Johnson

1. A Company in Transition 115
 BASF at the Paris World Exposition of 1900 115
 Changes in Corporate Leadership Circa 1900 117
 The Victory of Synthetic Indigo 119
 New Products: Paths Taken and Not Taken 121

2. From the Dreibund to von Brunck’s Death (1904–1911) 127
 The Dreibund: Concentration, Conflict, and Organizational Change 127
 Innovation and Marketing in Dyestuffs 136
 Innovation and Academic-Industrial Collaboration: From Dye Chemistry to Nitrates 142
 Workers’ and Employees’ Movements 146
 The End of the von Brunck Era 150

3. From Oppau to Leuna: Synthetic Ammonia and War (1912–1918) 151
 The Ammonia Synthesis, 1912–1914 151
 BASF on the Eve of the War, 1912–1914 157
 Mars Rising: Entering the War Economy 160
 The Leuna Project 165
 Wartime Reorganization: The Expanded IG 171
 From Labor Truce to Mass Protest: The Workforce at War 173

4. From Crisis to Fusion (1919–1925) 177
 Defeat and Revolution: New Leadership Facing Postwar Challenges 177
Contents

Stark Realities of the Peace Terms: Occupation, Technology Transfer, Reparations 183
Postwar Marketing and Innovation 189
Labor Conflicts and the Catastrophic Explosion in Oppau 193
From Crisis to Fusion (1922–1925) 201

III From the IG Farben Fusion to the Establishment of BASF AG (1925–1952) 206
Raymond G. Stokes
1. Introduction 206
BASF in the IG Period: Overview and Initial Hypotheses 207
2. Fitting into the New Concern, 1925–1929 212
Organizational Change and the IG 214
The Upper Rhine Group in the Initial IG Period: Organization and Relationships with Other IG Plants 220
Trends in Production 222
Research and Development 230
Work and the Workforce 233
3. Coping with the Crisis, 1929–1933 235
Reorganizing the Trust and the Group in the Wake of the Crisis 236
Production Trends 239
Downsizing 243
Politicization of the German Chemical Industry and the Upper Rhine Group 247
4. Accommodation and Conflict, 1933–1936 250
The National Socialist Seizure of Power, the Trust, and the Group 251
Recovery in Production and Trends in R&D 264
Social and Labor Policy in the Factories 270
5. Autarky and Preparation for War, 1936–1939 273
The Four Year Plan Organization and Preparation for War 273
Production, Sales, and Research Trends 282
Work, the Workforce, and National Socialist Ideology and Practice 289
6. The Upper Rhine Group in German-Dominated Europe, 1939–1942 293
The National Socialist New Order and the Upper Rhine Group 294
War Production and Investment 306
Labor 310
Contents

7. The BASF Group in Total War, 1942–1945 313
 Total War and the Upper Rhine Group Factories 314
 Production Trends 315
 Labor 322
 The Upper Rhine Group and IG Auschwitz 328
 Destruction and Postwar Planning 332
8. From Occupation to Refounding, 1945–1952 335
 The Impact of the War on the BASF Factories 336
 Production and Investment under French Occupation 346
 The Workforce and the Re-emergence of Labor Unionism 355
 The Breakup of the IG Farben Trust and the Refounding of BASF 357

IV BASF Since Its Refounding in 1952 362
Werner Abelshauser
1. The Past Has a Future: Launching BASF Anew 362
 The Refounding 362
 Disincorporation 367
 Rebirth 371
2. Corporate Culture: Tradition as a Resource? 376
 Rules and Context: The Social System of Production 376
 Strategy and Structure: Corporate Leadership 378
 Consistency and Flexibility: Financing 388
 Control and Trust: Shareholder Relations 397
 Partnership and Conflict: Industrial Relations 409
 Costs and Benefits: Plant Policy with a Social Bent 417
 Research, Technology, Application: Customized Quality Production 428
3. Old Markets, New Basis: Early Breakthrough to Petrochemistry 435
 Old and New Markets 435
 The Founding of the Rhenish Olefin Works 441
 Breakthrough 450
4. Tradition and Distance: The Second Breakup of IG Farben 454
 Distance 454
 Cooperation 457
 Reintegration 460
 The Second Breakup 465
5. The Way to the Top: Strategic Decisions 473
 Orientation Problems 473
 Profit Can Be Planned, or the Will to Greatness 478
 Interlocking Production Operations on a Large Scale, or a New Technological Paradigm 483
Contents ix

6. One, Two, Many “Ludwigshafens”: The Integrated Production System and the Siting Issue 487
 The Ludwigshafen Site 487
 Looking for the Second “Ludwigshafen” 491
 Ludwigshafen Is Everywhere: Exporting a Model 496
 Challenge I: Nuclear Power Plant 500
 Challenge II: Environmental Protection 507

7. Learning from the United States? From Joint Venture to Verbund 513
 Staying Power: Joint Venture with Dow 513
 Caught Together, Hanged Together: Entering the Fiber Business 517
 Battle of Cultures: The Tug-of-War over Dow Badische 527
 Exporting a Model: Consolidation through the Verbund 538

8. Crisis and Consolidation 543
 BASF: Badische Annulment and Suspension Factory 543
 A Calamitous End: The Collapse of Phrix 551
 Upheaval and Persistence: Corporate Reorganization 560

9. No Weary Shop of Raw Materials: Forward Integration and Acquisition 573
 Off to New Shores 573
 Tape Recorders I: The Struggle for the U.S. Market 577
 Tape Recorders II: The “National Champion” on the Defensive 583
 Lacquer: Defensive Forward Integration 590
 Pharmaceuticals: The Early Bird… 599
 Back to the Roots 610

10. Upheaval and Persistence 614
 Toward the Transnational Company 614
 The Road to New Industry: Old Industry or “New Economy”? 619

Appendix Trade Volume and Profits of BASF since its Founding in 1865 621

Bibliography 629
Index of Archives 643
Index of Corporations 645
Index of Persons 651
Index of Products and Processes 657
Subject Index 665
I

Becoming a Global Corporation – BASF from 1865 to 1900

Wolfgang von Hippel

At the beginning of the twentieth century, the Badische Anilin & Soda-Fabrik (BASF) was “without question the largest chemical factory in the world,” at least in the field of organic chemical production. The firm's history – and especially its early history – mirrors to an unusual degree the development of an entire industrial sector, the coal-tar dye industry.

The coal-tar dye industry came into its own as the most important “new” industrial sector in Germany during the second half of the nineteenth history, prior to, but also alongside the electrical industry. Through the increasingly scientific basis of its production, it proved an important force for economic modernization in imperial Germany. Furthermore, within the space of just a few decades, the industry was able to secure a virtual international monopoly owing to its capabilities in production and sales of synthetic dyestuffs. In fact, on the eve of World War I, it manufactured more than 80 percent of world production and accounted for 90 percent of world trade in the field. What is more, the industry had also expanded into new areas of production. The largest firms had already incorporated into their planning and production programs promising new areas such as pharmaceuticals, photographic supplies, and the synthesis of rubber and ammonia.

When the German coal-tar dye industry first started out, its rapid rise to a commanding position in the world economy could not have been predicted. After all, the starting conditions in England were certainly far better, in terms of supply of raw materials and availability of capital, but also in terms of application of industrially proven technical processes (e.g., the soda industry). Markets, on the other hand, were favorable everywhere and helped bring about the industrial expansion of synthetic dyestuffs production. In the international marketplace of textile production, in particular, the new dyes faced competition only from natural dyestuffs, which were generally more expensive. They soon demonstrated their superiority over these traditional products in their range of colors, the ease with which they could be used in the production process, and, to an ever-increasing degree, in colorfastness, too.

1 Weltausstellung, 68.
6 Becoming a Global Corporation – BASF from 1865 to 1900

So it was that, by the twentieth century, the coal-tar dye industry developed in a close symbiosis with one of the leading branches in early industrialization, the textile industry. The prospect of high profits provided sufficient incentive for a substantial number of producers in England, France, Germany, and Switzerland to move into the new area. However, the market, which was contested with increasing bitterness, allowed firms to operate successfully in the long term only if they:

1) had chosen a production site that was advantageous both from a technical and a commercial point of view;
2) were able either to translate rapid progress in scientific and technological knowledge into industrial innovations within the shortest possible time, or else had secured an effective position of scientific and production leadership through a systematic research program;
3) possessed the wherewithal to build up a healthy market for their products, thus establishing the most important precondition for profitable large-scale production.

The second and third of these points, which are closely linked with the effectiveness of systems of education, training, and science and with economic and social attitudes, eventually proved especially important for the astonishing success of the German coal-tar dye industry as a whole, and for BASF in particular.

In the first decades of its existence, BASF concentrated on the manufacture of synthetic dyestuffs and products associated with them. The company was able to achieve a leading market position internationally in this area and thus laid a solid basis for further expansion. Around 1900, a number of developments took place both within and outside of the firm, which signaled that even greater changes would take place, changes that would require substantial investment and a corresponding increase in share capital.

In the firm’s major area of interest, dyestuffs, key breakthroughs came in the form of full-scale industrial production of synthetic indigo (1897) and the discovery of the indanthrene dyes (1901). In the field of inorganic production, the process for liquefying chlorine (1888), the contact process for sulfuric acid (1890/98), and the electrolytic manufacture of chlorine all set the stage for new technological directions that led eventually to synthesis of ammonia and, with that, a fundamental change in the product spectrum of the company. In the area of sales, the first “small” community of interest

2 The most important overviews of the history of the chemical industry in Europe and North America are in the works of L.F. Haber and, from the standpoint of technical development in particular, Hohenberg, Chemicals. For the dyestuffs industry (with particular emphasis on its scientific development), see more recently Travis, Rainbow Makers, and also the contributions in Homburg, Travis, and Schröter, Chemical Industry. For Germany in particular, see Beer, Emergence, and Wetzel, Naturwissenschaften.
The Prehistory

(“Dreibusd”) between BASF, Bayer, and Agfa (1905–16), an initiative established in competition with the similar agreement between Hoechst, Cassella, and Kalle (“Dreiverband”), had as its goal a restructuring of the market and of market strategies and had, therefore, a pronounced impact on internal firm organization.

However, if there was a stronger pattern of change around 1900 than was previously the case, this does not mean that the first 35 years of the history of the BASF firm were a period of idyllic calm. Contemporary actors, who anticipated an uncertain future, experienced the beginnings of the coal-tar dyestuffs industry much more often as a new departure. Despite all of the tensions, vicissitudes, and occasional complaints, it was also a departure that was experienced and generally acted out with optimism and positive expectations, and, in retrospect, appears largely as a success story.

I. THE PREHISTORY

Friedrich Engelhorn – Pioneering Entrepreneurship

Even though corporate structures and the anonymous forces of the market seem to play a huge role in the development of modern big business, what we now term “human capital” (something frequently valued as the decisive resource of the economy) remains extremely important. This human capital includes, in particular, the senior management of firms, mostly owing to the extensive responsibilities they carry. During early and high industrialization, when the economy and society underwent especially dramatic change, the personal element was at its most important. The pioneer role of the “dynamic entrepreneur” (J.A. Schumpeter) in Germany’s move into the period of high industrialization is exemplified especially well in the life and works of Friedrich Engelhorn (1821–1902), the founder of BASF.

Besides the problems of raising capital, the expansion of coal-tar dyestuffs production posed unusual technical and commercial challenges. The purchase of raw materials that had previously been scarcely in demand had to be organized, efficient production methods and the necessary technical apparatus had to be developed, and the new products had to be sold to a customer base that was frequently traditional in its orientation. Thus we find among the successful founders of coal-tar dye factories not only dye merchants and master dyers but also pharmacists and trained chemists. Additionally, however, there were also men who were active in a number of different business fields, men who have been characterized as all-round entrepreneurs.1

Friedrich Engelhorn belongs to this last group. He was born in Mannheim on July 17, 1821, the third son and fourth child of the brewery master

1 Kocka, Unternehmer, 45f.
2 Engelhorn’s biography is dealt with extensively in Schröter, Engelhorn.
and later wine merchant, Johann Engelhorn, and his wife, the daughter of a nearby innkeeper. In social terms, therefore, he was a child of the urban middle class.

When his parents sent the nine-year-old boy to a well-respected grammar school in Mannheim, it seems likely that their motivation in his case, as in that of his elder brothers, was not only to provide an opportunity for an excellent education, but also to provide opportunities for the boys to enter new professional territory outside the family tradition. (One of his brothers became a publisher, the other an attorney.) Nevertheless, Friedrich’s school career ended early. In 1834, before the end of his third year, he left the grammar school to take up an apprenticeship with an established Mannheim gold and silversmith. In 1837, the sixteen-year-old apprentice went on a nine-year journey that took him to a number of different places, including Frankfurt, Munich, and Vienna, and later to Switzerland. He ended up in France, where he visited Lyon, known as the metropolis of silk processing, and, in particular, Paris, the European center for practically all luxury goods.

In 1846, he returned to Mannheim, where in March 1847 the young “gold worker,” “bijou maker,” or “jeweler” (as he called himself) obtained citizenship and guild rights in the city. He opened a workshop and, a few months later, married the daughter of a Mannheim brewer, Marie Brüstling. This was in every sense a “good match,” particularly because her dowry secured the basis for his professional independence.

Thanks to his many years spent abroad in much larger cities of central and western Europe, Engelhorn had seen with his own eyes many of the major developmental trends of his age. Now at home in an environment in which the beginnings of intensive industrialization could be detected, he set his sights beyond his craft from the beginning. During the revolutionary year of 1848, together with a Belgian engineer and another member of the Mannheim middle class, he founded a limited liability company known as “Engelhorn & Cie.,” in order to produce and sell “portable gas” (i.e., bottled gas). Engelhorn was the largest financial contributor to the company, and he began trading by the end of the year, this in spite of the fact that the Belgian partner proved unreliable and the Mannheim partner died unexpectedly.

In entering into his first large-scale business enterprise, the one-time goldsmith demonstrated characteristics that would help ensure his remarkable success in the coming decades. In addition to decisiveness and stamina, he also showed a willingness to take calculated risks on the basis of clear insight into the long-term possibilities of a given project. In 1848, on the basis of existing experience, it was beyond question that the industrial manufacture of gas for lighting was a safe venture. The same was true at the beginning of the 1860s for the newly discovered aniline dyes. After all, gas lighting was already widespread in the 1840s, especially in England and the United States, and Engelhorn had come into contact with this personally during his itinerant years, in Vienna and Paris at least. In the Upper Rhine area, artificial
lighting had been introduced in the spa town of Baden-Baden in 1845, and – after some teething problems – in 1846 in the capital of the Grand Duchy of Baden, Karlsruhe. In 1849 the leaseholders in the latter sought to include Mannheim in their lucrative business. The potential competitive situation between these newcomers and Engelhorn was resolved at the beginning of 1851, when together with him they formed the Badische Gas Lighting Company (Badische Gesellschaft für Gasbeleuchtung) that took over a long-term and profitable lease of the Mannheim gas works (which the city had commissioned them to build). Engelhorn, who brought his bottled-gas works and its customers into the firm, served as its local commercial and technical director for the following decade and a half. In 1865, however, he sold his share of the company to business partner Friedrich August Sonntag, turning his full concentration to the new dyestuffs business.

After all, as early as 1859/60, gas works director Engelhorn – by now a wealthy, respected, and politically active member of his parent city’s middle class and on the best possible terms with the local financial and economic elite – was clearly on the lookout for favorable investment opportunities. An indicator of this was his, admittedly quite short, financial engagement in a machine factory and the founding of a commission and freight company (Engelhorn & Co.) in New York on September 15, 1860. The managing director of the latter was Friedrich’s younger brother Louis, who, through unlucky speculation, soon drove the firm into bankruptcy. Engelhorn, however, remained much closer to home in his own business dealings, especially when in 1860 he decided to build an aniline and dyestuffs factory next to the Mannheim gas works.

A Massive Market – The Beautiful World of the New Dyestuffs

The discovery of the first aniline dyes, which drew notice from far and wide, and the unusually high profits that their production promised thanks to lively demand from the outset naturally did not remain hidden from Engelhorn. Only relatively few effective dyestuffs were available on the domestic market, and all of them were from “dye plants,” plants “whose roots, wood, bark, stems, leaves, flowers, or fruits contain dyes which are subject to technical application, or else can deliver this after suitable processing.” One of the most important of them was Turkish red, which came from the madder root native to the Levant and which, beginning in the sixteenth century, was cultivated in western and central Europe. Another was the blue and black dye that was extracted from woad and that through the addition of other dyes could give brown or green tones. Also important for yellow shades were

5 Meyers Konservations-Lexikon, vol. 6 (1894), 188.
6 For this and the following, see Lauterbach, Geschichte; Georgievics, Handbuch, 466ff; Reckel, Aufstieg und Fall.
The Prehistory

Perkin's accidental discovery was, however, not entirely an accident. Instead, it was the product of a scientific branch that had been developing rapidly over several decades, that of organic chemistry or the chemistry of carbon compounds. German, as well as French and British, chemists contributed substantially to the success of the new field. A center of modern chemical research in the German area was of indirect significance for the discovery of this beautiful new world of dyestuffs, and for the transformation of the chemical craftsman, with his generally undirected experimentation, into an academic pursuing systematic and analytical investigations. It was founded by Justus (von) Liebig, who in 1824 at the age of 21 was named to a professorship in chemistry at the University of Giessen. His legendary chemical laboratory for experimental instruction in the context of university study was the training ground in the new field for a whole generation of chemists, including August Wilhelm (von) Hofmann (1818–92). Between 1845 and 1865, Hofmann served as professor at the Royal College of Chemistry in London, which had been established using Giessen as a prototype. It was in this capacity that he became the father of the British dyestuffs industry.

Through his investigations into aniline as a derivative of benzene, Hofmann himself laid the scientific basis for dyestuff chemistry, and his own discoveries contributed to the emerging era of vast variation in dye colors. In 1856, his young student and assistant William Henry Perkin (1838–1907), stumbled upon the coal-tar dye "Tyrian Purple," or "mauve" (named after the hollyhock bloom) in the course of an attempt to synthesize quinine. Shortly afterwards, in a small factory and with the financial support of his family, Perkin paved the way to industrial production of this unusually pure dye, which was difficult at first but which yielded very high profits.

The mauve mania that followed in France and England in the next few years brought with it patent-infringing imitation in France. But it also stimulated the search both for alternative processes and for other artificial dyes. Thus, in 1859 in Lyon, François Emmanual Verguin succeeded in producing aniline red, also known as fuchsin, or magenta. Just as was the case with Perkin's discovery, commercial exploitation soon followed. Fuchsin, however, was only the first in a long series of success stories in the coming years, virtually all of which came from Britain and France.

In 1862, at the London World Fair, British and French firms displayed their products "of this remarkable chemical revolution" (A.W. von Hofmann) to an astonished public. What followed can only be described as a sort of gold rush in the dyes market, which was accompanied by pell-mell inventive activity. Those who secured know-how or licenses early enough were assured

7 On Hofmann, see especially M einel and Scholz (eds.), Allianz.
8 Travis, Rainbow M akiners, 31 ff.
substantial profits. After all, the new dyestuffs were at first almost literally worth their weight in gold.

One of the First Coal-Tar Dye Factories in Germany

For Engelhorn, these developments opened up previously unimaginable perspectives. It was only a short leap of imagination to come up with the idea of using coal tar – which to that point had been a by-product of gas production both burdensome and difficult to dispose of – in a profitable way in his own manufacturing plant. Engelhorn raised the capital for a dyestuffs factory together with two of his previous business partners, Friedrich August Sonntag and the “merchant” Otto Dyckerhoff, the latter Engelhorn’s compatriot in the unsuccessful New York commission business. The choice of an expert technical director was without doubt essential for the success of the new company. In making it, Engelhorn benefited from his contacts in the Mannheim business community and from the fact that a number of significant chemical firms had already been established in the Mannheim area. Liebig’s former student and assistant, Carl Clemm-Lennig, the co-proprietor and director of the Mannheim Düngerfabrik (fertilizer factory), was instrumental in establishing a connection with his nephew, Carl Clemm (1836–99). After a technical education in Karlsruhe, study of chemistry in Giessen, and his first practical work in his uncle’s factory, Clemm had pursued research and developed new knowledge in the area of aniline dyes, which were worth their weight in gold. Now, with the capital put up by his business partners, he was able to begin a career as an entrepreneur.9

It is true that Otto Dyckerhoff, the commercial director, and Carl Clemm, the technical director, gave their names to the new company “Chemische Fabrick Dyckerhoff, Clemm & Comp.,” which was founded on June 8, 1861, but with contractually retroactive effect from October 1, 1860.10 Engelhorn, however, played a decisive role in the planning and implementation of the project, including the stated aim of the company’s founding document. For the next 15 years, production at the company was “supposed to consist initially of the preparation of aniline and coal-tar dyes, but later to extend to other technical products” (Paragraph 1 of the founding document). In this way, following hot on the heels of the firm of Rudolph Knosp in Stuttgart, one of the first coal-tar dye factories in the German area came into existence in Mannheim. The nucleus of the later BASF, it was founded at about the same time as the Weiler aniline factory in Cologne-Ehrenfeld (1861), two years prior to Kalle & Co. in Biebrich on the Rhein (1863), and six years before

9 Contract from April 15, 1865, BASF UA, C 627/1. A collection of material relating to Carl Clemm is in BASF, W1.
10 Documents in BASF UA, A 01/7 and A 01/1; Urkunden vol. 1, 8.
The Prehistory

the Gesellschaft für Anilinfabrikation (later the AG für Anilinfabrikation, or Agfa) near Berlin in 1867. In similar fashion to Knosp in Stuttgart, other firms took up coal-tar dye production at first only in addition to their previously existing commercial ventures. These included, for example, Karl G.R. Oehler in Offenbach on the Main, which did so in 1860, and it was followed three years later by Mester, Lucius & Brüning in Höchst and Friedrich Bayer & Co. in Elberfeld. The latter two became BASF’s main competitors in the coming decades. To name just one other prominent example, the precursor of Geigy was founded in Switzerland in 1860.

From the very beginning, Engelhorn appears to have envisaged a large-scale operation. In any case, even in the founding phase, he followed a plan for creating a comprehensive production program (see Paragraph 1 of the founding contract). Through vertical integration and simultaneous diversification of the product palette, the idea was to operate as flexibly and inexpensively as possible in a market that was difficult to gain an overview of and ever changing, but that, in the long term, was expanding strongly.¹¹

There was little difficulty in gaining the required concession for a chemical plant, which took only a few weeks.¹² Already on November 13, 1860, it was granted “to the gentleman manufacturer Engelhorn” from the Grand Duchy’s city office in Mannheim “under the condition that in the course of production the neighborhood would not be burdened or disadvantaged by noxious odors or through poisonous effluents, for which case further authorization would be necessary.” Such problems apparently did not arise. On July 21, 1860, Engelhorn and his partners had acquired a preparation plant for zinc ore, the “zinc foundry” (Friedrichshütte) on the Jungbusch, for 45,000 guilders. The foundry operated on a relatively modest scale for the time (about 30 workers), and it employed the simplest methods of production. Still the plant installed there developed with relatively few teething difficulties. Although its development was not quite as rapid as Engelhorn and his colleagues had perhaps hoped,¹³ its weekly production of 10 hundred-weight of aniline oil (which was further processed into red and violet dyes¹⁴) resulted in considerable profits. This is clear from the few known statistics: The company’s capital was supposed to be 100,000 guilders (25,000 per partner); against that, the pure profit in the 1862/63 business year (after deduction of interest and depreciation) stood at 266,000 guilders.¹⁵ Furthermore,

¹¹ On the significance of integration and diversification and their interactions with economic expansion and change in firm structure, see Kocka, Expansion.

¹² The following is based on materials in BASF UA, A 0/1; Urkunden, vol. 1, 5.

¹³ See materials on the quarrels with the firm Heinrich Dietze & Co. in BASF UA, A 0/2/6 and A 0/2/7.

¹⁴ This in September 1862, according to Caro, Reden, 220.

¹⁵ Contract with the Verein Chemischer Fabriken of May 7, 1864, BASF UA, A 15 (previously A 19/1/8).
Becoming a Global Corporation – BASF from 1865 to 1900

when it was transferred to the newly founded BASF in mid-1865, the material value of the firm was set at more than 529,000 guilders,16 with additional consideration in terms of business value (the business, its customers, and its business secrets) comprising an additional 147,000 guilders.17

Early in the brief existence of the factory, the number of dyes manufactured there rose – fuchsin (magenta, or aniline red) was joined by Hofmann’s violet and aniline blue. What is more, total usage of aniline increased within one-and-one-half years from 500 to 4,500 kilograms per week. Plans were made for still greater volume. As a consequence, Engelhorn arranged for August Clemm (1837–1910), the younger brother of Carl, to be taken on at the beginning of 1862. Like Carl, August had been trained in Giessen, where he took his doctorate, and he was apparently the better chemist. August Clemm moved from the Karlsruhe Polytechnic to Mannheim to become the firm’s second technical expert18 and a partner in what was now known by January 2, 1863 as “Sonntag, Engelhorn & Clemm.”19 Dyckerhoff, in the meantime, pulled out of the firm at his own wish at the end of 1862 in order to turn his attention to the cement business.

In keeping with both the founding spirit of the young chemical industry and his own nature, the successful entrepreneur set a course for expansion. Despite impressive profits, Engelhorn recognized very early on the necessity of tackling costs in the interest of long-term competitiveness. The question was whether it was cheaper for the company to manufacture the inorganic materials (such as arsenic, hydrochloric, nitric, and sulfuric acids, as well as soda) it required rather than purchasing them from the Verein Chemischer Fabriken in Mannheim, as it had done previously. After all, faced with a de facto monopoly the aniline factory was in danger of becoming dependent on the Verein.20 The latter, founded in 1854 and with factories in Mannheim, Worms, and Heilbronn, had seen off all competitors for its products in the region, and therefore did a land office business. In economic terms, close cooperation was in the interest of both sides, since their production areas complemented each other and promised cost-minimizing (and/or profit-maximizing) synergy effects. As the considerably smaller company, which was dependent on the Verein for its supplies, the aniline factory was in the weaker negotiating position. But the prospect of the Verein’s best customer, if push came to shove, starting its own production in competition to the Verein added considerable weight to that initial position. The directors and the administrative council of the Verein consequently

16 This consisted of a selling fee of 453,000 guilders and an additional payment of 76,236 guilders (see note 28).
17 BASF UA, A o/s/5.
18 Appointment contract of February 10, 1862; Urkunden, vol. i, 9, BASF UA, A o/s/7.
19 Urkunden, vol. i, 10–11.
20 On the following, see in addition to Hintz, Werden und Wirken, also Schröter, Engelhorn, 104ff.
agreed to enter into a fusion agreement, which was to take effect, if possible, from July 1, 1864. But the general assembly of the Verein, which had at first also ratified this course of action, eventually reconsidered owing to the influence of altered opinions at the executive level of the Verein. It thus turned down the contract. In view of rapidly growing competition within the dyes market, the long term prospects of Engelhorn's company were by now viewed much more skeptically than had previously been the case.

Unable to attain his goal of product self-sufficiency in the easiest possible way of a fusion with a suitable partner, Engelhorn had only one path open to him – the undoubtedly more risky one of producing the required materials in-house and thus entering into hard-fought competition with the Verein Chemischer Fabriken. Because of the very scale of this project, and in contrast to previous ventures, he and his partners had to turn to the capital market. They had reasons to expect success, however standing within the circle of the economic middle class in Mannheim – particularly through the close friendship with Seligmann Ladenburg (1797–1873), who was experienced in industry and railway financing and the leader of the renowned Mannheim bank W.H. Ladenburg & Sons (after 1905 the Süddeutsche Disconto-Gesellschaft AG). Engelhorn and his partners also exuded confidence in the prospects for success in the dyestuffs industry. Within the short time, these advantages helped them secure the basis for a joint-stock corporation. The company's initial capital of 1.4 million guilders corresponded approximately to the estimated capitalization of the Verein Chemischer Fabriken. The first German coal-tar dye factory that simultaneously produced the inorganic materials required for its organic manufacturing processes could now be christened.

2. THE EARLY YEARS (1865–1873)

Mannheim or Ludwigshafen? The Dramatic Establishment of the Corporation

On March 25, 1865, in the house of Seligmann Ladenburg, a small, handpicked circle of men, all with considerable capital behind them, met to come to some sort of agreement on the means through which the new joint-stock corporation was to be established. Several newcomers joined the existing partners in the aniline factory, including six members of the Ladenburg family. These included Seligmann and his sons Carl (1827–1909) and Ferdinand (1835–99) as well as his nephew and son-in-law Moritz Ladenburg (1818–71). The latter three were all involved in the Mannheim Bank. Additionally, Seligmann's son-in-law Dr. Ferdinand Beit (1817–70), a

21 BASF UA, A 15 (previously A 191/8).
22 See Pieper, Ladenburg, or more extensively Jacob, Ladenburg. On the family, see Waldeck, Mannheimer Familien, 67 ff.
23 The contract is in Urkunden, vol. 1, 12, BASF UA, A 111/5.
16 Becoming a Global Corporation – BASF from 1865 to 1900

Hamburg banker, and his youngest brother, Dr. Leopold Ladenburg (1809–89), a barrister in the high court and an important personality in Mannheim public life, were both present. The Seligmann family members were joined at the meeting by Friedrich Reiß (1802–81), a salesman who had served as lord mayor of Mannheim from 1849–52, had been active for many years in the city council, had been a friend of Engelhorn since the years of revolution in 1848/49, who had subsequently co-founded the Rhine Credit Bank in 1870. Also present was the “Particulier” Carl August Fries (1808–84). Fries was already experienced in the sector as one-time partner in a madder factory in Heidelberg and then as the co-founder of a chemical factory in Wohlelegen and as a shareholder in the Verein Chemischer Fabriken. Finally, the grand ducal district court councillor Moritz Ellstätter was present also. He had served for several years as a syndic in the Berlin-based Diskontobank and later became president of the finance ministry in Baden.24

In a smart move, Engelhorn also brought another partner, Julius Giese, into the corporation. Beginning in 1854, Giese had served as a deputy technical director of the Verein Chemischer Fabriken and thus possessed professional knowledge about the manufacture of inorganic products, which would soon be urgently needed. The heavy conventional penalty of 10,000 guilders, which was imposed when he moved to another company with similar product lines to the one he had just left, was paid on his behalf by the new firm, which also committed itself to giving him a respectable stock package (35 shares). Of the total of 1,400 stock shares with a nominal value of 1,000 apiece, 600 went to the owners of the previous firm of Sonntag, Engelhorn & Clemm, amounting to six times the value of the founding capital of 1861. Of that, 435,000 guilders went for property (buildings, grounds, and equipment) and 147,000 guilders for the business, for its customers, and for production secrets. A further 380 stock shares were subscribed to by the small circle of those present, led by Engelhorn himself (110) and the Ladenburg banking house and Friedrich Reiß (100 each). The remaining 385 shares were to be placed by the Ladenburg banking house among suitable interested parties. For the next ten years, Engelhorn committed himself “to take over the top leadership of the firm as the first director without a fixed salary, and neither directly nor indirectly to participate in any way with a competing business.” The Clemm brothers and Giese became the technical directors, but, unlike Engelhorn, could only sign contracts on behalf of the firm “with a collective signature of any two of these gentlemen.”25

The sales contract between the old and the new firm and the founding contract of the new joint stock company were notarized in Mannheim on April 6, 1865,26 a date that is also considered the founding date of the Badische Anilin- & Soda-Fabrik (BASF) even if the company did not come

24 See Ellstätter, Moritz Ellstätter. 25 Rundschreiben, July 1, 1865, BASF UA, A 11/2.
26 BASF UA, A 11/1/6, A 11/1/9, A 12/1/6, A 12/1/7; GLA 276/1302; Urkunden vol. 1, 14.
The Early Years (1865–1873)

into formal effect until April 15. The ending and starting balance sheets of June 30/July 1, 1865 were so advantageous to the previous owners of the firm that, in addition to the stock shares with a nominal value of 600,000 guilders, they were able to insist on an additional payment of 76,263 guilders. It is, of course, true that the new company was faced with some initial turbulence when its founders started their search for a suitable site for the planned new large-scale factory. Naturally, Engelhorn wanted to locate the new establishment in Mannheim, and the preconditions for this seemed favorable: Already on April 5, 1865, the banking house of W.H. Ladenburg & Sons was able to sign a preliminary contract to purchase a well-suited piece of real estate within the city on behalf of the “company that was in the process of being formed.” The prospective site included over 14 hectares of land directly on the Neckar River with immediate access to the “port ring railway,” that connected the Mannheim port with the train station. This guaranteed supplies of the large quantities of water necessary for the production process and ensured the shortest possible connection to the most modern transport.

But if the deal, which had been worked out in such a hopeful fashion, was eventually to fall through, it was owing to differing expectations within the city’s self-administration bodies. The agreed price of 2,500 guilders per hectare for the property was seen as a moderately cheap sales price, although in view of the expected indirect economic advantages for the city it was also perceived as fair enough. For this reason the local council and the small citizens’ committee gave their blessing to it. When, however, the large citizens’ committee – the final arbiter within the city in property matters – turned down the proposed deal on April 12, 1865 with a clear majority, it was above all because of hopes for a higher yield for the city’s coffers. The basis for these hopes was, in turn, a purchase offer brought into play at the last minute by the Verein Chemischer Fabriken – an offer, it soon became evident, that was not serious, but was instead meant to get rid of threatened competition. Despite this, however, the city of Mannheim persisted in its interest in getting a firm to locate on the controversial site. This was something the BASF leadership used skillfully over the coming days and weeks in order to strengthen their own negotiating position in moving forward as quickly as possible with plans for locating across the Rhine in the Bavarian Palatinate.

The prompt reaction of the leadership in the aftermath of the vote in the large citizens’ committee makes it clear that they had already decided to try the other side of the Rhine in the event of an (even temporary) rejection by Mannheim’s government. On the very same day of the vote, Engelhorn

27 Copy in BASF UA, A 11/2/1 and A 12/1/6; Urkunden, vol. 2, 76.
28 Urkunden, vol. 1, 23 and 26; BASF UA, A 11/2/1.
29 Documents related to the following are in BASF UA, A 11/2/4. A recent depiction is in Schröter, Engelhorn.
30 BASF UA, A 11/2/5. 31 See the press reports in BASF UA, C 8272.