ADVANCED ASTROPHYSICS

This book develops the basic underlying physics required for a fuller, richer understanding of the science of astrophysics and the important astronomical phenomena it describes. The Cosmos manifests phenomena in which physics can appear in its most extreme, and therefore more insightful, forms. A proper understanding of phenomena such as black holes, quasars and extrasolar planets requires that we understand the physics that underlies all of astrophysics. Consequently, developing astrophysical concepts from fundamental physics has the potential to achieve two goals: to derive a better understanding of astrophysical phenomena from first principles and to illuminate the physics from which the astrophysics is developed. To that end, astrophysical topics are grouped according to the relevant areas of physics. The book is ideal as a text for graduate students and as a reference for established researchers.

The author obtained his PhD in 1984 from the University of Toronto where he earned the Royal Astronomical Society of Canada Gold Medal for academic excellence. After a brief postdoctoral stint at the University of British Columbia, he joined the faculty at the University of New Mexico where he pursued his interests in radio astronomy. He has been teaching for the past 17 years, earning an “excellence in teaching” award for the graduate courses on which this book is based. Dr. Duric has over 100 scientific publications and has authored and/or edited five books. In addition, he has developed a number of online classes, including a completely interactive, web-based freshman astronomy course. He is the recipient of the “Regent’s Fellowship”, the highest honour that UNM bestows on its faculty. His research has taken him around the world to over a dozen countries, accounting in part, for the global perspective that characterizes his book. Dr. Duric is a member of the American Astronomical Society and the Canadian Astronomical Society.
ADVANCED ASTROPHYSICS

NEB DURIC

University of New Mexico
Contents

Preface

Part I Classical mechanics
 1 Orbital mechanics
 1.1 Universal gravitation
 1.1.1 Center of mass
 1.1.2 Reduced mass
 1.2 Kepler’s laws
 1.2.1 Planetary orbits
 1.3 Binary stars
 1.3.1 Visual binaries
 1.3.2 The apparent orbit
 1.3.3 The true orbit
 1.3.4 Determining the orbital elements
 1.3.5 Spectroscopic binaries
 1.3.6 The mass function
 1.3.7 Summary of binary star studies
 1.3.8 Mass–luminosity relation
 1.4 Extrasolar planets
 1.4.1 The astrometric method
 1.4.2 The radial velocity method
 1.4.3 The transit method
 1.5 References
 1.6 Further reading
 2 Galaxy dynamics
 2.1 Potentials of arbitrary matter distributions
 2.2 Dynamics of thin disks
2.3 Rotation curves of disk galaxies 30
 2.3.1 Rotation curves of real spiral galaxies 31
2.4 N-body gravitational systems 34
 2.4.1 Equation of motion 34
 2.4.2 The Virial theorem 35
 2.4.3 Clusters of galaxies 36
2.5 References 39
2.6 Further reading 39

3 Cosmic expansion and large scale structure 40
 3.1 The expansion of the Universe 40
 3.1.1 The cosmological constant 42
 3.2 Large-scale cosmic structure 45
 3.2.1 Overview 45
 3.2.2 Correlation functions of galaxies 46
 3.2.3 Dark matter and large-scale structure 47
 3.2.4 Hot and cold dark matter 51
 3.2.5 The Jeans’ mass and gravitational stability 52
 3.2.6 Possible models of structure formation 54
 3.3 References 55
 3.4 Further reading 55

Part II Statistical mechanics 57

4 Overview of statistical mechanics 59
 4.1 Thermodynamics 59
 4.2 Classical statistical mechanics 61
 4.3 Quantum statistical mechanics 63
 4.3.1 Bose–Einstein statistics 64
 4.3.2 Fermi–Dirac statistics 64
 4.4 Photon distribution function 65
 4.5 Thermodynamic equilibrium 66
 4.6 Further reading 68

5 The early Universe 69
 5.1 The 3 K background radiation 69
 5.1.1 History of the background radiation 69
 5.1.2 Evolution of energy density 70
 5.2 Galaxy formation 71
 5.3 Local cosmology and nucleosynthesis 72
 5.3.1 Overview 72
 5.3.2 Primordial helium 73
 5.4 Reaction rates 75
 5.4.1 Introduction 75
Contents

5.4.2 Barrier penetration 77
5.4.3 Estimating reaction rates 81
5.4.4 Destruction of D 82
5.4.5 Formation of D 82
5.4.6 Formation of 4He 83
5.5 Particle equilibria in the early Universe 83
 5.5.1 Overview 83
 5.5.2 Chemical equilibrium 86
 5.5.3 The early Universe 87
 5.5.4 The neutron–proton ratio 87
 5.5.5 Reaction freeze-out 88
 5.5.6 Reaction timescale 90
 5.5.7 Formation of deuterium 91
5.6 Further reading 93

6 Stellar structure and compact stars 94
 6.1 Hydrostatic equilibrium 94
 6.2 Fermion degeneracy 97
 6.2.1 White dwarf equation of state 100
 6.2.2 Mass–radius relation for white dwarfs 100
 6.3 Internal structure of white dwarfs 100
 6.3.1 Relationship between pressure and energy density 101
 6.3.2 Relating electron number density to the mass density 104
 6.3.3 Other sources of pressure 105
 6.3.4 Equation of state 105
 6.3.5 Internal structure of white dwarfs 105
 6.3.6 Estimating the radius and mass of a white dwarf 107
 6.4 Stability of compact stars 109
 6.4.1 Total energy 109
 6.4.2 Electron capture 110
 6.4.3 Maximum density 111
 6.5 Structure of neutron stars 114
 6.5.1 Overview 114
 6.5.2 Liquid layer 115
 6.5.3 The crust 117
 6.5.4 The core 119
 6.6 Pulsars 119
 6.7 Further reading 121
Part III Electromagnetism

7 Radiation from accelerating charges 125
 7.1 The Lienard–Wiechert potential 125
 7.1.1 Scalar and vector potentials 125
 7.1.2 Green’s function solution 126
 7.1.3 The L–W potentials 127
 7.2 Electric and magnetic fields of a moving charge 128
 7.2.1 Moving charge at constant velocity 129
 7.2.2 Radiation from accelerating charges – the far zone 131
 7.2.3 Angular distribution of radiation 131
 7.2.4 Total emitted power 133
 7.3 Further reading 134

8 Bremsstrahlung and synchrotron radiation 135
 8.1 Bremsstrahlung 135
 8.1.1 Single particle collisions 135
 8.1.2 Radiation from an ensemble of particles 137
 8.2 Synchrotron radiation 138
 8.2.1 Total power 139
 8.2.2 The received spectrum 140
 8.2.3 Spectrum of a power-law energy distribution 141
 8.3 Further reading 143

9 High energy processes in astrophysics 144
 9.1 Neutron stars 144
 9.2 Supernova remnants 145
 9.2.1 Particle acceleration 145
 9.3 Radio galaxies 148
 9.4 Galactic X-ray sources 152
 9.4.1 The energy source 153
 9.4.2 Maximum luminosity/Eddington limit 153
 9.4.3 Characteristic temperature 154
 9.4.4 Mass transfer 154
 9.5 Accretion disks 154
 9.5.1 Disk hydrodynamics 156
 9.5.2 The emission spectrum of the disk 157
 9.6 Pulsars revisited 159
 9.6.1 The radiation field 160
 9.6.2 Radiated power 161
 9.6.3 The Braking Index 162
 9.6.4 The static magnetic field 162
 9.6.5 The static electric field 162
<table>
<thead>
<tr>
<th>Contents</th>
<th>ix</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.7 Reference</td>
<td>163</td>
</tr>
<tr>
<td>9.8 Further reading</td>
<td>163</td>
</tr>
<tr>
<td>10 Electromagnetic wave propagation</td>
<td>164</td>
</tr>
<tr>
<td>10.1 EM waves in an un-magnetized plasma</td>
<td>165</td>
</tr>
<tr>
<td>10.1.1 Dispersion measure</td>
<td>166</td>
</tr>
<tr>
<td>10.2 EM waves in a magnetized medium</td>
<td>167</td>
</tr>
<tr>
<td>10.2.1 Rotation measure</td>
<td>170</td>
</tr>
<tr>
<td>10.3 Reference</td>
<td>172</td>
</tr>
<tr>
<td>10.4 Further reading</td>
<td>172</td>
</tr>
<tr>
<td>Part IV Quantum mechanics</td>
<td>173</td>
</tr>
<tr>
<td>11 The hydrogen atom</td>
<td>175</td>
</tr>
<tr>
<td>11.1 Structure of the hydrogen atom</td>
<td>175</td>
</tr>
<tr>
<td>11.1.1 Case 1 (r \to \infty)</td>
<td>177</td>
</tr>
<tr>
<td>11.1.2 Case 2 (r \to 0)</td>
<td>177</td>
</tr>
<tr>
<td>11.1.3 What about the in-between?</td>
<td>178</td>
</tr>
<tr>
<td>11.1.4 Normalizing (R(r))</td>
<td>179</td>
</tr>
<tr>
<td>11.2 Total wave function</td>
<td>181</td>
</tr>
<tr>
<td>11.3 Probability functions</td>
<td>181</td>
</tr>
<tr>
<td>11.4 Energy eigenstates and transitions</td>
<td>185</td>
</tr>
<tr>
<td>11.5 Further reading</td>
<td>185</td>
</tr>
<tr>
<td>12 The interaction of radiation with matter</td>
<td>187</td>
</tr>
<tr>
<td>12.1 Non-relativistic treatment</td>
<td>187</td>
</tr>
<tr>
<td>12.2 Single particle Hamiltonian</td>
<td>188</td>
</tr>
<tr>
<td>12.3 Separation of static and radiation fields</td>
<td>189</td>
</tr>
<tr>
<td>12.3.1 Relative importance of (H_0, H_1) and (H_2)</td>
<td>189</td>
</tr>
<tr>
<td>12.4 Radiative transitions</td>
<td>190</td>
</tr>
<tr>
<td>12.4.1 Semi-classical approach</td>
<td>190</td>
</tr>
<tr>
<td>12.4.2 The Hamiltonian of the radiation field</td>
<td>191</td>
</tr>
<tr>
<td>12.4.3 The perturbation Hamiltonian</td>
<td>192</td>
</tr>
<tr>
<td>12.4.4 Time-dependent perturbation theory</td>
<td>193</td>
</tr>
<tr>
<td>12.5 Absorption of photons</td>
<td>194</td>
</tr>
<tr>
<td>12.5.1 Absorption cross-sections</td>
<td>196</td>
</tr>
<tr>
<td>12.5.2 Dipole transition probability</td>
<td>197</td>
</tr>
<tr>
<td>12.5.3 Bound–bound absorption cross-section</td>
<td>198</td>
</tr>
<tr>
<td>12.6 Spontaneous emission</td>
<td>199</td>
</tr>
<tr>
<td>12.7 Photoionization</td>
<td>200</td>
</tr>
<tr>
<td>12.7.1 Bound–free cross-sections</td>
<td>202</td>
</tr>
<tr>
<td>12.8 Selection rules</td>
<td>203</td>
</tr>
<tr>
<td>12.8.1 Dipole selection rules</td>
<td>204</td>
</tr>
<tr>
<td>12.8.2 Electric quadrupole transitions</td>
<td>205</td>
</tr>
</tbody>
</table>
Contents

12.9 Numerical evaluation of transition probabilities 206
 12.9.1 The Lyman α transition 207
 12.9.2 Bound–free absorption cross-section 209
12.10 HII regions 210
 12.10.1 Ionizing stars 211
12.11 Ionization of a pure hydrogen nebula 212
 12.11.1 Radius of HII region 216
12.12 Quasars and the Lyman α forest 216
 12.12.1 Correlation studies 218
 12.12.2 Column density of the HI responsible for the Ly-α forest 220
12.13 Reference 220
12.14 Further reading 221

13 Atomic fine structure lines 222
 13.1 Electron spin 222
 13.1.1 Relativistic Hamiltonian 222
 13.2 Dirac’s postulate 223
 13.2.1 The Dirac equation 224
 13.2.2 Free particle at rest 224
 13.2.3 Non-relativistic limit of Dirac’s equation 225
 13.3 Radiative transitions involving spin 227
 13.3.1 Zeeman effect 228
 13.4 Relativistic correction with $A = 0$ 228
 13.5 Atomic fine structure 229
 13.5.1 Spin–orbit interaction 230
 13.5.2 Time-independent perturbation theory 230
 13.5.3 The jm representation 231
 13.5.4 Solution for E_{SO} 232
 13.6 Further reading 234

14 Atomic hyperfine lines 235
 14.1 The 21 cm line of hydrogen 235
 14.1.1 Transition rate 238
 14.1.2 The 21 cm line profile 239
 14.2 The Doppler effect 240
 14.2.1 Doppler broadening of the 21 cm line 241
 14.3 Neutral hydrogen in galaxies 242
 14.3.1 Equation of transfer for HI emission 242
 14.3.2 Emission or absorption? 244
Contents

14.4 Measuring HI in external galaxies 244

14.4.1 Integral properties of galaxies 245
14.4.2 Kinematics of the HI 245

14.5 Probing galactic mass distributions 246

14.5.1 HI rotation curves 247

14.6 References 253

14.7 Further reading 253

15 Transitions involving multi-electron atoms 254

15.1 Symmetry of multi-particle wave functions 254

15.2 The helium atom 255

15.2.1 The ground state 255
15.2.2 Lowest excited states 257
15.2.3 Summary 258

15.3 Many-electron atoms 259

15.3.1 The Hartree–Fock procedure 260

15.4 Forbidden lines in astrophysics 261

15.4.1 Collisional equilibria 261
15.4.2 Line emission and cooling of nebulae 263
15.4.3 Statistical equilibrium for N levels 265
15.4.4 OIII lines as probes of temperature 266
15.4.5 Line ratios as density probes 269
15.4.6 Observations of nebulae 270
15.4.7 Observations of active galactic nuclei 270

15.5 Further reading 272

16 Molecular lines in astrophysics 273

16.1 Diatomic molecules 273

16.1.1 Inter-nuclear potential 273
16.1.2 Electronic transitions 273
16.1.3 Vibrational transitions 274
16.1.4 Rotational transitions 274
16.1.5 Summary 275

16.2 Diatomic molecules with two valence electrons 275

16.2.1 The Born–Oppenheimer Approximation 276

16.3 Translational and internal degrees of freedom 278

16.3.1 Vibrations and rotations 279
16.3.2 Vibrations – harmonic oscillator approximation 280

16.4 Dipole transition probability 281
16.4.1 Pure rotational spectra 282

16.5 Transitions between vibrational levels 283
Astrophysics strives to describe the Universe through the application of fundamental physics. The Cosmos manifests phenomena in which the physics can appear in its most extreme, and therefore more insightful, forms. Consequently, developing astrophysical concepts from fundamental physics has the potential to achieve two goals: to derive a better understanding of astrophysical phenomena from first principles, and to illuminate the physics from which the astrophysics is developed. To that end, astrophysical topics are grouped, in this book, according to the relevant areas of physics. For example, the derivation of the laws of orbital motion, used in the detection of extrasolar planets, takes place in the classical mechanics part of the book while the derivation of transition rates for the 21 cm neutral hydrogen line, used to probe galaxy kinematics, is performed in the quantum mechanics part. The book could serve as a text for graduate students and as a reference for established researchers.

The content of this book is based on the material used by the author in support of advanced astrophysics courses taught at the University of New Mexico. The intended audience consists of graduate students and senior undergraduates pursuing degrees in physics and/or astrophysics. Perhaps the most directly relevant demographic is the combined Physics and Astronomy departments. These departments tend to emphasize the fundamental physics regardless of the research track pursued by the student. In many cases a separate astrophysics degree is not an option. In these departments (such as the author’s) all students must pass the same physics comprehensive examination. Consequently, students must be well prepared in fundamental physics both from the points of view of course work as well as research. In the latter case a strong physics foundation is very helpful in developing thesis topics to an acceptable level in a physics-dominated department. This book is specifically aimed at those departments.

The department of Physics and Astronomy at the University of New Mexico requires its graduate students to take the physics comprehensive exam. Courses
based on the material in this book have helped astrophysics and physics students prepare for these exams. I attribute this benefit to the fact that the astrophysical topics provide interesting and insightful manifestations of the fundamental physics, of which, the students previously may have had only a theoretical knowledge. I therefore expect the book to impact the physics as well as the astrophysics students in the mixed departments. I also expect that graduate students in physics-only and astronomy-only departments may choose to use this book to hone their research skills. Targeting junior/senior undergraduates is also possible in schools where the science curricula are robust.

Multi-disciplinary and cross-disciplinary investigations are playing an increasingly important role in scientific research. The cross-over of particle physicists into cosmology, and the establishment of the field of astroparticle physics, is just one manifestation of the growing overlap between physics and astrophysics disciplines. The emphasis on the linkage of fundamental physics and astrophysics makes this book potentially useful as a reference to physics and astrophysics researchers who wish to broaden their research base.

The author acknowledges the help of Dr. Rich Epstein (Los Alamos National Laboratory) who co-taught the first course in the series of courses that have led to the development of the material used in this book. The cooperation and help of the many students who have taken these courses has been instrumental in identifying many typos and inconsistencies in the course material. Finally, the author acknowledges the help and support of the department of physics and astronomy at UNM and the patience and encouragement of family and friends in this endeavor.