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Introduction

KATHERINE BRADING AND ELENA CASTELLANI

This book is about the various symmetries at the heart of modern physics. How
should we understand them and the different roles that they play? Before embarking
on this investigation, a few words of introduction may be helpful. We begin with a
brief description of the historical roots and emergence of the concept of symmetry
that is at work in modern physics (section 1). Then, in section 2, we mention the
different varieties of symmetry that fall under this general umbrella, outlining the
ways in which they were introduced into physics. We also distinguish between two
different uses of symmetry: symmetry principles versus symmetry arguments. In
section 3 we change tack, stepping back from the details of the various symmetries
to make some remarks of a general nature concerning the status and significance
of symmetries in physics. Finally, in section 4, we outline the structure of the book
and the contents of each part.

1 The meanings of symmetry

Symmetry is an ancient concept. Its history starts with the Greeks, the term
��������� deriving from �	
 (with, together) and �����
 (measure) and origi-
nally indicating a relation of commensurability (such is the meaning codified in
Euclid’s Elements, for example). But symmetry immediately acquired a further,
more general meaning, with commensurability representing a particular case: that
of a proportion relation, grounded on (integer) numbers, and with the function of
harmonizing the different elements into a unitary whole (Plato, Timaeus, 31c):

The most beautiful of all links is that which makes, of itself and of the things it connects,
the greatest unity possible; and it is the proportion (���������) which realizes it in the most
beautiful way.

From the outset, then, symmetry was closely related to harmony, beauty, and
unity, and this was to prove decisive for its role in theories of nature. In Plato’s

1



2 Katherine Brading and Elena Castellani

Timaeus, for example, the regular polyhedra are afforded a central place in the
doctrine of natural elements for the proportions they contain and the beauty of
their forms: fire has the form of the regular tetrahedron; earth the form of the
cube; air the form of the regular octahedron; water the form of the regular icosa-
hedron; while the regular dodecahedron is used for the form of the entire uni-
verse. The history of science provides another paradigmatic example of the use of
these figures as basic ingredients in physical description: Kepler’s 1596 Mysterium
cosmographicum presents a planetary architecture grounded on the five regular
solids.

The regular figures used in Plato’s and Kepler’s physics for the mathematical
proportions and harmonies they contain (and the related properties and beauty of
their form) are symmetric in another sense that is not related to proportions. In
the language of modern science, the symmetry of geometrical figures – such as
the regular polygons and polyhedra – is defined in terms of their invariance un-
der specified groups of rotations and reflections. Where does this definition stem
from? Besides the ancient notion of symmetry used by the Greeks and Romans
(current until the end of the Renaissance), a different notion of symmetry slowly
emerged in the modern era, grounded not on proportions but on an equality relation.
More precisely, it is grounded on an equality relation between elements that are
opposed, such as the left and right parts of a figure. This notion, explicitly rec-
ognized and defined in such terms in a 1673 text by Claude Perrault, is, in fact,
nothing other than our reflection symmetry. Reflection symmetry now has a pre-
cise definition in terms of invariance under the group of reflections, representing a
particular case of the group-theoretic notion of symmetry currently used in modern
science.

In moving from Perrault’s notion to this abstract group-theoretic notion, the
following crucial steps are worth noting. First, we have the interpretation of the
equality of the parts with respect to the whole in the sense of their interchangeability
(equal parts can be exchanged with one another, while preserving the whole). Then,
we have the introduction of specific mathematical operations, such as reflections,
rotations, and translations, that are used to describe with precision how the parts
are to be exchanged. As a result, we arrive at a definition of the symmetry of
a geometrical figure in terms of its invariance when equal component parts are
exchanged according to one of the specified operations. Thus, when the two halves
of a bilaterally symmetric figure are exchanged by reflection, we recover the original
figure, and that figure is said to be invariant under left–right reflections. This is
known as the ‘crystallographic notion of symmetry’, since it was in the context
of early developments in crystallography that symmetry was first so defined and
applied. The next key step is the generalization of this notion to the group-theoretic
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definition of symmetry, which arose following the nineteenth-century development
of the algebraic concept of a group, and the fact that the symmetry operations of
a figure were found to satisfy the conditions for forming a group.1 Finally, as is
discussed in more detail later in this volume (see Castellani, Part IV), we have the
resulting close connection between the notion of symmetry, equivalence, and group
(a symmetry group induces a partition into equivalence classes).

The group-theoretic notion of symmetry is the one that has proved so successful
in modern science, and with which the papers of this collection are concerned.
Note, however, that symmetry remains linked to beauty (regularity) and unity: by
means of the symmetry transformations, distinct (but ‘equal’ or, more generally,
‘equivalent’) elements are related to each other and to the whole, thus forming a
regular ‘unity’. The way in which the regularity of the whole emerges is dictated by
the nature of the specified transformation group. Summing up, a unity of different
and equal elements is always associated with symmetry, in its ancient or modern
sense; the way in which this unity is realized on the one hand, and how the equal
and different elements are chosen on the other, determines the resulting symmetry
and in what exactly it consists.2

2 Symmetry in the history of physics

When considering the role of symmetry in physics from a historical point of view,
it is worth keeping in mind two preliminary distinctions.

� The first is between implicit and explicit uses of the notion. Symmetry consider-
ations have always been applied to the description of nature, but for a long time
in an implicit way only. As we have seen, the scientific notion of symmetry (the
one we are interested in here) is a recent one. If we speak about a role of this
concept of symmetry in the ancient theories of nature, we must be clear that it
was not used explicitly in this sense at that time.

� The second is between the two main ways of using symmetry. First, we may
attribute specific symmetry properties to physical situations or phenomena, or to
laws (symmetry principles). It is the application with respect to laws, rather than to
objects or phenomena, that has become central to modern physics, as we will see.
Second, we may derive specific consequences with regard to particular physical
situations or phenomena on the basis of their symmetry properties (symmetry
arguments).

1 A group is defined to be a set G, together with a product operation ( �), such that: for any two elements g1 and g2
of G, g1 � g2 is again an element of G; the group operation is associative; the group contains the identity element;
and for each element there exists an inverse.

2 Further details of the material in this section can be found in Castellani (2000), chapters 1–3.
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2.1 Symmetry principles

Nature offers plenty of examples of (approximate) symmetrical forms: the bilateral
symmetry of human (and, in general, of animal) bodies, the pentagonal symmetry
frequent in flowers, the hexagonal symmetry of honeycomb cells, the translational
symmetry of plant shoots and of animals such as caterpillars, and so on. The natu-
ral objects with the richest and most evident symmetry properties are undoubtedly
crystals, and so it is not surprising that the systematic study of all possible sym-
metric configurations – the so-called theory of symmetry – started in connection
with the rise of crystallography. The classification of all symmetry properties of
crystals, which produced its most notable results in the nineteenth century, in fact
marks the first explicit application of the scientific notion of symmetry in science.3

The real turning point in the use of symmetry in science came, however, with the in-
troduction of the group concept and with the ensuing developments in the theory of
transformation groups. This is because the group-theoretic definition of symmetry
as ‘invariance under a specified group of transformations’ allowed the concept to
be applied much more widely, not only to spatial figures but also to abstract objects
such as mathematical expressions – in particular, expressions of physical relevance
such as dynamical equations. Moreover, the technical apparatus of group theory
could then be transferred and used to great advantage within physical theories.

The first explicit study of the invariance properties of equations in physics is
connected with the introduction, in the first half of the nineteenth century, of the
transformational approach to the problem of motion in the framework of analytical
mechanics. Using the formulation of the dynamical equations of mechanics due to
Hamilton (known as the Hamiltonian or canonical formulation), Jacobi developed a
procedure for arriving at the solution of the equations of motion based on the strategy
of applying transformations of the variables that leave the Hamiltonian equations
invariant, thereby transforming step by step the original problem into new ones that
are simpler but perfectly equivalent (for further details see Lanczos, 1949).4 Jacobi’s
canonical transformation theory, although introduced for the ‘merely instrumental’
purpose of solving dynamical problems, led to a very important line of research:
the general study of physical theories in terms of their transformation properties.

3 Symmetry considerations were used by Haüy to characterize and classify crystal structure and formation (see
his 1801 Traité de minéralogie, volume 1), and with this, crystallography emerged as a discipline distinct from
mineralogy. From Haüy’s work two strands of development led to the 32 point transformation crystal classes
and the 14 Bravais lattices, all of which may be defined in terms of discrete groups. These were combined into
the 230 space groups by Fedorov and by Schönflies in 1891, and by Barlow in 1894. The theory of discrete
groups continues to be fundamental in solid state physics, chemistry, and materials science.

4 Notice that this is a clear example of a methodological use of symmetry properties: on the basis of the invariance
properties of the situation under consideration (in this case, the dynamical problem in classical mechanics), a
strategy is applied for deriving determinate consequences. The underlying principle is that equivalent problems
have equivalent solutions. This type of symmetry argument (see section 2.2, below) is discussed also by van
Fraassen (1989), chapter 10.
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Examples of this are the studies of invariants under canonical transformations,
such as Poisson brackets or Poincaré’s integral invariants; the theory of continuous
canonical transformations due to Lie; and, finally, the connection between the study
of physical invariants and the algebraic and geometric theory of invariants that
flourished in the second half of the nineteenth century, and which laid the foundation
for the geometrical approach to dynamical problems. The use of the mathematics of
group theory to study physical theories was central to the work, early in the twentieth
century in Göttingen, of the group whose central figures were Klein (who earlier
collaborated with Lie) and Hilbert, and which included Weyl and later Noether. We
will return to Weyl and Noether later.

In the above approach, the equations or expressions of physical interest are
already given and the strategy is to study their symmetry properties. There is, how-
ever, an alternative way of proceeding, namely the reverse: start with specific sym-
metries and search for dynamical equations with such properties. In other words,
we postulate that certain symmetries are physically significant, rather than deriving
them from prior dynamical equations. The assumption of certain symmetries in
nature is not, of course, a novelty. Although not explicitly expressed as symme-
try principles, the homogeneity and isotropy of physical space, and the uniformity
of time (forming, together with the invariance under Galilean boosts, ‘the older
principles of invariance’ – see Wigner (1967; this volume, Part IV)), have been
assumed as prerequisites in the physical description of the world since the beginning
of modern science. Perhaps the most famous early example of the deliberate use of
this type of symmetry principle is Galileo’s discussion of whether the Earth moves,
in his Dialogue Concerning the Two Chief World Systems of 1632. Galileo sought
to neutralize the standard arguments purporting to show that, simply by looking
around us at how things behave locally on Earth – how stones fall, how birds fly – we
can conclude that the Earth is at rest rather than rotating, arguing instead that these
observations do not enable us to determine the state of motion of the Earth. His
approach was to use an analogy with a ship: he urges us to consider the behaviour
of objects, both animate and inanimate, inside the cabin of a ship, and claims that
no experiments carried out inside the cabin, without reference to anything outside
the ship, would enable us to tell whether the ship is at rest or moving smoothly
across the surface of the Earth. The assumption of a symmetry between rest and
a certain kind of motion leads to the prediction of this result, without the need
to know the laws governing the experiments on the ship. The ‘Galilean principle
of relativity’ (according to which the laws of physics are invariant under Galilean
boosts, where the states of motion considered are now those of uniform velocity) was
quickly adopted as an axiom and widely used in the seventeenth century, notably by
Huygens in his solution to the problem of colliding bodies and by Newton in his
early work on motion. Huygens took the relativity principle as his third hypothesis
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or axiom, but in Newton’s Principia it is demoted to a corollary to the laws of
motion, its status in Newtonian physics therefore being that of a consequence of
the laws, even though it remains, in fact, an independent assumption.

Although the spatial and temporal invariance of mechanical laws had been known
and used for a long time in physics, and the group of the global spacetime symmetries
for electrodynamics was completely derived by Poincaré5 before Einstein’s famous
1905 paper setting out his special theory of relativity, it was not until this work by
Einstein that the status of symmetries with respect to the laws was reversed. Wigner
(1967; see this volume, Part IV) writes that ‘the significance and general validity
of these principles were recognized, however, only by Einstein’, and that Einstein’s
work on special relativity marks ‘the reversal of a trend: until then, the principles of
invariance were derived from the laws of motion . . . It is now natural for us to derive
the laws of nature and to test their validity by means of the laws of invariance, rather
than to derive the laws of invariance from what we believe to be the laws of nature’.
In postulating the universality of the global continuous spacetime symmetries – also
known as ‘geometrical symmetries’ in the terminology introduced by Wigner (1967;
see this volume, Part I) – Einstein’s construction of his special theory of relativity
represents the first turning point in the application of symmetry to twentieth-century
physics.6

Global spacetime invariance principles are intended to be valid for all the laws
of nature. Such a universal character is not shared by the physical symmetries that
were next introduced in physics. Most of these were of an entirely new kind, with no
roots in the history of science, and in some cases expressly introduced to describe
specific forms of interactions – whence the name ‘dynamical symmetries’ due to
Wigner (1967; see this volume, Part I).

The new symmetries were for the most part closely related to specific features
of the microscopic world. Permutation symmetry, ‘discovered’ by Heisenberg in
1926 in relation to the indistinguishability of so-called identical quantum particles
(see French and Rickles, this volume), was the first non-spatiotemporal symmetry
to be introduced into microphysics, and also the first symmetry to be treated
with the techniques of group theory in the context of quantum mechanics. The
application of the theory of groups and their representations for the exploitation
of symmetries in quantum mechanics undoubtedly represents the second turning
point in the twentieth-century history of physical symmetries. It is, in fact, in the
quantum context that symmetry principles are at their most effective. Wigner and
Weyl were among the first to recognize the great relevance of symmetry groups
to quantum physics and the first to reflect on the meaning of this. As Wigner

5 Whence the name ‘Poincaré group’ introduced later by Wigner, whereas Poincaré himself named the group after
Lorentz.

6 General relativity marks a further important stage in the development, as we will see below. See also Martin,
this volume.
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emphasized on many occasions, one essential reason for the ‘increased effectiveness
of invariance principles in quantum theory’ (Wigner, 1967, p. 47) is the linear nature
of the state space of a quantum physical system, corresponding to the possibility of
superposing quantum states. This gives rise to, among other things, the possibility
of defining states with particularly simple transformation properties in the presence
of symmetries.

In general, if G is a symmetry group of a theory describing a physical system
(that is, the fundamental equations of the theory are invariant under the transfor-
mations of G), this means that the states of the system transform into each other
according to some ‘representation’ of the group G. In other words, the group trans-
formations are mathematically represented in the state space by operations relating
the states to each other. In quantum mechanics, these operations are generally the
operators acting on the state space that correspond to the physical observables,
and any state of a physical system can be described as a superposition of states of
elementary systems, that is, of systems the states of which transform according to
the ‘irreducible’ representations of the symmetry group. Quantum mechanics thus
offers a particularly favourable framework for the application of symmetry princi-
ples. The observables representing the action of the symmetries of the theory in the
state space, and therefore commuting with the Hamiltonian of the system, play the
role of the conserved quantities; furthermore, the basis states may be labelled by
the irreducible representations of the symmetry group, which accordingly also
regulate the transformations from one state to another (state transitions).

But more can be said. Because of the specific properties of the quantum descrip-
tion, symmetries such as spatial reflection symmetry or parity (P) and time reversal
(T) were ‘rediscovered’ in the quantum context, taking on a new significance.7

Moreover, new ‘quantum symmetries’ emerged, such as particle–antiparticle sym-
metry or charge conjugation (C),8 and the various internal symmetries grounded
on invariances under phase changes of the quantum states and described in terms
of the unitary groups SU(N) (the local versions of which are the gauge symmetries
at the core of the Standard Model for elementary particles).9 More recently, new

7 Parity was introduced in quantum physics in 1927 in a paper by Wigner, where important spectroscopic results
were explained for the first time on the basis of a group-theoretic treatment of permutation, rotation, and reflection
symmetries. Time reversal invariance appeared in the quantum context, again due to Wigner, in a 1932 paper.

8 Charge conjugation was introduced in Dirac’s famous 1931 paper ‘Quantized singularities in the electromagnetic
field’. C is a discrete symmetry, connected to the spatial and temporal discrete symmetries P and T by the so-
called CPT theorem, demonstrated by Lüders in 1952, which states that the combination of C, P, and T is a
general symmetry of physical laws.

9 The starting point for the idea of internal symmetries was the interpretation of the presence of particles with
(approximately) the same value of mass as the components (states) of a single physical system, connected to each
other by the transformations of an underlying symmetry group. This idea emerged in analogy with what happened
in the case of permutation symmetry, and was in fact due to Heisenberg (the discoverer ofpermutation symmetry),
who in a 1932 paper introduced the SU(2) symmetry connecting the proton and the neutron (interpreted as the
two states of a single system). This symmetry was further studied by Wigner, who in 1937 introduced the term
isotopic spin (later contracted to isospin).
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symmetries acquired relevance in theoretical physics, such as supersymmetry (the
symmetry relating bosons and fermions and leading, when made local, to the the-
ories of supergravity), and the various forms of duality used in today’s superstring
theories.

The history of the application of symmetry principles in quantum mechanics
and then quantum field theory coincides with the history of the developments
of twentieth-century theoretical physics. The salient aspects of this history, from
the perspective of the meaning of physical symmetries, are discussed in the con-
tributions to this volume (for details, see section 4, below) and cover four crucial
developments.

� The first is the extension of the concept of continuous symmetry from ‘global’
symmetries (such as the Galilean group of spacetime transformations) to ‘local’
symmetries, as discussed by Martin (this volume) in his review of continuous sym-
metries. Einstein was the first to make use of a local symmetry principle in theory
construction when developing his General Theory of Relativity (GTR), culminat-
ing in 1915.10 Meanwhile in Göttingen, Klein and Hilbert enlisted the assistance of
Noether in their investigations into the status of energy conservation in generally
covariant theories of gravitation. This led to Noether’s famous 1918 paper con-
taining two theorems, the first of which leads to a connection between global sym-
metries and conservation laws, and the second of which allows a demonstration of
the different status of these conservation laws when the global symmetry group is
a subgroup of some local symmetry group of the theory in question (see Brading
and Brown, this volume). Prompted by Einstein’s work, Weyl’s 1918 ‘unified the-
ory of gravitation and electromagnetism’ extended the idea of local symmetries
(see Ryckman, this volume), and although this theory is generally deemed to have
failed, the theory contains the seeds of later success in the context of quantum
theory (see below).

� The second is the extension of the concept of continuous symmetry from spa-
tiotemporal to internal, both global and local. In quantum theory, the phase of
the wavefunction encodes internal degrees of freedom. With the requirement that
a theory be invariant under local gauge transformations involving the phase of
the wavefunction, Weyl’s ideas found a successful home in quantum theory (see
O’Raifeartaigh, 1997). Weyl’s new 1929 theory was a theory of electromagnetism
coupled to matter. The history of gauge theory is surveyed briefly by Martin (this
volume), who highlights various issues surrounding gauge symmetry, in particular
the status of the so-called ‘gauge principle’, first proposed by Weyl. Martin also
discusses the ensuing stages in the development of gauge theory, the main steps
being the Yang and Mills non-Abelian gauge theory of 1954, and the problems

10 See Norton (this volume) on the ‘Kretschmann objection’ to the physical significance of general covariance,
and also Martin (this volume, section 2.2) on invariance versus covariance.
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and solutions associated with the successful development of gauge theories for
the short-range weak and strong interactions.

� The third is the increasing importance of the discrete symmetries of permutation
invariance and C, P, and, T mentioned above.

� Finally, the fourth is the introduction in the late 1950s and early 1960s of the
concept of spontaneous symmetry breaking in field theory (see Part III of this
volume), and the subsequent related results (including the Goldstone 1961 the-
orem and the 1964 so-called Higgs mechanism), which played a crucial role in
the developments of the Standard Model of elementary particles.

2.2 Symmetry arguments

Consider the following cases.

� Buridan’s ass: situated between what are, for him, two completely equivalent
bundles of hay, he has no reason to choose the one located to his left over the one
located to his right, and so he is not able to choose and dies of starvation.

� Archimedes’s equilibrium law for the balance: if equal weights are hung at equal
distances along the arms of a balance, then it will remain in equilibrium since
there is no reason for it to rotate one way or the other about the balance point.

� Anaximander’s argument for the immobility of the Earth as reported by Aristotle:
the Earth remains at rest since, being at the centre of the spherical cosmos (and
in the same relation to the boundary of the cosmos in every direction), there is no
reason why it should move in one direction rather than another.

What do these cases have in common?
First, they can all be understood as examples of the application of the Leibnizean

Principle of Sufficient Reason (PSR): if there is no sufficient reason for one thing
to happen instead of another, the principle says that nothing happens (the initial
situation does not change). But there is something more that the above cases have in
common: in each of them PSR is applied on the grounds that the initial situation has
a given symmetry: in the first two cases, bilateral symmetry; in the third, rotational
symmetry. The symmetry of the initial situation implies the complete equivalence
between the existing alternatives (the left bundle of hay with respect to the right one,
and so on). If the alternatives are completely equivalent, then there is no sufficient
reason for choosing between them and the initial situation remains unchanged.

Arguments of the above kind – that is, arguments leading to definite conclusions
on the basis of an initial symmetry of the situation plus PSR – have been used in
science since antiquity (as Anaximander’s argument testifies). The form they most
frequently take is the following: a situation with a certain symmetry evolves in such
a way that, in the absence of an asymmetric cause, the initial symmetry is preserved.
In other words, a breaking of the initial symmetry cannot happen without a reason,



10 Katherine Brading and Elena Castellani

or an asymmetry cannot originate spontaneously. Van Fraassen (1989) devotes a
chapter to considering the way these kinds of symmetry arguments can be used in
general problem-solving.

Historically, the first explicit formulation of this kind of argument in terms of
symmetry is due to the physicist Pierre Curie towards the end of the nineteenth
century. Curie was led to reflect on the question of the relationship between physical
properties and symmetry properties of a physical system by his studies on the
thermal, electric, and magnetic properties of crystals, these properties being directly
related to the structure, and hence the symmetry, of the crystals studied. More
precisely, the question he addressed was the following: in a given physical medium
(for example, a crystalline medium) having specified symmetry properties, which
physical phenomena (for example, which electric and magnetic phenomena) are
allowed to happen? His conclusions, systematically presented in his 1894 work
‘Sur la symétrie dans les phénomènes physiques’ (see this volume, Part III), can be
summarized as follows.

(a) A phenomenon can exist in a medium possessing its characteristic symmetry or
that of one of its subgroups. What is needed for its occurrence (i.e. for something
rather than nothing to happen) is not the presence, but rather the absence, of
certain symmetries: ‘Asymmetry is what creates a phenomenon’.

(b) The symmetry elements of the causes must be found in their effects, but the
converse is not true; that is, the effects can be more symmetric than the causes.

Conclusion (a) clearly indicates that Curie recognized the important function
played by the concept of symmetry breaking in physics (he was indeed one of the
first to recognize it). Conclusion (b) is what is usually called ‘Curie’s principle’ in
the literature, although notice that (a) and (b) are not independent of one another.

In order for Curie’s principle to be applicable, various conditions need to be
satisfied: the causal connection must be valid, the cause and effect must be well
defined, and the symmetries of both the cause and the effect must also be well defined
(this involves both the physical and the geometrical properties of the physical
systems considered). Curie’s principle then furnishes a necessary condition for
given phenomena to happen: only those phenomena can happen that are compatible
with the symmetry conditions established by the principle.

Curie’s principle has thus an important methodological function: on the one
side, it furnishes a kind of selection rule (given an initial situation with a specified
symmetry, only certain phenomena are allowed to happen); on the other side, it
offers a falsification criterion for physical theories (a violation of Curie’s principle
may indicate that something is wrong in the physical description).11

11 See, for example, Mach’s discussion of the Oersted effect in his Die Mechanik in ihrer Entwickelung historisch –
kritisch dargestellt of 1883.
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Such applications of Curie’s principle depend, of course, on our accepting its
validity, and this is something that has been questioned in the literature, especially
in relation to spontaneous symmetry breaking (see this volume, Part III). Different
proposals have been offered for justifying the principle. We have presented it here
as an example of symmetry considerations based on Leibniz’s PSR, while Curie
himself seems to have regarded it as a form of causality principle. Chalmers (1970)
considers its relation to the invariance properties of physical laws and argues that the
principle follows from these in the case of deterministic laws, a point of view taken
up again and generalized in Ismael (1997). In this approach, Curie’s principle is
understood as a condition on the relationship between the symmetries of a problem
(an equation) and its solution(s). This has the advantages of avoiding the apparent
vagueness of Curie’s formulation (the appeal to causality, and so forth) while also
extending it to cover symmetries of physical laws. However, trying to generalize
Curie’s principle as a principle about the link between the symmetries of an equation
and its solution(s) is not straightforward and requires further attention (for more
on symmetries of laws versus symmetries of solutions, see Belot, this volume, and
Castellani, this volume, Part III).

3 Symmetries of modern physics: their status and significance

What is the status and significance of symmetries and symmetry principles in
physics? The rich variety of symmetries in modern physics means that such a gen-
eral question is not easily addressed. Indeed, we might even wonder whether it is
well posed, and restrict our questions instead to specific symmetries and the inter-
pretational issues they raise. Much of the recent literature opts for such restrictions
on scope, and this is reflected in Parts I–III of this book (see also section 4 of
this introduction). However, something can be said in more general terms; here we
offer a few remarks in that direction12 and we refer the reader to Part IV of the
book, where general interpretative issues are addressed.

Exploring the roles and meanings of symmetries is deeply intertwined with ba-
sic questions regarding physical reality and physical knowledge, along with the
methodologies and guiding strategies of contemporary physical inquiry. Thus, in
approaching the above question we must take into account the possible ontological,
epistemological, and methodological aspects of symmetries. In order to do this, we
think that it is helpful to begin by considering the different roles that symmetries
play in physics, the main four being, in our opinion, classificatory, normative, uni-
fying, and explanatory.

One of the most important roles played by symmetry is that of classification – for
example, the classification of crystals using their remarkable and varied symmetry

12 This section of the introduction is based on Castellani (2002).



12 Katherine Brading and Elena Castellani

properties. In contemporary physics, the best example of this role of symmetry is the
classification of elementary particles by means of the irreducible representations
of the fundamental physical symmetry groups, a result first obtained by Wigner
in his famous paper of 1939 on the unitary representations of the inhomogeneous
Lorentz group. If a symmetry classification includes all the necessary properties for
characterizing a given type of physical object (for example, all necessary quantum
numbers for characterizing a given type of particle), we have the possibility of
defining types of entities on the basis of their transformation properties. This has led
philosophers of science to explore a structuralist approach to the entities of modern
physics, in particular a group-theoretical account of objects (see for example the
contributions in Castellani, 1998, part II).

Symmetries also have a normative role, being used as constraints on physical
theories. The requirement of invariance with respect to a transformation group
imposes severe restrictions on the form that a theory may take, limiting the types
of quantities that may appear in the theory as well as the form of its fundamental
equations. A famous case is Einstein’s use of general covariance when searching
for his gravitational equations.

The group-theoretical treatment of physical symmetries, with the resulting pos-
sibility of unifying different types of symmetries by means of a unification of the
corresponding transformation groups, has provided the technical resources for sym-
metry to play a powerful role in theoretical unification. This is best illustrated by the
current – dominant – research programme in theoretical physics aimed at arriving
at a unified description of all the fundamental forces of nature (gravitational, weak,
electromagnetic, and strong) in terms of underlying local symmetry groups.

It is often said that many physical phenomena can be explained as (more or less
direct) consequences of symmetry principles or symmetry arguments. In the case
of symmetry principles, the explanatory role of symmetries arises from their place
in the hierarchy of the structure of physical theory, which in turn derives from
their generality. For example, an explanatory role for symmetries with respect to
conservation laws might be claimed on the basis of Noether’s connection between
symmetries and conservation laws (see Brading and Brown, this volume), along
with the more fundamental status of symmetries in the hierarchy. As Wigner de-
scribes the hierarchy (Wigner, 1967; see especially the second extract in Part IV
of this volume), symmetries are seen as properties of the laws. Thus, through the
requirement that the laws (whatever they may be) must be invariant under certain
symmetries, these symmetries place constraints on which events are physically
possible (the explanatory role clearly connects to the normative role here). In other
words, symmetries may be used to explain (i) the form of the laws and (ii) the
occurrence (or non-occurrence) of certain events (this latter in a manner analogous
to the way in which the laws explain why certain events occur and not others). Other
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features of symmetry in physics that are commonly used as an important explana-
tory basis for physical phenomena are the ‘gauge principle’ (for the form, or even
existence, of the various interactions; see Martin, this volume) and the mechanism
of ‘spontaneous symmetry breaking’ (see this volume, Part III). Finally, insofar as
explanatory power may be derived from unification, the unifying role of symmetries
also results in an explanatory role.

In the latter case, i.e. that of symmetry arguments, we may, for example, appeal
to Curie’s principle to explain the occurrence of certain phenomena on the basis of
the symmetries (or asymmetries) of the situation, as discussed in section 2.2 above.

From these different roles we can draw some preliminary conclusions about the
status of symmetries. It is immediately apparent that symmetries have an impor-
tant heuristic function, indicating a strong methodological status. What about the
ontological and epistemological status of symmetries?

Adopting an ontological view, symmetries are seen as a substantial part of the
physical world: the symmetries of theories represent properties existing in nature,
or characterize the structure of the physical world. It might be claimed, furthermore,
that the ontological status of symmetries provides the reason for the methodological
success of symmetries in physics. A concrete example is the use of symmetries to
predict the existence of new particles. This can happen via the classificatory role,
on the grounds of vacant places in symmetry classification schemes, as in the
famous case of the 1962 prediction of the particle �− in the context of the hadronic
classification scheme known as the ‘Eightfold Way’. Or, as in more recent cases,
via the unificatory role: the paradigmatic example is the prediction of the W and
Z particles (experimentally found in 1983) in the context of the Weinberg–Salam
gauge theory proposed in 1967 for the unification of the weak and electromagnetic
interactions.13 These impressive cases of the prediction of new phenomena might
perhaps be used to argue for an ontological status for symmetries, via an inference
to the best explanation.

Another reason for attributing symmetries to nature is the so-called geometrical
interpretation of spatiotemporal symmetries, according to which the spatiotemporal
symmetries of physical laws are interpreted as symmetries of spacetime itself, the
‘geometrical structure’ of the physical world. Moreover, this way of seeing symme-
tries can be extended to non-external symmetries, by considering them as properties
of other kinds of spaces, usually known as ‘internal spaces’. The question of exactly
what a realist would be committed to on such a view of internal spaces remains open,
and an interesting topic for discussion – in this regard see Nounou, this volume.

One approach to investigating the limits of an ontological stance with respect to
symmetries would be to investigate their empirical or observational status: can the

13 The unificatory role of symmetries in physics is associated with a more general realist metaphysics influential
amongst theoretical physicists working towards a unified theory of everything.
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symmetries in question be directly observed? Morrison (this volume) raises con-
cerns about a realist approach for the case of spontaneously broken symmetries,
and the question can also be tackled for symmetries that are not spontaneously
broken. We first have to address what it means for a symmetry to be observable,
and indeed whether all (unbroken) symmetries have the same observational sta-
tus. Kosso (2000) arrives at the conclusion that there are important differences
in the empirical status of the different kinds of symmetries. In particular, while
global continuous symmetries can be directly observed – via such experiments as
the Galilean ship experiment – a local continuous symmetry can have only indirect
empirical evidence. Brading and Brown (in press) argue for a different interpreta-
tion of Kosso’s examples,14 and hence for a different understanding of why the local
symmetries of gauge theory and GTR have an empirical status distinct from that
of the familiar global spacetime symmetries. The most fundamental point is this:
in theories with local gauge symmetry, the matter fields are embedded in a gauge
field, and the local symmetry is a property of both sets of fields jointly. Because
of this there is, in general, no analogue of the Galilean ship experiment for local
symmetry transformations; according to Brading and Brown, the continuous global
spacetime symmetries have a special empirical status.15

The direct observational status of the familiar global spacetime symmetries leads
us to an epistemological aspect of symmetries. According to Wigner, the spatiotem-
poral invariance principles play the role of a prerequisite for the very possibility of
discovering the laws of nature: ‘if the correlations between events changed from
day to day, and would be different for different points of space, it would be impos-
sible to discover them’ (Wigner, 1967; see this volume, Part IV). For Wigner,
this conception of symmetry principles is essentially related to our ignorance
(if we could directly know all the laws of nature, we would not need to use symmetry
principles in our search for them). Others, on the contrary, have arrived at a view ac-
cording to which symmetry principles function as ‘transcendental principles’ in the
Kantian sense (see for instance Mainzer, 1996). It should be noted in this regard that
Wigner’s starting point, as quoted above, does not imply exact symmetries – all that
is needed epistemologically is that the global symmetries hold approximately, for
suitable spatiotemporal regions, such that there is sufficient stability and regularity
in the events for the laws of nature to be discovered.

There is another reason why symmetries might be seen as being primarily episte-
mological. As we have mentioned, there is a close connection between the notions
of symmetry and equivalence, and this leads also to a notion of irrelevance: the
equivalence of space points (translational symmetry) is, for example, understood
in the sense of the irrelevance of an absolute position to the physical description; in

14 Kosso’s analysis begins from a set of examples offered by ’t Hooft (1980).
15 See also Brading and Brown, this volume.
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the case of local symmetries the irrelevant elements correspond to the presence of
‘surplus structure’ in the theory.16 There are two ways that one might interpret the
epistemological significance of this: on the one hand, we might say that symmetries
are associated with unavoidable redundancy in our descriptions of the world, while
on the other hand we might maintain that symmetries indicate a limitation of our
epistemic access – there are certain properties of objects, such as their absolute
positions, that are not observable.

Finally, we would like to mention an aspect of symmetry that might very naturally
be used to support either an ontological or an epistemological account. It is widely
agreed that there is a close connection between symmetry and objectivity, the
starting point once again being provided by spacetime symmetries: the laws by
means of which we describe the evolution of physical systems have an objective
validity because they are the same for all observers. The old and natural idea that
what is objective should not depend upon the particular perspective under which it
is taken into consideration is thus reformulated in the following group-theoretical
terms: what is objective is what is invariant with respect to the transformation group
of reference frames, or, quoting Weyl (1952, p. 132), ‘objectivity means invariance
with respect to the group of automorphisms [of space-time]’. The link between
symmetry and objectivity is one theme of the paper by Kosso in Part IV of this
volume.

Summing up, symmetries in physics offer many interpretational possibilities,
including ontological, epistemological, and methodological. The position that one
takes will depend in part on one’s preferred approach to other issues in philosophy of
science, including realism, the laws of nature, the relationship between mathematics
and physics, the nature of theoretical entities, and so forth. It will also depend on
whether one views symmetries as ultimately fundamental or derivative (be that
in a methodological sense or, at the other extreme, an ontological sense). How to
understand the status and significance of physical symmetries clearly presents a
challenge to both physicists and philosophers.

4 Structure of the book

Our aim in this book is to provide a structured picture of the current philosophy of
physics debate on symmetry, along with a context and framework for future debate
and research in this field. As such, the aim is modest: there is no intention or aspi-
ration to provide a comprehensive discussion of all philosophical issues that might
arise from the roles of symmetries in physics. Rather, the content of this book clearly
displays the issues that dominate current discussions in philosophy of physics.

16 See Belot and Castellani, both this volume, Part IV, and also Redhead’s ‘surplus structure,’ this volume, Part I.
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We have divided the book into four parts, each of which begins with a selection of
classic texts from such authors as Leibniz, Kant, Curie, Weyl, and Wigner. The first
three parts of the book concern specific topics falling under the general heading of
symmetry in physics: continuous symmetries, discrete symmetries, and symmetry
breaking. Each contains a paper that reviews the current situation in the literature
and highlights the main issues and controversies. Part IV is devoted to the general
interpretational questions arising in connection with symmetries.

Part I. Among the issues raised by Martin in his review of continuous symmetries,
the one that dominates the papers that follow is a set of interrelated questions
surrounding the interpretation of local symmetries. Martin himself spends some
time addressing the status of the so-called ‘gauge principle’, whose origins in
Weyl’s 1918 work – and particularly the philosophical background to this work –
are the subject of Ryckman’s paper. Brading and Brown pick up the historical
thread with a discussion of Noether’s 1918 theorems and the connection between
symmetries and conservation laws. While their paper contains Noether’s famous
first theorem, concerning global symmetries, they also discuss the more complex
case of local symmetries and the question of where the empirical significance of such
symmetries lies. A theme common to the papers by Norton, Redhead, Earman, and
Wallace is the ‘underdetermination problem’ associated with theories containing
local symmetries. These papers discuss how this problem arises (with respect both
to the diffeomorphism freedom of GTR and to gauge theories), what interpretational
problems follow, and how these may be tackled. The underdetermination problem
is connected to the issue of which quantities in a local gauge theory should be
interpreted as real. This problem is made particularly vivid by the Aharonov–
Bohm effect; Nounou offers a discussion of this effect, in which she sets out her
preferred approach based on the fibre bundle formulation of gauge theories – her
paper contains a conceptual introduction to fibre bundles, designed to make the
philosophical account accessible.
Part II. Under the general heading of discrete symmetries we find two distinct areas
of research, each of which has a large associated literature. The first is permutation
symmetry, reviewed by French and Rickles. The second is CPT, or rather, in fact,
primarily P. In the philosophy of physics literature, parity (and parity violation) at
the level of the fundamental laws has been the focus of attention, the absolute versus
relational debate in the philosophy of space and time being the context. This is the
topic of Pooley’s review paper. Themes arising in these review papers are picked
up by both Huggett and Saunders. Huggett’s first paper extends the French and
Rickles discussion from bosons and fermions to other kinds of quantum particles
(‘quarticles’), while his second paper is a direct response to the discussion of
handedness in Pooley’s paper. Saunders advocates a version of Leibniz’s Principle
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of the Identity of Indiscernibles that appeals to ‘weak discernibility’, which is a
natural generalization of Leibniz’s law and, he argues, consistent with, and a useful
tool with respect to, modern physics.
Part III. Philosophers have come to the topic of symmetry breaking only recently,
and hence the main purpose of the review paper by Castellani is to provide an
introduction and a framework for further work. We also include an extract from
a paper by Jona-Lasinio, offering a first-hand historical account of how the idea
of spontaneous symmetry breaking was introduced in particle physics in the early
1960s. In his ‘Rough guide’ Earman offers an approach to understanding symmetry
breaking that makes use of the algebraic formulation of quantum theory, while
Morrison’s paper raises interpretational questions over the status of spontaneously
broken symmetries.
Part IV. The final part contains a selection of papers by Ismael and van Fraassen,
Belot, Kosso, and Castellani on general issues of the interpretation of symmetry.
They pick up on issues ranging right across the material of the preceding parts, such
as those of redundancy and surplus structure, symmetries of laws versus symmetries
of solutions, and the relationship between symmetry and objectivity.

Our hope is that this volume will appeal to a wide audience, including philoso-
phers of physics, philosophers of science, and physicists. It offers something for
everyone who is curious about symmetries in physics, providing a research tool as
well as a point of access into this fascinating area.
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