BREAKUP OF LIQUID SHEETS AND JETS

S. P. LIN

Clarkson University,
Department of Mechanical and Aeronautical Engineering
Contents

Notation List xi
Preface xv

1. Introduction 1
 1.1 Overview 1
 1.2 Governing Equations 2
 1.3 Dimensionless Parameters 4
 Exercises 5
 References 5

2. Uniform Inviscid Liquid Sheets 7
 2.1 Temporal Instability 7
 Exercises 11
 2.2 Convective Instability 11
 2.3 Absolute Instability 19
 Exercises 21
 2.4 Summary 24
 References 25

3. Nonuniform Inviscid Liquid Sheets 26
 3.1 Expanding Liquid Sheet 26
 3.2 Plane Liquid Sheet Thinning Under Gravity 39
 3.3 Curved Falling Sheet 44
 3.4 Liquid Sheet Breakup Phenomena 47
 Exercises 50
 References 52

4. Viscous Liquid Sheet 55
 4.1 A Viscous Sheet in an Inviscid Gas 55
 4.2 A Viscous Sheet in Viscous Gas 70
 4.3 Axially Expanding Viscous Sheets 82
 4.4 Discussion 83

vii
Contents

Exercises 84
References 85

5. Waves on Liquid Sheets 87
 5.1 Generation of Plane Waves 87
 5.2 Waves on Uniform Inviscid Sheets 88
 5.3 Waves on a Falling Liquid Sheet 90
 Exercises 92
 5.4 Waves on an Expanding Sheet 93
 Exercises 93
 5.5 Waves on Viscous Sheets 94
 5.6 Broken Sheets 99
 5.7 Summary 100
 References 101

6. Phenomena of Jet Breakup 102
 6.1 Geometry of Liquid Jets 102
 6.2 Regimes of Jet Breakups 103
 References 106

7. Inviscid Jets 108
 7.1 Stability Analysis of Inviscid Jets 108
 7.2 An Infinite Jet 111
 7.3 Semi-Infinite Inviscid Jets 113
 7.4 Effects of Velocity Relaxation 115
 7.5 Effects of Surrounding Gas 116
 7.6 Effects of Gas Velocity 118
 7.7 Effects of Compressibility 118
 7.8 A Jet with a Swirl 125
 7.9 Initial Instability 127
 Exercises 127
 References 128

8. A Viscous Jet 130
 8.1 Onset of Instability 130
 8.2 Viscous Jets in a Vacuum 132
 8.3 Effects of Surrounding Gas 134
 8.4 Spray Angles and Intact Length 138
 8.5 Effects of Swirl in Gas 143
 Exercises 144
 References 144

9. Roles Played by Interfacial Shear 146
 9.1 Basic Flow 146
 9.2 Equations Governing Disturbances 147
 9.3 Energy Budget 149
Contents

9.4 Stability Analysis 151
9.5 Chebyshev Polynomial Expansion 152
9.6 Numerical Eigenvalue Evaluation 154
9.7 Convective Instability 155
9.8 Absolute Instability 157
9.9 Comparisons with Experiments 159
9.10 Comparisons with Related Work 163
9.11 Mechanism of Jet Breakup 164
9.12 Summary 169
 References 170
10. Annular Liquid Jets 172
 10.1 An Annular Jet 172
 10.2 Stability Analysis of the Annular Jet 176
 10.3 A Pseudo-Spectral Method of Solution 178
 10.4 Parametric Responses in an Encapsulation Process 180
 10.5 Summary 198
 Exercises 199
 References 200
11. Nonlinear Capillary Instability of Liquid Jets and Sheets 201
 11.1 Experiments 201
 11.2 Nonlinear Perturbation Theories 205
 11.3 Numerical Simulation 210
 11.4 Nanojets 217
 11.5 Nonlinear Instability of Liquid Sheets 219
 References 220
12. Epilogue 223
 12.1 Satellite Formation 223
 12.2 Breakoff of a Drop 227
 12.3 Microdrop Formation by Suction 233
 12.4 Microsized Monodispersed Sprays 235
 12.5 Branching Liquid Jets 239
 12.6 Shaped-Charge Jets 247
 12.7 Intermittent Sprays 247
 12.8 Viscous Beads 248
 References 250
Appendices 254
 A. The Orr–Somerfeld System in the Chebyshev Space 254
 B. Eigenvalue Solution Algorithm 258

Author Index 261
Subject Index 267
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Usual meaning</th>
<th>Any exception</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>nozzle inner radius</td>
<td>initial disturbance amplitude</td>
</tr>
<tr>
<td>c</td>
<td>speed of sound</td>
<td></td>
</tr>
<tr>
<td>d_0</td>
<td>nozzle diameter</td>
<td></td>
</tr>
<tr>
<td>d</td>
<td>displacement from free surface</td>
<td></td>
</tr>
<tr>
<td>f</td>
<td>dimensionless free surface displacement</td>
<td></td>
</tr>
<tr>
<td>g</td>
<td>gravitational acceleration</td>
<td></td>
</tr>
<tr>
<td>h</td>
<td>dimensionless half sheet thickness</td>
<td>enthalpy</td>
</tr>
<tr>
<td>(i, j, k)</td>
<td>unit vectors in (x, y, z) direction</td>
<td></td>
</tr>
<tr>
<td>k</td>
<td>complex wave number in flow direction</td>
<td></td>
</tr>
<tr>
<td>k</td>
<td>complex wave vector</td>
<td></td>
</tr>
<tr>
<td>l</td>
<td>radius ratio, thickness ratio</td>
<td>characteristic length ratio</td>
</tr>
<tr>
<td>n</td>
<td>wave number in θ-direction</td>
<td></td>
</tr>
<tr>
<td>n</td>
<td>unit normal vector</td>
<td></td>
</tr>
<tr>
<td>o</td>
<td>magnitude as small as</td>
<td></td>
</tr>
<tr>
<td>p</td>
<td>dimensionless pressure</td>
<td></td>
</tr>
<tr>
<td>r</td>
<td>dimensionless position vector</td>
<td></td>
</tr>
<tr>
<td>(r, θ, z)</td>
<td>dimensionless cylindrical coordinates</td>
<td></td>
</tr>
</tbody>
</table>

ξ
Notation List

- **s**: distance along surface
- **t**: time
- \(\mathbf{v} = (u, v, w) \): dimensionless velocity vector in \((x, y, z)\) direction
- \((x, y, z)\): dimensionless Cartesian coordinates
- **A** = \(Re/(WeQ)^{1/2}\): Taylor parameter
- **B_0** = Bonds number = \(We/Fr\)
- **C_a** = capillary number = \(We/Re\)
- **C_p** = constant pressure specific heats
- **C_v** = constant volume specific heats
- **D** = characteristic matrix
- \(D\): characteristic determinant
- **Fr** = \(W_0^2/gH_0\): Froude number
- **G** = inverse Fourier transform of disturbance
- **H** = position vector of solid surface
- **H_i** = dimensional half \(i\)th layer thickness
- **H_0**: characteristic length
- **I**: identity matrix
- \(J = [SH_0/(\rho_1v^2)]^{1/2}\): Ohnesorge number
- **K**: adiabatic module of elasticity
- **L**: characteristic length
- **M**: kinematic viscosity ratio
- **Ma = S_c T_0/\rho_1U_0^2H_0**: Marangoni number
- **M_i**: Mach number in fluid \(i\)
- \(N = \bar{N}_2 = \mu_r\): dynamic viscosity ratio
- \(N_j = v_j/v_1\): kinematic viscosity ratio
- **\bar{N}_2** = \(\mu_r\): dynamic viscosity ratio
- **\mu_r** = kinematic viscosity ratio
Notation List

$\tilde{N}_d = \frac{\mu_d}{\mu_1}$
- dynamic viscosity ratio

O
- magnitude as large as

$Oh = \left[\frac{SH_0}{(\rho_1 v_1^2)} \right]^{1/2} = J$
- Ohnesorge number

P
- pressure

$Q = Q_2 = \rho_r$
- gas to liquid density ratio

\dot{Q}
- volumetric flow rate

(R, θ, Z)
- dimensional cylindrical coordinate

$Re = \frac{\rho_1 U_0 H_0}{\mu_1}$
- Reynolds number

$St_0 = \frac{Re}{Fr}$
- Stokes number

S
- surface tension

T
- temperature

U_0
- characteristic velocity

$V = (U, V, W)$
- dimensional velocity vector

$We = \frac{\rho_1 U_0^2 H_0}{S}$
- Weber number

α
- wave number in flow direction

β
- wave number in direction perpendicular to flow

$\gamma = \frac{C_p}{C_v}$
- specific heat ratio

swirl number = $\frac{\Gamma}{R_0 W_1}$

δ
- Dirac delta function

ε
- small parameter

τ
- dimensionless time

τ
- deviatory stress

ς
- dimensionless sheet or jet thickness

η
- dimensionless free surface displacement

θ
- azimuthal angle, phase angle, spray angle

κ
- mean curvature

λ
- wavelength

μ
- dynamic viscosity

ν
- kinematic viscosity
Notation List

- **ρ**
 Density

- **ψ**
 Stream function

- **φ**
 Velocity potential

- **σ**
 Stress tensor

- **ω = ω_r + iω_i**
 Complex wave frequency

- **Ω**
 Dimensional frequency

- **∇**
 Gradient operator

- **Γ**
 Circulation

Superscripts

- **•**
 Time rate of change

- **T**
 Transpose

- **′**
 Perturbation

- **^\wedge**
 Amplitude

Subscripts

- **adj**
 Adjoint

- **,**
 Partial differentiation

- **i**
 Inner surface

- **o**
 Reference quantity

- **A, B**
 Fluids A, B

- **1, 2, 3**
 Fluids 1, 2, 3

- **α**
 αth layer

- **l**
 Liquid

- **g**
 Gas
1

Introduction

1.1. Overview
When a dense fluid is ejected into a less dense fluid from a narrow slit whose thickness is much smaller than its width, a sheet of fluid can form. When the fluid is ejected not from a slit but from a hole, a jet forms. The linear scale of a sheet or jet can range from light years in astrophysical phenomena (Hughes, 1991) to nanometers in biological applications (Benita, 1996). The fluids involved range from a complex charged plasma under strong electromagnetic and gravitational forces to a small group of simple molecules moving freely with little external force. The fluid sheet and jet are inherently unstable and breakup easily. The dynamics of liquid sheets was first investigated systematically by Savart (1833). Platou (1873) sought the nature of surface tension through his inquiry of jet instability. Rayleigh (1879) illuminated his jet stability analysis results with acoustic excitation of the jet. In some modern applications of the instability of sheets and jets, it is advantageous to hasten the breakup, but in other applications suppression of the breakup is essential. Hence knowledge of the physical mechanism of breakup, aside from its intrinsic scientific value, is very useful when one needs to exploit the phenomenon to the fullest extent. Recent applications include film coating, nuclear safety curtain formation, spray combustion, agricultural sprays, ink jet printing, fiber and sheet drawing, powdered milk processing, powder metallurgy, toxic material removal, and encapsulation of biomedical materials. Current applications can be found in the annual or biannual conference proceedings of several professional organizations, such as the International Conference on Liquid Atomization and Spray Systems (ICLAS) and the Institute for Liquid Atomization and Spray Systems (ILASS) organizations in the Americas, Europe, and Asia, and European and American Coatings Conferences.

Because of the diverse applications, books on the subject tend to focus on specific applications. For example, the book by Lefebvre (1989) centers
Introduction

around internal combustion, and that of Masters (1985) focuses on powdered milk formation. Intended for immediate practical applications, these books rely heavily on phenomenological correlations. The book by Yarin (1993) provides a mathematical treatment of recent applications involving non-Newtonian fluids. In contrast, this book deals exclusively with Newtonian fluids, which are encountered in most of the known applications. It does not cover such topics as atomization and emulsification of liquid in liquid (Kitamura and Takahashi, 1986; Grandzol and Tallmadge, 1973; Villermaux, 1998; Richards, Beris, and Lenhoff, 1993). Electromagnetic effects on the jet breakups (Balachandran and Bailey, 1981), or the electromagnetic effects on atomization and drop formation (Bailey, 1998; Fenn et al., 1989).

We address first the issue of the origin of the breakup or the physical reasons for the breakup. Therefore the mathematical tool used is linear stability analysis, which predicts the onset of jet and sheet instability. The disturbance consisting of all Fourier components is allowed to grow both spatially and temporally in the sheet or jet flows. If only the classical temporally growing disturbance is considered, one arrives at a paradoxical situation as illustrated in the first section of the next chapter. The onset of instability appears to largely dictate the ultimate outcome of the breakup, as exemplified by Rayleigh’s linear stability analysis of a liquid jet. However, the detailed process leading to the eventual breakup requires nonlinear theories to describe. Nonlinear descriptions are given in Chapter 11. The results related to the last stage of breakup and topics that still need further development will be addressed in the Epilogue.

1.2. Governing Equations

The governing equations and the corresponding boundary conditions listed below will be referred to in subsequent chapters. Their derivation can be found in standard text books, some of which are given at the end of the chapter. The same notation will be used to denote the same physical variable throughout the book, with few exceptions. When such exceptions on notation take place they will be pointed out; otherwise the same symbol will not be redefined after its first appearance. A list of notations is provided at the front of the book.

Newton’s second law of motion applied to a fluid particle gives

$$\rho \frac{DV}{Dt} = g + \nabla \cdot \sigma,$$

$$\frac{DV}{Dt} \equiv V_r + V \cdot \nabla V,$$
1.2. Governing Equations

where \(\rho \) is the fluid density, \(\mathbf{V} \) is the velocity vector, and \(t \) is the time. The subscript variable following a comma signifies partial differentiation with that variable, \(\partial / \partial t \) is the substantial derivative as defined, \(\nabla \) is the gradient operator, \(\mathbf{g} \) is the gravitational acceleration, and \(\sigma \) is the stress tensor. For an incompressible Newtonian fluid

\[
\sigma = -P \mathbf{I} + \mu \left[\nabla \mathbf{V} + (\nabla \mathbf{V})^T \right],
\]

(1.2)

where \(\mathbf{I} \) is the identity matrix, \(\mu \) is the dynamic viscosity, \(P \) is the pressure, and the superscript \(T \) denotes transpose.

The conservation of mass requires

\[
\frac{D \rho}{D t} + \rho \nabla \cdot \mathbf{V} = 0.
\]

(1.3)

For an incompressible fluid \(D \rho / D t = 0 \), and (1.3) is reduced to

\[
\nabla \cdot \mathbf{V} = 0.
\]

(1.4)

Equations (1.1) to (1.4) are valid for each fluid involved in a flow. The \(i \)-th interface between two adjacent fluids is infinitesimally thin and is mathematically defined by a function \(F_i(\mathbf{r}, t) = 0 \), \(\mathbf{r} \) being the position vector. The balance of forces exerted on a unit area of interface gives

\[
S_i \nabla \cdot \mathbf{n} + [\mathbf{n} \cdot \sigma \cdot \mathbf{n}]_{B_i}^A_i + \nabla \cdot S_i = 0,
\]

(1.5)

where \(S \) is the interfacial tension, \(\mathbf{n} \) is the surface unit normal vector positive if pointed from fluid \(B_i \) to fluid \(A_i \) on the opposite side, \(\nabla \cdot \) is the surface gradient operator, and

\[
[n \cdot \sigma \cdot n]_{B_i}^A_i \equiv n_i \cdot \sigma_{A_i} \cdot n_i - n_i \cdot \sigma_{B_i} \cdot n_i,
\]

\[
n_i = \nabla F_i / |\nabla F_i|.
\]

For viscous fluids, the kinematic condition at the interface is

\[
[V]_{B_i}^A_i = 0,
\]

(1.6)

\[
W_i = \frac{D F_i}{D t},
\]

(1.7)

where \(W_i \) is the component of the \(i \)-th interfacial velocity in the direction in which the distance \(F_i \) from a reference position to the interface is measured. If a fluid is inviscid, then (1.6) does not hold, and (1.7) must be applied for each fluid separately. A viscous fluid sticks to a nonpermeable solid surface, and thus \(\mathbf{V} = 0 \) at the solid-viscous fluid interface. If the fluid is inviscid, then it is allowed to slide along the solid surface, but is not allowed to penetrate it. Derivations of Equations (1.1) to (1.7) can be found in the books on
Introduction

fundamental fluid mechanics cited in the references section at the end of the chapter. Note that non-Newtonian fluids as well as more general interfacial conditions allowing phase changes to take place are not treated in this work.

1.3. Dimensionless Parameters

Even for simple Newtonian fluids, the number of dimensionless groups involved in interfacial fluid dynamics is relatively large. To bring out the relevant dimensionless parameters, we nondimensionalize the governing differential system. Identifying the characteristic velocity and length with U_0, length with H_0, time with H_0/U_0, and stress with $\rho_1 U_0^2$, where ρ_1 is the density of the fluid designated by subscript 1, we have the following dimensionless governing equations for incompressible Newtonian fluids:

\[Q \frac{Dv_i}{D\tau} = \frac{Q_i}{Fr} - \nabla p_i + \frac{N_i}{Re} \nabla^2 v_i, \tag{1.8} \]

\[\nabla \cdot v_i = 0, \tag{1.9} \]

kinematic interfacial condition,

\[w_i = h_{i,t} + v_i \cdot \nabla h_i, \quad h_i = F_i/H_0, \]

dynamic interfacial condition,

\[We_i^{-1} \nabla \cdot n_i = [n \cdot \tau \cdot n]^{A_i}_{\tau}, \tag{1.10} \]

and the no-slip condition at the solid wall at H/H_0, where H is the position vector defining the solid wall. The lower case letters are used to denote dimensionless variables corresponding to their dimensional counterparts expressed in capital letters, except for τ and τ, which are dimensionless time and stress respectively. The dimensionless groups revealed in these equations are

- density ratio $Q_i = \rho_i/\rho_1$,
- viscosity ratio $N_i = \mu_i/\mu_1$,
- Reynolds number $Re = \rho_1 U_0 H_0/\mu_1$,
- Froude number $Fr = \rho_1 U_0^2/\rho H_0$,
- Weber number $We = \rho_1 U_0^2 H_0/\rho H_0$,
- geometric parameters $H/H_0, H_i/H_0$.

The interface is considered to be homogeneous, otherwise Marangoni numbers associated with ∇S in (1.5) will arise. The interface is also assumed to be isotropic. The quantitative sensitivity of the dynamics of the flow to the variation of these dimensionless groups will be used to reveal the relative
1.3. Dimensionless Parameters

importance of shear, inertial, body, and surface forces in various modes of interfacial instabilities.

Exercises

1. Show that if temperature varies along an interface, the surface gradient term in (1.5) leads to the temperature Marangoni number \(Ma = S_T T_0 / \rho U_0^2 H_0 \), where \(S_T \) is the change of surface tension per unit change of temperature, \(T_0 \) is a reference temperature, and \(U_0 \) is a characteristic velocity. If the fluids on both sides of the interface are stationary, what is the relevant expression for \(U_0 \)?

1. If the solute concentration varies along an interface, find the expression of the solute Marangoni number.

1. Show that the Bond number \(B_0 = We / Fr \), the capillary number \(Ca = We / Re \), and the Stokes number \(St_0 = Re / Fr \) represent respectively the ratios of body force to surface force, viscous force to surface force, and body force to viscous force.

1. Show that if \(U_0 = 0 \), the Ohnesorge number \(\equiv [SH_0 / (\rho v^2)]^{1/2} \) is a parameter representing the ratio of the surface force to the viscous force.

1. Show that the mean curvature \(\nabla \cdot n \) in (1.10) at a point on a surface \(z = h(x, y, \tau) \) in the Cartesian coordinate \((x, y, z)\) is given by

\[
\nabla \cdot n = -\frac{h_{xx} + h_{yy}}{\left(1 + h_{x}^2 + h_{y}^2\right)^{3/2}}.
\]

1.6. Show that the mean curvature of a surface \(r = h(z, \theta, \tau) \) is given by

\[
\nabla \cdot n = \frac{1}{q} \left(h_{zz} q_{zz} + h_{,\theta} q_{,\theta} / h^2\right) + \frac{1}{q} \left(\frac{1}{h} + h_{,\theta}^2 / h^3 - h_{,zz} - h_{,\theta\theta} / h^2\right),
\]

where \(q = [1 + (h_{,\theta} / h)^2 + h_{zz}^2]^{1/2} \).

References

6

Introduction

