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Chapter 1. Completely Bounded Maps
Let us start by recalling the definition and a few facts on C∗-algebras:

Definition 1.1. A C∗-algebra is a Banach ∗-algebra satisfying the identity

‖x∗x‖ = ‖x‖2

for any element x in the algebra.

The simplest example is the space

B(H)

of all bounded operators on a Hilbert space H, equipped with the operator
norm. More generally, any closed subspace

A ⊂ B(H)

stable under product and involution is a C∗-algebra.
By classical results (Gelfand and Naimark) we know that every C∗-algebra

can be realized as a closed self-adjoint subalgebra of B(H). Moreover, we
also know that every commutative unital C∗-algebra can be identified with
the space C(T ) of all complex-valued continuous functions f : T → C on some
compact space T . If A has no unit, A can be identified with the space C0(T ) of
all complex-valued continuous functions, vanishing at infinity, on some locally
compact space T .

Of course the object of C∗-algebra theory (as developed in the last 50 years;
cf. [KaR, Ta3]) is the classification of C∗-algebras. Similarly, the object of
Banach space theory is the classification of Banach spaces.

In the last 25 years, it is their classification up to isomorphism (and NOT
up to isometry) that has largely predominated (cf., e.g., [LT1–3, P4]).

This already indicates one major difference between these two fields since,
if A1 and A2 are two C∗-algebras,

A1 isomorphic to A2 ⇒ A1 isometric to A2.

In particular, a C∗-algebra admits a unique C∗-norm. So there is no “isomor-
phic theory” of C∗-algebras. However, in recent years, operator algebraists
have found the need to relax the structure of C∗-algebras and consider more
general objects called operator systems. These are subspaces of B(H) contain-
ing the unit that are stable under the involution but not under the product.
The theory of operator systems was developed using the order structure re-
peatedly, and it is still mostly an isometric theory. The natural morphisms
here are the “completely positive” maps (cf. [St, Ar1]). We refer the reader
to a survey by Effros [E1] and a series of papers by Choi and Effros (espe-
cially [CE3]). Even more recently, operator algebraists have done a radical
simplification and considered just “operator spaces”:
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Definition 1.2. An operator space is a closed subspace of B(H).

Equivalently, since we can think of C∗-algebras as closed self-adjoint sub-
algebras of B(H), we can think of operator spaces as closed subspaces of
C∗-algebras.

Operator space theory can be considered as a merger of C∗-algebra theory
and Banach space theory.

It is important to immediately observe that any Banach space can appear
as a closed subspace of a C∗-algebra. Indeed, for any Banach space X (with
the dual unit ball denoted by BX∗), if we let

T = (BX∗ , σ(X∗,X)),

then T is compact and we have an isometric embedding

X ⊂ C(T ).

Hence, since C(T ) is a C∗-algebra (and C(T ) ⊂ B(H) with H = �2(T )), X
also appears among operator spaces. So operator spaces are just ordinary
Banach spaces X but equipped with an extra structure in the form of an
embedding

X ⊂ B(H).

The main difference between the category of Banach spaces and that of oper-
ator spaces lies not in the spaces but in the morphisms. We need morphisms
that somehow keep track of the extra information contained in the data of the
embedding X ⊂ B(H); the maps that do just this are the completely bounded
maps.

Definition 1.3. Let E ⊂ B(H) and F ⊂ B(K) be operator spaces and

consider a map
B(H) B(K)
∪ ∪
E

u−→ F

For any n ≥ 1, let
Mn(E) = {(xij)ij≤n | xij ∈ E}

be the space of n × n matrices with entries in E. In particular, we have a
natural identification

Mn(B(H)) � B(�n
2 (H)),

where �n
2 (H) means H ⊕H ⊕ · · · ⊕H︸ ︷︷ ︸

n times

. Thus, we may equip Mn(B(H)) and

a fortiori its subspace

Mn(E) ⊂ Mn(B(H))
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with the norm induced by

B(�n
2 (H)).

Then, for any n ≥ 1, the linear map u: E → F allows us to define a linear

map
un: Mn(E) −→ Mn(F )

defined by

un




...
. . . xij . . .

...


 =




...
. . . u(xij) . . .

...


 .

A map u: E → F is called completely bounded (in short c.b.) if

sup
n≥1

‖un‖Mn(E)→Mn(F ) < ∞.

We define

‖u‖cb = sup
n≥1

‖un‖Mn(E)→Mn(F ),

and we denote by

CB(E,F )

the Banach space of all c.b. maps from E into F equipped with the c.b. norm.

This space will replace the space B(E,F ) of all bounded operators from E

into F . (We will see later on that it can be equipped with an operator space
structure.)

If G ⊂ B(L) is another operator space and if v: F → G is c.b., then the
compositon vu: E → G clearly remains c.b. and we have

‖vu‖cb ≤ ‖v‖cb‖u‖cb.

Of course, when n = 1, 1×1 matrices are just elements of E, so u1: M1(E) →
M1(F ) is nothing but u itself. In particular we have

‖u‖ ≤ ‖u‖cb

and
CB(E,F ) ⊂ B(E,F ).

When ‖u‖cb ≤ 1, we say that u is “completely contractive” (or “a complete
contraction”).

The notion of isometry is replaced by that of “complete isometry”: A map
u: E → F is called a complete isometry (= u is completely isometric) if

un: Mn(E) → Mn(F )

is an isometry for all n ≥ 1.
Similarly, a map u: E → F is called completely positive (in short c.p.) if

un: Mn(E) → Mn(F ) is positive for all n (in the order structure induced by
the C∗-algebras Mn(B(H)) and Mn(B(K)). Moreover, we should emphasize
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Definition 1.4. Two operator spaces E,F are called completely isomorphic

if there is a linear isomorphism u: E → F such that u and u−1 are c.b.

We will say that E,F are completely isometric if there is a linear isomor-
phism u: E → F that is a complete isometry (or, equivalently, that satisfies

‖u‖cb = ‖u−1‖cb = 1). In that case, we will often identify these spaces,

although this might sometimes be abusive.

Proposition 1.5. Let A1 ⊂ B(H1), A2 ⊂ B(H2) be two C∗-algebras; let
E1 ⊂ A1, E2 ⊂ A2 be two operator spaces; let π: A1 → A2 be a representation

such that π(E1) ⊂ E2; and let u: E1 → E2 be the restriction of π. Then u is

completely bounded and ‖u‖cb ≤ 1. Moreover, if π is injective, u is completely
isometric.

Proof. It is well known that a C∗-algebra representation π automatically has
norm at most 1 and a closed range (cf. [Ta3, p. 21-22]). Therefore, ‖π‖ ≤ 1,
but since πn: Mn(A1) → Mn(A2) also is a C∗-algebra representation, we again
have ‖πn‖ ≤ 1 for all n, and hence ‖u‖cb ≤ 1. Moreover, if a representation π

is injective, it is necessarily isometric (since its inverse must also have norm
at most 1), and hence πn itself is isometric for all n.

We can measure the “c.b. distance” between E and F by setting

dcb(E,F ) = inf{‖u‖cb‖u−1‖cb | u: E → F complete isomorphism}.

If E,F are not completely isomorphic, we will set

dcb(E,F ) = ∞.

Examples. When E,F are Banach spaces we can view them as operator
spaces via the embeddings

E ⊂ C(BE∗), F ⊂ C(BF∗).

This is of course not a very interesting operator space structure, but it shows
that – to some extent – Banach space theory can be viewed as embedded into
operator space theory, since for a map

C(BE∗) C(BF∗)
∪ ∪
E

u−→ F

we have necessarily
u bounded ⇔ u c.b.
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and
‖u‖ = ‖u‖cb.

Actually (see Proposition 1.10), this remains true when E is an arbitrary
operator space, assuming only that F is equipped with its “commutative
structure” as above. Moreover, it is easy to check that ‖u‖ = ‖u‖cb for any
rank one mapping u between operator spaces. This implies of course that
if dim(E) = 1, then its commutative operator space structure is the only
possible one on E.

Here are more interesting examples:
In B(�2) consider the column Hilbert space

C = span{ei1 | i ∈ N} (1.1)

and the row Hilbert space

R = span{e1j | j ∈ N}. (1.2)

We will also need their finite-dimensional versions:

Cn = span{ei1 | 1 ≤ i ≤ n}
Rn = span{e1j | 1 ≤ j ≤ n}.

Then, as Banach spaces, R and C are indistinguishable, since they are both
isometric to �2, that is, we have

∀x ∈ �2

∥∥∥∑
xiei1

∥∥∥
B(�2)

=
(∑

|xi|2
)1/2

=
∥∥∥∑

xje1j

∥∥∥
B(�2)

. (1.3)

However, as operator spaces, they are not isomorphic. Actually they are
extremely far apart, since we have (see [Mat1–2])

dcb(Rn, Cn) = n, (1.4)

which is the maximal distance possible between any two n-dimensional oper-
ator spaces. Actually, it can be shown (cf., e.g., [P5, p. 270], [ER4]) that for
any

u: R → C (or u: C → R)

we have (HS stands for Hilbert-Schmidt)

‖u‖cb = ‖u‖HS . (1.5)

For the proof, see the solution to Exercise 1.1. It follows that, for any isomor-
phism u: Rn → Cn, we have

n = tr(u−1u) ≤ ‖u‖HS‖u−1‖HS = ‖u‖cb‖u−1‖cb,
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which implies dcb(Rn, Cn) ≥ n. For the converse it suffices to observe that
the map u: Rn → Cn taking e1j to ej1 (=transposition) satisfies ‖u‖cb =
‖u‖HS =

√
n and ‖u−1‖cb = ‖u−1‖HS =

√
n.

Letting n → ∞, this gives us a simple example of an isometric map from
R to C that is not c.b. A fortiori, the transposition x → tx is isometric but
is not c.b. either on B(�2) or on K. More precisely, let τn: Mn → Mn denote
the transposition of matrices. Then one can prove (see Exercise 1.2)

‖τn‖cb = n. (1.6)

These examples R and C are fundamental. Indeed, using the Haagerup
tensor product (denoted by ⊗h) presented in Chapter 5, one can reconstruct
the whole of B(�2) or B(H) using R and C as the basic “building blocks”
more precisely, we have Mn = Cn ⊗h Rn, K(�2) = C ⊗h R, and of course
B(�2) = K(�2)∗∗.

More generally, let H1,H2 be two Hilbert spaces and let H = H1 ⊕ H2.
The mapping

x →
(
0 0
x 0

)

is an isometric embedding of B(H1,H2) into B(H). Using this, we can view
B(H1,H2) as an operator space. Note that the norm induced on Mn(B(H1,

H2)) by Mn(B(H)) coincides with the norm of the space B(�n
2 (H1), �n

2 (H2)).
In particular, we will often use the following:

Notation. Let H be an arbitrary Hilbert space. For any h ∈ H, we denote
by hc ∈ B(C,H) and hr ∈ B(H∗,C) the isometric embeddings defined by

∀λ ∈ C hc(λ) = λh

∀ξ ∈ H∗ hr(ξ) = 〈ξ, h〉.

We will denote by Hc and Hr the resulting operator space structures on
H. Recall that the dual H∗ can be canonically identified with the complex
conjugate Hilbert space H.

In particular, we have

C = (�2)c and R = (�2)r.

Let a:H1 → H1 and b: H2 → H2 be bounded operators and let uab:
B(H1,H2) → B(H1,H2) be defined by uab(T ) = bTa. Clearly, uab is c.b.
and ‖uab‖cb ≤ ‖a‖‖b‖. Taking either H1 or H2 one-dimensional, this implies
immediately for any Hilbert space H

∀u: Hc → Hc ‖u‖cb = ‖u‖ and ∀v: Hr → Hr ‖v‖cb = ‖v‖.
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Indeed, we have u(hc) = [u(h)]c and analogously for r. In particular,

∀u: C → C ‖u‖cb = ‖u‖ and ∀v: R → R ‖v‖cb = ‖v‖. (1.7)

The theory of c.b. maps clearly is the basis for operator space theory. It
emerged in the early 1980s through the works of Wittstock [Wit1–2], Haagerup
[H3], and Paulsen [Pa3], who proved (independently) a fundamental factor-
ization and extension theorem for c.b. maps. This factorization is a general-
ization of earlier important work by Stinespring and Arveson ([St, Ar1]) who
proved a factorization/extension theorem for completely positive maps.

Theorem 1.6. (Fundamental Factorization/Extension Theorem.) Consider

a c.b. map
B(H) B(K)
∪ ∪
E

u−→ F

Then there is a Hilbert space Ĥ, a representation

π: B(H) −→ B(Ĥ),

and operators V1: K → Ĥ, V2: Ĥ → K such that ‖V1‖ ‖V2‖ = ‖u‖cb and

∀x ∈ E u(x) = V2π(x)V1. (1.8)

Conversely, if (1.8) holds then u is c.b. and ‖u‖cb ≤ ‖V1‖ ‖V2‖ (in addition, if

V1 = V ∗
2 , then u is completely positive). Moreover, u admits a c.b. extension

ũ: B(H) → B(K)

B(H) ũ−→ B(K)
∪ ∪
E

u−→ F

such that ‖ũ‖cb = ‖u‖cb.

For a proof, see either [Pa1], [P10], or [P5]; the latter extends to the case
when H and K are Banach spaces.

This theorem explains the claim that c.b. maps keep track of the operator
space structure. Indeed, it shows that (as explained in the Introduction)
every c.b. map is the restriction of the composition of a representation and a
two-sided multiplication.

For emphasis and for later reference, we state as separate corollaries parts
of Theorem 1.6 that will be used frequently in the sequel. The first is the ex-
tension property of B(K), which can be viewed as an operator-valued version
of the Hahn-Banach Theorem:
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Corollary 1.7. Let E, Ẽ be operator spaces so that E ⊂ Ẽ ⊂ B(H). Then
any c.b. map u: E → B(K) admits a c.b. extension ũ: Ẽ → B(K) with
‖ũ‖cb = ‖u‖cb.

Proof. We simply let ũ be the restriction of x �→ V2π(x)V1 to Ẽ.

The second is the dilation property of unital complete contractions:

Corollary 1.8. Let E ⊂ B(H) be an operator space containing I. Consider

a map u: E → B(K). If u(I) = I and ‖u‖cb = 1, then there is a Hilbert space

Ĥ with K ⊂ Ĥ and a representation π: B(H) → B(Ĥ) such that

∀ x ∈ E u(x) = PKπ(x)|K .

In particular, u is completely positive.

Proof. By Theorem 1.6, we have u(·) = V2π(·)V1. By homogeneity, we may
assume ‖V1‖ = ‖V2‖ = 1. Since I = u(I) = V2π(I)V1 = V2V1, V1 must be an
isometric embedding of K into Ĥ. Identifying K with V1(K), u(·) = V2π(·)V1

becomes u(·) = PKπ(·)|K .

Finally, the third corollary is the decomposability of c.b. maps as linear
combinations of c.p. maps:

Corollary 1.9. Any c.b. map u: E → B(K) can be decomposed as u =
u1 − u2 + i(u3 − u4), where u1, u2, u3, u4 are c.p. maps with ‖uj‖cb ≤ ‖u‖cb.

Proof. By Theorem 1.6, we have u(·) = V2π(·)V1. Let us denote V = V1 and
V2 = W ∗, so that u(·) = W ∗π(·)V . Then the result simply follows from the
polarization formula: We define u1, u2, u3, u4 by

u1(·) = 4−1(V +W )∗π(·)(V +W ), u2(·) = 4−1(V −W )∗π(·)(V −W ),

u3(·) = 4−1(V + iW )∗π(·)(V + iW ), u4(·) = 4−1(V − iW )∗π(·)(V − iW ).

Then ‖uj‖cb ≤ 1 for j = 1, 2, 3, 4 and u = u1 − u2 + i(u3 − u4). (Note that
actually ‖u1 + u2‖cb ≤ 1 and ‖u3 + u4‖cb ≤ 1).

Proposition 1.10. Let F ⊂ B(H) be an operator space. Let AF be the

C∗-algebra generated by F .

(i) For any n ≥ 1 and any x in Mn(F ) we have

‖x‖Mn(F ) ≥ sup
{∥∥∥∑

λiµjxij

∥∥∥
F
| λi ∈ C, µj ∈ C,

∑
|λi|2 ≤ 1,∑

|µj |2 ≤ 1
}
.
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(ii) Assume either AF commutative or dim(F ) = 1. Then we have equality

in (i). Moreover, in either case, if E is an arbitrary operator space, any
bounded map u: E → F is c.b. and satisfies ‖u‖cb = ‖u‖.

(iii) For any E,F , every finite-rank map u: E → F is c.b.

Proof. (i) is an easy exercise. When AF is commutative, we can assume
AF = C0(Ω) and also Mn(AF ) = C0(Ω;Mn) for some locally compact space
Ω. Then equality in (i) is very simple to check. When dim(F ) = 1, the
verification is again an easy exercise. The second assertion in (ii) then follows
by applying (i) in E and the equality case in F . Thus any map of rank one is
c.b., which implies the same for any finite-rank map.

Note that (ii) implies that (not too surprisingly!) there is only one abstract
operator space structure on C.
Remark 1.11. Let E1, E2 be two Banach spaces. Consider an element
x =

∑
ai ⊗ bi in the algebraic tensor product E1 ⊗E2. The “injective” tensor

norm (in Grothendieck’s sense) is defined as

‖x‖∨ = sup{|〈ξ1 ⊗ ξ2, x〉| | ξ1 ∈ BE∗
1
, ξ2 ∈ BE∗

2
}

= sup
{∣∣∣∑ ξ1(ai)ξ2(bi)

∣∣∣ ∣∣∣ ξ1 ∈ BE∗
1
, ξ2 ∈ BE∗

2

}
.

Note that we can write alternatively

‖x‖∨ = sup
ξ1∈BE∗

1

{∥∥∥∑
ξ1(ai)bi

∥∥∥
E2

}
= sup

ξ2∈BE∗
2

{∥∥∥∑
aiξ2(bi)

∥∥∥
E1

}
.

We denote by E1

∨⊗ E2 the completion of E1 ⊗ E2 for this norm, and we call
it the injective tensor product of E1, E2.

In particular, for any Banach space E, we have for any x ∈ Mn ⊗ E

‖x‖
Mn

∨
⊗E

= sup
{∥∥∥∑

λiµjxij

∥∥∥
E

∣∣∣(λi), (µj) ∈ C
n,

∑
|λi|2 ≤ 1,

∑
|µj |2 ≤ 1

}
= sup

{∥∥∥∑
eijξ(xij)

∥∥∥
Mn

∣∣∣ ξ ∈ BE∗

}
. (1.9)

Note that for any locally compact space Ω and any Banach space B (in par-
ticular for B = Mn) we have an isometric isomorphism

C0(Ω, B) = C0(Ω)
∨⊗ B.

Remark. Let α(n) be the best constant C such that, for any E,F , any map
u: E → F of rank n satisfies

‖u‖cb ≤ C‖u‖.
We will see in Theorem 3.8 later that n/2 ≤ α(n) ≤ n and in Chapter 7 that
α(n) ≤ n/21/4 (due to Eric Ricard), but the exact value of α(n) does not
seem to be known.

The following result due to R. Smith [Sm2] is often useful.
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Proposition 1.12. Consider E ⊂ B(H) and u: E → MN = B(�N
2 , �N

2 ).
Then we have

‖u‖cb = ‖uN‖MN (E)→MN (MN ).

Proof. This can be proved using the fact that, if x1, . . . , xn is a finite subset
of �N

2 with
∑n

1 ‖xi‖2 ≤ 1, then (we leave this as an exercise for the reader)
there are an n × N scalar matrix b = (bjk) with ‖(bjk)‖ ≤ 1 and vectors
x̃1, . . . , x̃N in �N

2 such that
∑N

1 ‖x̃i‖2 ≤ 1 and

∀j ≤ n xj =
N∑

k=1

bjkx̃k.

Similarly, for any y1, . . . , yn in �N
2 there are a scalar matrix c = (cil) with

‖(cil)‖ ≤ 1 and ỹ1, . . . , ỹN in �N
2 such that

∑N
1 ‖ỹi‖2 ≤ 1 and

∀i ≤ n yi =
N∑

l=1

cilỹl.

Hence for any n× n marix (aij) in Mn(E) we have

n∑
i,j=1

〈u(aij)xj , yi〉 =
N∑

k,l=1

〈u(αlk)x̃k, ỹl〉,

where (αlk) ∈ MN (E) is defined by (αlk) = c∗.(aij).b (matrix product).
Therefore:

‖(u(aij))‖Mn(MN ) ≤ ‖(u(αkl))‖MN (MN ) ≤ ‖uN‖MN (E)→MN (MN )‖(αlk)‖MN (E)

≤ ‖uN‖MN (E)→MN (MN )‖(aij)‖MN (E).

Remark 1.13. Consider a1, . . . , an and b1, . . . , bn in B(H). Let a ∈ Mn

(B(H)) (resp. b ∈ Mn(B(H))) be the n× n matrix that has a1, . . . , an (resp.
b1, . . . , bn) on its first column (resp. row) and zero elsewhere; that is, we have

a =




a1
...
...
an

©


 b =


 b1 . . . bn

©


 .

Then

‖a‖ =
∥∥∥∑

a∗i ai

∥∥∥1/2

B(H)
and ‖b‖ =

∥∥∥∑
bib

∗
i

∥∥∥1/2

B(H)
. (1.10)
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Indeed, we have ‖a‖ = ‖a∗a‖1/2 and ‖b‖ = ‖bb∗‖1/2. Moreover, we have
‖ba‖ ≤ ‖b‖‖a‖, and hence

‖
∑

biai‖ ≤
∥∥∥∑

bib
∗
i

∥∥∥1/2

B(H)

∥∥∥∑
a∗i ai

∥∥∥1/2

B(H)
. (1.11)

More generally, for any x = (xij) in Mn(B(H)) we have ‖bxa‖ ≤ ‖b‖‖x‖‖a‖,
and hence

‖
∑
i,j

bixijaj‖ ≤
∥∥∥∑

bib
∗
i

∥∥∥1/2

B(H)
‖x‖Mn(B(H))

∥∥∥∑
a∗jaj

∥∥∥1/2

B(H)
. (1.12)

Note that it is easy to extend this remark to n = ∞.

Exercises

Exercise 1.1. Prove (1.5).

Exercise 1.2. Prove (1.6).

Exercise 1.3. Let u: E → F be a mapping between operator spaces. Show
that for any a1, . . . , an in E we have

‖
∑

u(aj)∗u(aj)‖1/2 ≤ ‖u‖cb‖
∑

a∗jaj‖1/2 and ‖
∑

u(aj)u(aj)∗‖1/2

≤ ‖u‖cb‖
∑

aja
∗
j‖1/2.

Exercise 1.4. Let u: E → F be a mapping between operator spaces. Show
that

‖u‖cb = sup
n≥1

{‖vu‖cb | v: F → Mn ‖v‖cb ≤ 1}.

Exercise 1.5. (Schur Multipliers) (i) Let {xi | i ≤ n} and {yj | j ≤ n} be
elements in the unit ball of a Hilbert space K. Then the mapping u: Mn →
Mn defined by u([aij ]) = [aij〈xi, yj〉] is a complete contraction. In addition,
if xi = yi for all i, then u is completely positive.

(ii) More generally, let S, T be arbitrary sets. We will identify an element
of B(�2(T ), �2(S)) with a matrix {a(s, t) | (s, t) ∈ S × T} in the usual way.

Let {xs | s ∈ S} and {yt | t ∈ T} be elements in the unit ball of a Hilbert
space K. Then the mapping u: B(�2(T ), �2(S)) → B(�2(T ), �2(S)) that takes
(a(s, t))(s,t)∈S×T to (a(s, t)〈xs, yt〉)(s,t)∈S×T is a complete contraction. In ad-
dition, if S = T and xt = yt for all t, then u is completely positive.




