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1 Introduction

1. WHATISAMONTE CARLO SIMULATION?

In a Monte Carlo simulation we attempt to follow the ‘time dependence’ of a
model for which change, or growth, does not proceed in some rigorously
predefined fashion (e.g. according to Newton’s equations of motion) but
rather in a stochastic manner which depends on a sequence of random
numbers which is generated during the simulation. With a second, different
sequence of random numbers the simulation will not give identical results but
will yield values which agree with those obtained from the first sequence to
within some ‘statistical error’. A very large number of different problems fall
into this category: in percolation an empty lattice is gradually filled with
particles by placing a particle on the lattice randomly with each ‘tick of the
clock’. Lots of questions may then be asked about the resulting ‘clusters’
which are formed of neighboring occupied sites. Particular attention has been
paid to the determination of the ‘percolation threshold’; i.e. the critical con-
centration of occupied sites for which an ‘infinite percolating cluster’ first
appears. A percolating cluster is one which reaches from one boundary of a
(macroscopic) system to the opposite one. The properties of such objects are
of interest in the context of diverse physical problems such as conductivity of
random mixtures, flow through porous rocks, behavior of dilute magnets, etc.
Another example is diffusion limited aggregation (DILA) where a particle
executes a random walk in space, taking one step at each time interval,
until it encounters a ‘seed’ mass and sticks to it. The growth of this mass
may then be studied as many random walkers are turned loose. The ‘fractal’
properties of the resulting object are of real interest, and while there is no
accepted analytical theory of DLA to date, computer simulation is the
method of choice. In fact, the phenomenon of DILA was first discovered
by Monte Carlo simulation!

Considering problems of statistical mechanics, we may be attempting to
sample a region of phase space in order to estimate certain properties of the
model, although we may not be moving in phase space along the same path
which an exact solution to the time dependence of the model would yield.
Remember that the task of equilibrium statistical mechanics is to calculate
thermal averages of (interacting) many-particle systems: Monte Carlo simu-
lations can do that, taking proper account of statistical fluctuations and their
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effects in such systems. Many of these models will be discussed in more detail
in later chapters so we shall not provide further details here. Since the
accuracy of a Monte Carlo estimate depends upon the thoroughness with
which phase space is probed, improvement may be obtained by simply run-
ning the calculation a little longer to increase the number of samples. Unlike
in the application of many analytic techniques (e.g. perturbation theory for
which the extension to higher order may be prohibitively difficult), the
improvement of the accuracy of Monte Carlo results is possible not just in
principle but also in practice!

1.2. WHAT PROBLEMS CAN WESOLVEWITH IT?

The range of different physical phenomena which can be explored using
Monte Carlo methods is exceedingly broad. Models which either naturally
or through approximation can be discretized can be considered. The motion
of individual atoms may be examined directly; e.g. in a binary (AB) metallic
alloy where one is interested in interdiffusion or unmixing kinetics (if the
alloy was prepared in a thermodynamically unstable state) the random hop-
ping of atoms to neighboring sites can be modeled directly. This problem is
complicated because the jump rates of the different atoms depend on the
locally differing environment. Of course, in this description the quantum
mechanics of atoms with potential barriers in the eV range is not explicitly
considered, and the sole effect of phonons (lattice vibrations) is to provide a
‘heat bath’ which provides the excitation energy for the jump events. Because
of a separation of time scales (the characteristic times between jumps are
orders of magnitude larger than atomic vibration periods) this approach
provides very good approximation. The same kind of arguments hold true
for growth phenomena involving macroscopic objects, such as DLLA growth
of colloidal particles; since their masses are orders of magnitude larger than
atomic masses, the motion of colloidal particles in fluids is well described by
classical, random Brownian motion. These systems are hence well suited to
study by Monte Carlo simulations which use random numbers to realize
random walks. The motion of a fluid may be studied by considering ‘blocks’
of fluid as individual particles, but these blocks will be far larger than indi-
vidual molecules. As an example, we consider ‘micelle formation’ in lattice
models of microemulsions (water—oil-surfactant fluid mixtures) in which
each surfactant molecule may be modeled by two ‘dimers’ on the lattice
(two occupied nearest neighbor sites on the lattice). Different effective inter-
actions allow one dimer to mimic the hydrophilic group and the other dimer
the hydrophobic group of the surfactant molecule. This model then allows
the study of the size and shape of the aggregates of surfactant molecules (the
micelles) as well as the kinetic aspects of their formation. In reality, this
process is quite slow so that a deterministic molecular dynamics simulation
(i.e. numerical integration of Newton’s second law) is not feasible. This
example shows that part of the ‘art’ of simulation is the appropriate choice
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(or invention!) of a suitable (coarse-grained) model. Large collections of
interacting classical particles are directly amenable to Monte Carlo simula-
tion, and the behavior of interacting quantized particles is being studied
either by transforming the system into a pseudo-classical model or by con-
sidering permutation properties directly. These considerations will be dis-
cussed in more detail in later chapters. Equilibrium properties of systems of
interacting atoms have been extensively studied as have a wide range of
models for simple and complex fluids, magnetic materials, metallic alloys,
adsorbed surface layers, etc. More recently polymer models have been stu-
died with increasing frequency; note that the simplest model of a flexible
polymer is a random walk, an object which is well suited for Monte Carlo
simulation. Furthermore, some of the most significant advances in under-
standing the theory of elementary particles have been made using Monte
Carlo simulations of lattice gauge models.

1.3 WHAT DIFFICULTIES WILLWEENCOUNTER?

1.3.1 Limited computer time and memory

Because of limits on computer speed there are some problems which are
inherently not suited to computer simulation, at this time. A simulation
which requires years of cpu time on whatever machine is available is simply
impractical. Similarly a calculation which requires memory which far exceeds
that which is available can be carried out only by using very sophisticated
programming techniques which slow down running speeds and greatly
increase the probability of errors. It is therefore important that the user
first consider the requirements of both memory and cpu time before embark-
ing on a project to ascertain whether or not there is a realistic possibility of
obtaining the resources to simulate a problem properly. Of course, with the
rapid advances being made by the computer industry, it may be necessary to
wait only a few years for computer facilities to catch up to your needs.
Sometimes the tractability of a problem may require the invention of a
new, more efficient simulation algorithm. Of course, developing new strate-
gies to overcome such difficulties constitutes an exciting field of research by
itself.

1.3.2 Statistical and other errors

Assuming that the project can be done, there are still potential sources of
error which must be considered. These difficulties will arise in many different
situations with different algorithms so we wish to mention them briefly at this
time without reference to any specific simulation approach. All computers
operate with limited word length and hence limited precision for numerical
values of any variable. Truncation and round-off errors may in some cases
lead to serious problems. In addition there are statistical errors which arise as
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an inherent feature of the simulation algorithm due to the finite number of
members in the ‘statistical sample’ which is generated. These errors must be
estimated and then a ‘policy’ decision must be made, i.e. should more cpu
time be used to reduce the statistical errors or should the cpu time available
be used to study the properties of the system under other conditions. Lastly
there may be systematic errors. In this text we shall not concern ourselves
with tracking down errors in computer programming — although the practi-
tioner must make a special effort to eliminate any such errors! — but with
more fundamental problems. An algorithm may fail to treat a particular
situation properly, e.g. due to the finite number of particles which are simu-
lated, etc. These various sources of error will be discussed in more detail in
later chapters.

1.4 WHAT STRATEGY SHOULD WE FOLLOWIN
APPROACHING A PROBLEM?

Most new simulations face hidden pitfalls and difficulties which may not be
apparent in early phases of the work. It is therefore often advisable to begin
with a relatively simple program and use relatively small system sizes and
modest running times. Sometimes there are special values of parameters for
which the answers are already known (either from analytic solutions or from
previous, high quality simulations) and these cases can be used to test a new
simulation program. By proceeding in this manner one is able to uncover
which are the parameter ranges of interest and what unexpected difficulties
are present. It is then possible to refine the program and then to increase
running times. Thus both cpu time and human time can be used most
effectively. It makes little sense of course to spend a month to rewrite a
computer program which may result in a total saving of only a few minutes
of cpu time. If it happens that the outcome of such test runs shows that a new
problem is not tractable with reasonable effort, it may be desirable to attempt
to improve the situation by redefining the model or redirect the focus of the
study. For example, in polymer physics the study of short chains (oligomers)
by a given algorithm may still be feasible even though consideration of huge
macromolecules may be impossible.

1.5 HOWDO SIMULATIONS RELATETO
THEORY AND EXPERIMENT?

In many cases theoretical treatments are available for models for which there
is no perfect physical realization (at least at the present time). In this situation
the only possible test for an approximate theoretical solution is to compare
with ‘data’ generated from a computer simulation. As an example we wish to
mention recent activity in growth models, such as diffusion limited aggrega-
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tion, for which a very large body of simulation results already exists but for
which extensive experimental information is just now becoming available. It
is not an exaggeration to say that interest in this field was created by simula-
tions. Even more dramatic examples are those of reactor meltdown or large
scale nuclear war: although we want to know what the results of such events
would be we do not want to carry out experiments! There are also real
physical systems which are sufficiently complex that they are not presently
amenable to theoretical treatment. An example is the problem of understand-
ing the specific behavior of a system with many competing interactions and
which is undergoing a phase transition. A model Hamiltonian which is
believed to contain all the essential features of the physics may be proposed,
and its properties may then be determined from simulations. If the simulation
(which now plays the role of theory) disagrees with experiment, then a new
Hamiltonian must be sought. An important advantage of the simulations is
that different physical effects which are simultaneously present in real sys-
tems may be isolated and through separate consideration by simulation may
provide a much better understanding. Consider, for example, the phase
behavior of polymer blends — materials which have ubiquitous applications
in the plastics industry. The miscibility of different macromolecules is a
challenging problem in statistical physics in which there is a subtle interplay
between complicated enthalpic contributions (strong covalent bonds compete
with weak van der Waals forces, and Coulombic interactions and hydrogen
bonds may be present as well) and entropic effects (configurational entropy of
flexible macromolecules, entropy of mixing, etc.). Real materials are very
difficult to understand because of various asymmetries between the consti-
tuents of such mixtures (e.g. in shape and size, degree of polymerization,
flexibility, etc.). Simulations of simplified models can ‘switch off’ or ‘switch
on’ these effects and thus determine the particular consequences of each
contributing factor. We wish to emphasize that the aim of simulations is
not to provide better ‘curve fitting’ to experimental data than does analytic
theory. The goal is to create an understanding of physical properties and
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processes which is as complete as possible, making use of the perfect control
of ‘experimental’ conditions in the ‘computer experiment’ and of the possi-
bility to examine every aspect of system configurations in detail. The desired
result is then the elucidation of the physical mechanisms that are responsible
for the observed phenomena. We therefore view the relationship between
theory, experiment, and simulation to be similar to those of the vertices of a
triangle, as shown in Fig. 1.1: each is distinct, but each is strongly connected
to the other two.

With the rapidly increasing growth of computer power which we are now
seeing, coupled with the steady drop in price, it is clear that computer
simulations will be able to increase rapidly in sophistication to allow more
subtle comparisons to be made.



