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Introduction

From the beginnings of algebraic geometry it has been understood that
birationally equivalent varieties have many properties in common. Thus
it is natural to attempt to find in each birational equivalence class a
variety which is simplest in some sense, and then study these varieties
in detail.

Each irreducible curve is birational to a unique smooth projective
curve, thus the investigation of smooth projective curves is equivalent
to the study of all curves up to birational equivalence.

For surfaces the situation is more complicated. Each irreducible sur-
face is birational to infinitely many smooth projective surfaces. The the-
ory of minimal models of surfaces, developed by the Italian algebraic
geometers at the beginning of the twentieth century, aims to choose a
unique smooth projective surface from each birational equivalence class.
The recipe is quite simple. If a smooth projective surface contains a
smooth rational curve with self-intersection —1, then it can be con-
tracted to a point and we obtain another smooth projective surface.
Repeating this procedure as many times as possible, we usually obtain
a unique ‘minimal model’. In a few cases we obtain a model that is not
unique, but these cases can be described very explicitly.

A search for a higher dimensional analogue of this method started
quite late. One reason is that some examples indicated that a similar
approach fails in higher dimensions.

The works of Reid and Mori in the early 1980s raised the possibility
that a higher dimensional theory of minimal models may be possible if
we allow not just smooth varieties but also varieties with certain mild
singularities. This approach is called the Minimal Model Program or
Mori’s Program. After many contributions by Benveniste, Kawamata,
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Kollar, Reid, Shokurov, Tsunoda, Viehweg and others, the program was
completed in dimension three by Mori in 1988.

Since then this program has grown into a method which can be applied
successfully to many problems in algebraic geometry.

The aim of this book is to provide an introduction to the techniques
and ideas of the minimal model program.

Chapter 1 gives an introduction to the whole program through a ge-
ometric approach. Most of these results are not used later, but they
provide a useful conceptual foundation.

Chapter 2 is still introductory, discussing some aspects of singularities
and the relevant generalizations of the Kodaira Vanishing Theorem.

The first major part of the program, the Cone Theorem, is proved in
Chapter 3. These results work in all dimensions.

The rest of the book is essentially devoted to the study of 3—dimension-
al flips and flops. Flips and flops are new types of birational transforma-
tions which first appear in dimension 3. Most major differences between
the theory of surfaces and 3—folds can be traced back to flips and flops.

Chapter 4 is devoted to the classification of certain surface singular-
ities. These results are needed in further work on the 3-dimensional
theory.

The singularities appearing in the course of the minimal model pro-
gram are investigated in Chapter 5. The results are again rather complete
in all dimensions.

Flops are studied in Chapter 6. Flops are easier to understand than
flips, and, at least in dimension 3, their description is rather satisfactory.

Chapter 7 is devoted to 3—dimensional flips. The general theory is still
too complicated and long to be included in a textbook, thus we restrict
ourselves to the study of a special class, the so-called semi-stable flips. We
have succeeded in simplifying the proofs in this case considerably. Semi-
stable flips appear naturally in many contexts, and they are sufficient
for several of the applications.

A more detailed description of the contents of each chapter is given
at its beginning.

Sections 4.5 and 5.5 are each a side direction, rather than being part
of the main line of arguments. In each case we felt that the available
references do not adequately cover some results we need, and that our
presentation may be of interest to the reader.
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Prerequisites

We assume that the:reader is familiar with basic algebraic geometry, at
the level of [Har77).

There are a few other results that we use without proof.

In the proof of (1.10) we need an estimate for the dimension of the
deformation space of a morphism. This result, whose proof is rather tech-
nical, is fundamental for much of sections 1.1 and 1.2. These theorems
are, however, not used in subsequent sections.

In section 1.5 we recall the basic properties of intersection numbers of
divisors and a weak form of Riemann-Roch that we need frequently.

In section 2.4 we state and use the basic comparison theorem of al-
gebraic and analytic cohomologies and also a special case of the Hodge
decomposition of the singular cohomology.

In all these cases we need only the stated results, not the techniques
involved in their proofs.

A few times we need the Leray spectral sequence (see [God58, 4.17],
[HS71, VIIL.9] or [Bre97, IV.6] for proofs):

Theorem 0.1. Let f : X — Y be a morphism of schemes and F a
guasi-coherent sheaf on X. Then there is a spectral sequence

EY = HY(Y,R' {,F) = H" (X, F).

We also use resolution of singularities from [Hir64] on many occasions.
We need two versions of this result as follows:

Theorem 0.2. Let X be an irreducible reduced algebraic variety over
C (or a suitably small neighbourhood of a compact set of an irreducible
reduced analytic space) and I C Ox a coherent sheaf of ideals defining a
closed subscheme (or subspace) Z. Then there are a smooth variety (or
analytic space) Y and a projective morphism f : Y — X such that

(1) f is an isomorphism over X \ (Sing(X) U Supp Z),
(2) f*I C Oy is an invertible sheaf Oy (—D) and
(3) Ex(f)U D is an snc divisor.

This follows from the Main Theorems I and II (or I’ and II' in the
analytic case) of [Hir64]. The result without the assertion (1) is called
the Weak Hironaka Theorem, which is all we need in this book. Very
short proofs of the Weak Hironaka Theorem for quasi-projective X are
given in [AdJ97], [BP96], [Par98]. All these papers reduce the Weak
Hironaka Theorem to the torus embedding theory of [KKMSD73]. (They
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state only that D is an snc divisor, but the proofs work for the full snc
statement (3).)
The relative version of resolution is the following:

Theorem 0.3. Let f : X — C be a flat morphism of a reduced algebraic
variety over C (or a suitably small neighbourhood of a compact set of a
reduced analytic space) to a non-singular curve and B C X a divisor.
Then there ezists a projective birational morphism g :' Y — X from a
non-singular Y such that Ex(g) + ¢*B + (f 0 g)*(c) is an snc divisor for
allceC.

This follows from the Main Theorem II (or II') of [Hir64]. It is used
only in Chapter 7 with dim X = 3. If C' and X are projective, this is
a special case of [AK97, Thm. 2.1]. The latter paper also ignores Ex{g)
but the proof again can be modified to yield the full snc statement.

Notation 0.4. In order to avoid possible misunderstanding, here is a
list of some of the standard notation we use.

(1) Let X be a normal scheme. A prime divisor is an irreducible
and reduced subscheme of codimension one. A divisor on X is a
formal linear combination D = Y d;D; of prime divisors where
d; € Z. In using this notation we assume that the D; are distinct.
A Q-divisor is a formal linear combination D = % d;D; of prime
divisors where d; € Q. D is called effective if d; > 0 for every
1. For Q-divisors A, B, we write A > Bor B< Aif A— B is
effective. {This notation will not be used extensively since it can
be easily confused with A — B being nef.) A divisor (or Q-divisor)
D is called Q-Cartier if mD is Cartier for some 0 #m € Z. X is
called Q-factorial if every Q-divisor is Q-Cartier. The support of
D =} d;D;, denoted by Supp D, is the subscheme Ug,20D;.

(2) Linear equivalence of two divisors Dy, Dy is denoted by Dy ~
Daq; numerical equivalence of two Q-divisors D1, D9 is denoted by
D1 = Ds;. (We do not define linear equivalence of Q-divisors.)
D is said to be trivial (resp. numerically trivial) if D ~ 0 (resp.
D =0).

(3) A Q-Cartier divisor D on a proper scheme is called nefif (D-C) >
0 for every irreducible curve C C X.

(4) A morphism of schemes is everywhere defined. It is denoted by a
solid arrow f : X — Y. A map of schemes is defined on a dense
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(10)
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open set; it is denoted by a dotted arrow f : X --+ Y. In many
books this is called a rational map.

Let f : X — Y be a morphism and D;, D, two divisors on X. We
say that they are linearly f-equivalent (denoted by D1 ~¢ Do) iff
there is a Cartier divisor B on Y such that Dy ~ Dy + f*B. Two
Q-divisors are called numerically f-equivalent (denoted by Dy =y
D) iff there is a Q-Cartier Q-divisor B on Y such that D; =
Dy + f*B. D is said to be (linearly) f-trivial (resp. numerically
f-trivial) if D ~¢ 0 (resp. D =¢ 0).

For a scheme X, red X denotes the unique reduced subscheme
with the same support as X.

For a birational morphism f : X — Y, the exceptional set Ex(f) C
X is the set of points {x € X} where f is not biregular (that is
f~! is not a morphism at f(z)). We usually view Ex(f) as a
subscheme with the induced reduced structure.

Let X be a smooth variety and D = 5 d;D; a Q-divisor on X.
We say that D is a simple normal crossing divisor (abbreviated as
snc) if each D; is smooth and they intersect everywhere transver-
sally.

Let X be a scheme. A resolution of X is a proper birational
morphism g : Y — X such that Y is smooth.

Let X be a scheme and D = > d;D; a Q-divisor on X. A log
resolution of (X, D) is a proper birational morphism g : ¥ — X
such that Y is smooth, Ex(g) is a divisor and Ex(g)Ug~*(Supp D)
is a snc divisor. Log resolutions exist for varieties over a field of
characteristic zero by (0.2).

Let f : X --+ Y be a map of schemes. Let Z C X be a subscheme
such that f is defined on a dense open subset Z° C Z. The closure
of £(Z°) is called the birational transform of Z. (This is sometimes
also called the proper or strict transform.) It is denoted by f.(Z).
If g: Y — X is birational then we obtain the somewhat unusual
looking notation g7 *(Z). The same notation is used for divisors.
For a real number d, its round down is the largest integer < d. It
is denoted by |d]. The round up is the smallest integer > d. It is
denoted by [d]. The fractional part is d — |d| and often denoted
by {d}. If D =3 d;D; is a divisor with real coefficients and the
D, are distinct prime divisors, then we define the round down of
D as | D] := 3_|d;]D;, the round up of D as [D] := Y [d;]D;
and the fractional part of D as {D} := > {d;}D;.
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(13) If X is an analytic space, we usually take an arbitrary compact
set Z C X and work on a suitable small open neighbourhood
U D Z. We may shrink U if it is convenient, without mentioning
this explicitly. U is often called the germ of X around Z. If g :
Y — X is a proper morphism of analytic spaces, we usually work
over U as above. With these settings, the arguments for algebraic
varieties often work and the notation introduced above can be
used similarly. Meromorphic maps and bimeromorphic maps are
simply called maps and birational maps.

(14) P := R indicates that the new symbol P is defined to be equal
to the old expression R.

(15) Zso denotes the set of positive integers, and similarly R>q denotes
the set of non-negative real numbers.



