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CHAPTER 1

Words

1.0. Introduction

This chapter contains the main definitions used in the rest of the book. It
also presents some basic results about words that are of constant use in the
sequel. In the first section are defined words, free monoids, and some terms
about words, such as length and factors.

Section 1.2 is devoted to submonoids and to morphism of free monoids,
one of the basic tools for words. Many of the proofs of properties of words
involve a substitution from the alphabet into words over another alphabet,
which is just the definition of a morphism of free monoids. A nontrivial
result called the defect theorem is proved. The theorem asserts that if a
relation exists among words in a set, those words can be written on a
smaller alphabet. This is a weak counterpart for free monoids of the
Nielsen—Schreier theorem for subgroups of a free group.

In Section 1.3 the definition of conjugate words is given, together with
some equivalent characterizations. Also defined are primitive words, or
words that are not a repetition of another word. A very useful result, due to
Fine and Wilf, is proved that concerns the possibility of multiple repeti-
tions. The last section introduces the notation of formal series that deal with
linear combinations of words, which will be used in Chapters 5-7 and 11.

A list of problems, some of them difficult, is collected at the end. Two of
them (1.1.2 and 1.2.1) deal with free groups; their object is to point out the
existence of a combinatorial theory of words in free groups, although the
theory is not developed in the present book (see Lyndon and Schupp 1977).
Two others (1.1.3 and 1.3.5) deal with the analysis of algorithms on words.

1.1. Free Monoids and Words

Let 4 be a set that we shall call an alphabet. Its elements will be called
letters. (In the development of this book, it will often be necessary to
suppose that the alphabet A is finite. Because this assumption is not always
necessary, however, it will be mentioned explicitly whenever it is used.)

1



2 Words 1.1

A word over the alphabet A4 is a finite sequence of elements of A:
(a,,a,,...,a,), a,EA.

The set of all words over alphabet A4 is denoted by 4*. It is equipped with
a binary operation obtained by concatenating two sequences.

(ay,ay,...,a,)(b,,b,,....b,) =(a,, ay,...,a,, by, by,...,b,).

This binary operation is obviously associative, which allows writing a word
as

a,a,---a,

instead of

(ay,a,,...,a,),

by identifying a letter a € A with the sequence (a).
The empty sequence, called the empty word, is a neutral element for the
operation of concatenation. It is denoted by 1; hence, for any word w

Iw=wl=w.

A monoid is a set M with a binary operation that is associative and has a
neutral element denoted by 1,,. Hence, what has been defined on the set 4*
is a monoid structure.

A morphism of a monoid M into a monoid N is a mapping ¢ of M into N
compatible with operations of M and N:

o(mm’)=g@(m)p(m’), m meM,
and such that ¢(1,,)=1,.

PrOPOSITION 1.1.1. For any mapping a of A into a monoid M, there exists a
unique morphism @ of monoids from A* into M such that the following diagram
is commutative:

A A*
\,(P
M

where i is the natural injection of A into A*.

Proof. Left to the reader. |
Because of this property (called a universal property), the set A* of all words
over the alphabet A is called the free monoid over the set 4.
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The set of all nonempty words over 4 will be denoted by 4™
At =4*—1.

It is called the free semigroup over A (recall that a semigroup is a set with an
associative binary operation). It may be readily verified that Proposition
1.1.1 can be stated for A instead of A* by replacing the term “monoids”
by “semigroups.”

As for any monoid the binary operation of 4* may be extended to the
subsets of 4* by defining for X, ¥ C 4*.

XY={xy|x€EX,yEY}.

We shall come back to this extension in Section 1.4. Consider now some
terminology about words.

The length of the word w=a,a, - -a,, a,€ A is the number n of the
letters w is a product of. It will be denoted by |w|:

|lw|=n.

The length of the empty word is 0 and the mapping we |w| is a morphism
of the free monoid A* onto the additive monoid N of positive integers.

For a subset B of the alphabet 4, we denote by |w| 5 the number of letters
of w that belong to B. Therefore,

wj= 2 Wl

ac A

Denoted by alph(w) is the subset of the alphabet formed by the letters
actually occurring in w. Therefore a€ A belongs to alph(w) iff

|w|,=1.

A word v € A4* is said to be a factor of a word x € A* if there exist words
u, wE A* such that

X = Uvw.

The relation “v is factor of x” is an order on 4*. A factor v of x€ 4* is
said to be proper if v+ x:

A word v is said to be a left factor of x € A* if there exists a word wE A*
such that

x=ow,

and it is said to be a proper left factor if v # x. The relation “v is a left factor
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of x” is again an order on A*; it will be denoted by
vV X.
This order has the fundamental property that if
V=X, v'<x,

then v and v’ are comparable; v<v’ or v’ < 0.
More precisely, if
ow=v0v'w,

either there exists s € A* such that v = v’s (and then sw = w’) or there exists
1€ A* such that v'= ot (and then w=1w’). This will be referred to as the
property of equidivisibility of the free monoid.

The definition of a right factor is symmetrical to that of a left factor. The
reversal of a word w=a,a,---a,, a,€ A, is the word

w=a, --a,a.

Hence v 1s a left factor of x iff & is a right factor of ¥. We shall also use the
notation w instead of w; we may then write or all u,vE 4™,

(uv) = oa.

A word w is palindrome if w = w.
A word v € A* is said to be a subword of a word x € A4* if

v=a,a, --a a,€A4,n=0,

n»

and there exist y,, y;,...,¥,E 4* such that
X= Y )iy ayy,.

Therefore v is a subword of x if it is a sub-sequence of x.

1.2. Submonoids and Morphisms

A submonoid of a monoid M is a subset N of M containing the neutral
element of M and closed under the operation of M: NN CN. Given a
sul set X of the free monoid 4*, we denote by X* the submonoid of A*
generated by X. Conversely, given a submonoid P of 4*, there exists a
unique set X that generates P and is minimal for set-inclusion. In fact, X is
the set

X=(P-1)—(P~1)
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of the nonempty words of P that cannot be written as the product of two
nonempty words of P. It is a straightforward verification that X generates P
and that it is contained in any set Y C 4* generating P. "The set X will be
referred to as the minimal generating set of P.

A monoid M is said to be free if there exist an alphabet B and an
isomorphism of the free monoid B* onto M. For instance, for any word
wE A" the submonoid generated by w, written w* instead of {w}*, is free.
It is very important to observe that not all the submonoids of a free monoid
are themselves free (see Example 1.2.2).

PROPOSITION 1.2.1. Let P be a submonoid of A* and X be its minimal
generating set. Then P is free iff any equality

Xy Xg Xyg =N Y2 Vs n,m=uv, X,-,ijX
impliesn=mand x; =y, 1<i<n.

The proof is again left to the reader. The minimal generating set of a free
submonoid P of A* is called a code; it is referred to as the basis of P.
A set X C A* is called a prefix if for x, yE X.

X<y

implies x = y; it can easily be verified that any prefix X C A" is a code.

Example 1.2.2. Let A={a, b}; the set X = {a, b, ab} is not a code since it
is not the minimal generating set of X*. The set Y ={a, ab, ba} is the
minimal generating set of Y*; yet it is not a code because

a(ba)=(ab)a

is a nontrivial equality between products of elements of Y. The set Z=
{aa, ba, baa, bb, bba} can be verified to be a code.

The following characterization of free submonoids of 4* is useful:

PROPOSITION 1.2.3. A submonoid P of A* is free iff for any word wE A*,
one has wE P whenever there exist p, q€ P such that

pw,wqE P.

Proof. Let P be a submonoid of A* and denote by X its minimal gener-
ating set. First suppose that the preceding condition holds for P. Then if

XXy Xy =V V2 Ve X, E€E X, yEX, (1.2.1)
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we may suppose that x; < y, and let y, = x,w, w€ 4*. Then
x2. . .‘xn = wyz. . .yn,

and therefore x,w,wy,- - - y,€ P; this implies by hypothesis we& P. Since X
is the minimal generating set of P, we have w=1, and this proves that eq.
(1.2.1) is trivial by induction on n + m. Therefore P is free.

Conversely, if P is free, let ¢ by an isomorphism of a free monoid B* onto
P, with X=¢(B). Then if for p,q€ P, one has pw,wg€ P, let p(x)=
P 9(y)=wq, o(z) = pw, (1) =q. Since @(xy)=g@(z1) we have xy=z1,
and this implies that z = xu, u€ B*. Therefore w = ¢(u)€ P. ]

COROLLARY 1.2.4. An intersection of free submonoids of A* is free.

Proof. If the submonoids P, i€ I are free, and if there exists

p,qEP= MNP,
i€l

such that pw,wg€ P, then by Proposition 1.2.3, we P; for each i€ [ and
therefore we P. By 1.2.3, this shows that P is free. [

If X is any subset of A*, the set & of free submonoids of 4* containing X
is not empty (it contains 4*) and, by Corollary 1.2.4, it is closed under
intersection. Therefore the intersection of all elements of ¥ is the smallest
free submonoid containing X; the code generating this submonoid is called
the free hull of X.

THEOREM 1.2.5 ( Defect theorem). The free hull Y of a finite subset X C A*,
which is not a code, satisfies the inequality

Card(Y) < Card(X)—1.

Proof. Consider the mapping « of X into Y associating to x € X the word
yEY such that x€ yY*; since Y is a code, the mapping a is well defined.
As X is not a code, there exists an equality

XyXg - xn: NY2 Vm
with x;, y,€ X and x,# y,. Therefore, a(x,)=a(y,) and a cannot be
injective.
The following shows that « is surjective: if it were not, let zEY be such
that z & a X'); consider the set

Z=(Y—z)z*.
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The set Z is a code since an equality

— o o ’ ’
22y 2, =202y 2y, 2,,2,EZ, (1.2.2)

can be rewritten
D R L Y R 7 (12.3)

with z, = y,z%, 2/, = y', 2%, y,, y, €Y — Z, k;, k’;2 0. Since Y is a code Eq.
(1.2.3) is trivial. This implies y, = y'|, k,=k’}, ¥, = ¥'5,... and finally n = n’
and z,=z’,.

But we have X C Z* and Z* C Y*, which contradicts the minimality of
the submonoid Y*. Hence « is surjective, which implies that Y has fewer
elements than X. |

As an immediate consequence, of Theorem 1.2.5, there is the following
corollary.

COROLLARY 1.2.6. Each pair of words {x, y} (x, yE A*) is a code unless x
and y are powers of a single word z € A*.

Morphisms of free monoids play an essential role in the sequel. Let
@: B* - A4*

be a morphism of free monoids. Clearly it is completely characterized by the
images @(b) € A* of the letters b€ B. It is an isomorphism of B* into A* iff
its restriction to B is injective and if the submonoid ¢(B*) is a free
submonoid of A*.

A morphism ¢@: B* — A* is called nonerasing if o(B*yc A". If ¢ is
non-erasing, then for all w € B¥,

lp(w)]|=w]|.
1.3. Conjugacy

A word x € A* is said to be primitive if it is not a power of another word;
that is, if x %1 and x€ z* for z€ 4* implies x = z.

ProrositiON 1.3.1. If
x"=ym, x, yEA*, n,m=0,

there exists a word z such that x, yE€ z*.
In particular, for each word wE A™, there exists a unique primitive word x
such that we x*.
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Proof. If w=x"= y™ with x # y the set {x, y} is not a code and, by the
defect theorem (1.2.5) there exists a word z&€ A* such that x, y€ z*. If
w=x"= y™ with x and y primitive, then there exists a word z€ 4* such
that x =z, y =z/,i, j= 0. This implies x = y = z. | |

PROPOSITION 1.3.2. Two words x, yE A* commute iff they are powers of
the same word. More precisely the set of words commuting with a word x€ A™
is a monoid generated by a single primitive word.

Proof. Let z be the unique primitive word such that x& z*. Then if
xy = yx for y€ A™, the set {x, y} is not a code and there exists € 4" such
that x, y€ r*. Then by Proposition 1.3.1, t€ z*. Therefore the set of words
commuting with x is generated by z. |

Two words x and y are said to be conjugate if there exist words u, v € A*
such that

X=uv, y=ou. (1.3.1)
This is an equivalence relation on A4* since x is conjugate to y iff y can be
obtained by a cyclic permutation of the letters of x. More precisely, let y be
the permutation of A* defined by
y(ax)=xa, a€A, x€EA4*;

then the classes of conjugate elements are the orbits of y.

PropoSITION 1.3.3. Let x, ye A" and z, t be the primitive words such that
x€z*, y&r*. Then x andy are conjugate iff z and t are also conjugate; in this
case, there exists a unique pair (u,v)E A*X A" such that z = uv, t = vu.

Proof. Let x=z* 1f x=rs, there exists u,0€ A* such that z=uv,
r=zku,s=vz*> and k, + k, + 1 = k. Then the conjugate y = sr of x can be
written y = t* with ¢ = vu. Moreover the pair (u, v) such that z = uv, t = vu
is unique since by Proposition 1.3.2 z has |z| distinct conjugates. n

PROPOSITION 1.3.4. Two words x, yE A" are conjugate iff there exists a
2E€ A* such that

xz=zy. (1.3.2)
More precisely, equality (1.3.2) holds iff there exist u, v € A* such that

x=uv, y=ou, z€u(vu)*. (1.3.3)
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Proof. If Eq. (1.3.3) holds, then (1.3.2) also holds. Conversely, if xz = zy,
for x, yE A", zE€ A*, we have for each n=>1

z=2zy". (1.3.4)

Let n be such that n|x|>|z|=(n—1)|x|. Then we deduce from Eq.
(1.3.4) that

z=x""'u, x=uwv, vz=y". (1.3.5)

Finally y" = vz =ox""'u is also equal to (vu)" and since |y| = |x|, we

obtain y = vu, proving that Eq. (1.3.3) holds.

It may be observed that, in accordance with the defect theorem, the
equality xz = zy implies x, y, z€ {u, v}*, a submonoid with two generators.

The properties of conjugacy in A* proved thus far can be viewed as
particular cases of the properties of conjugacy in the free group on A4 (see
Problem 1.3.1).

If Card(A) =k is finite, let us denote by y,(n) the number of classes of
conjugates of primitive words of length »n on the alphabet 4. If w is a word
of length n and if w =29 with z primitive and n = ¢d, then the number of
conjugates of w is exactly d. Hence

k"= dy,(d), (1.3.6)

din

the sum running over the divisors of n. By Mobius inversion formula (see
Problem 1.3.2) this is equivalent to:

wn)= 3 u(der (137)

din
where p is the Mobius function defined on N—0 as follows:

m1)=1,
u(n)=(-1)’
if n is the product of i distinct primes and
p(n)=0
if n is divisible by a square.

Proposition 1.3.1 admits the following refinement (Fine and Wilf 1965):
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PROPOSITION 1.3.5. Let x, yE A*, n=|x|,m=y|, d = ged(n, m). If two
powers x¥ and y9 of x and y have a common left factor of length at least equal
ton+m—d, then x and y are powers of the same word.

Proof. Let u be the common left factor of length n + m —d of x?, y9. We
first suppose that d =1 and show that x and y are powers of a single letter.
We may assume that n<m— 1. It will be enough to show that the first m—1
letters of u are equal. Denote by u(i) the ith letter of u. By hypothesis, we
have

u(i)=u(i+n),  1<ism-—1, (1.3.8)
u(j)=u(j+m), I<j<n-1. (1.3.9)
Let I<i, j<m—1andj=i+nmodm. Then either j=i+norj=i+n

— m. In the first case u(i) = u(j) by (1.3.8). In the second case u( j)=u(j
+ m) by (1.3.9) since j =i+ n—m=<n—1. Therefore

u(i)=u(i+n)=u(j+m)=u(j).

Hence u(i)=u(j) whenever 1<i, j<m—1 and j—i=nmodm. But
since m, n are supposed to be relatively prime, any element of the set
{1,2,...,m—1} is equal modulom to a multiple of n. This shows that the
first m—1 letters of u are equal. In the general case, we consider the

alphabet B= A7 and, by the foregoing argument, x and y are powers of a
single word of length 4. |

Example 1.3.6. Consider the sequence of words on 4 = {a, b} defined as
follows: f,=1b, f, =a and

foer=fibumrs =2
The sequence of the lengths A, =] f,| is the Fibonacci sequence. Two

consecutive elements A, and A, | for n=>3 are relatively prime. Let g, be
the left factor of f, of length A, —2 for n=3. Then

81 =i 18n2
for n=35, as it may be verified by induction. We then have simultaneously

f;r+1<fnz’ gn+l<f;l3—l‘

Therefore, for each n=5, f? and f3,_, have a common left factor of
length A, + A, | —2. This shows that the bound given by Proposition 1.3.5
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is optimal. For instance,

Js

p————

8;=abaababaaba
——— ———

fs fs
1.4. Formal Series

Enumeration problems on words often lead to considering mappings of
the free monoid into a ring. Such mappings may be viewed (and usefully
handled) as finite or infinite linear combinations of words (see for instance
Problem 1.4.2). This is the motivation for introducing the concept of a
formal series.

Let K be a ring with unit; in the sequel K will be generally be the ring Z
of all integers. A formal series (or series) with coefficients in K and variables
in A is just a mapping of the free monoid A* into K. The set of these series
is denoted by K({4)).

For a series 6€ K((A)) and a word weE A*, the value of 6 on w is
denoted by (o, w) and called the coefficient of w in o; it is an element of K.

For a set X C A*, we denote by X the characteristic series of X, defined by

X, x)=1 ifxeX,
X,x)=0 ifx&X.

The operations of sum and product of two series o, 7€ K{((A4)) are
defined by:
(o6+T1,wy={o,w)+{r,w),

(o7, W)= E (o, u){T,v),

w = uv

for any w€ A4*. These operations turn the set K{{A)) into a ring. This ring
has a unit that is the series 1, where 1 is the empty word.

A formal series 6& K({A4)) such that all but a finite number of its
coefficients are zero is called a polynomial. The set K{ A) of these polynomi-
als is a subring of the ring K{(4)). It is called the free (associative)
K-algebra over A4 (see Problem 1.4.1). For each 0€ K({A4)) and 7€ K(4),
we define

(o,7y= D (o, w)(T,w).

This is a bilinear map of K({A4)) X K{(A4) in K.

The sum may be extended to an infinite number of elements with the
following restriction: A family (o), , of series is said to be locally finite if
for each we A4*, all but finitely many of the coefficients {g,,w) are zero.
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If (0,), ; is a locally finite family of series, the sum

02201.

iel

is well defined since for each w€E A*, the coefficient (o, w) is the sum of a
finite set of nonzero coefficients (o,, w).

In particular, the family (w),,c ,. is locally finite, and this allows to write
for any o€ K({A4))

o= 3 {(a,w)w,
we 4*
or, by identifying w with w,
o= Y (o,w)w.
we A*

This is the usual notation for formal series in one variable:
o= g,a"
n=0

with 0, = (0, a").

Let o be a series such that (0,1) =0; the family (¢'),., is then locally
finite since (o’,w) =0 for i=|w|+1. This allows us to define the new
series

o*=1+o+e*+---,
which is called the szar of ¢. It is easy to verify the following:

PROPOSITION 1.4.1. Let 6 € K({ A)) be such that {c,1) = 0. The series o*
is the unique series such that:

o*(1—0)=(1—o0)o*=1.

Following is a list of statements relating the operations in K({A4)) with
the operations on the subsets of 4* when K is assumed to be of characteris-
tic zero.

PROPOSITION 1.4.2. For two subsets X, Y of A*, one has
() let Z=XUY. ThenZ=X+Y iff XNY =0,
(i) let Z=XY. Then Z=XY iff xy=x"y'=x=x",y=y’, for x,x'E
X, y, yEY,
(ili) let XC A", and P = X*. Then P=X* iff X is a code.

The proof is left to the reader as an exercise.
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Notes

The terminology used for words presents some variations in the literature.
Some authors call subword what is called here factor the term subword is
reserved for another use (see Chapter 6). Some call prefix or initial segment
what we call a lefr factor. Also, the empty word is often denoted by ¢ instead
of 1.

General references concerning free submonoids are Eilenberg 1974 and
Lallement 1977; Proposition 1.2.3 was known to Schiitzenberger (1956) and
to Cohn (1962). The defect theorem (Theorem 1.2.5) is virtually folklore; it
has been proved under various forms by several authors (see Lentin 1972;
Makanin 1976; Ehrenfeucht and Rozenberg 1978). The proof given here is
from Berstel et al. 1979, where some generalizations are discussed.

The results of Section 1.3 are also mainly common knowledge. For
further references see Chapters 8 and 9.

The standard reference for Section 1.4 is Eilenberg 1974.

Problems
Section 1.1

1.1.1. (Levi’s lemma). A monoid M is free iff there exists a morphism A of
M into the monoid N of additive integers such that A~!(0)=1,, and
if for any x, y, z,tEM

Xy =zt

implies the existence of a u€ M such that either x = zu,uy =t or
Xu=z,y=ut.

1.1.2. Let 4 be an alphabet and A= {a|a € A} be a copy of A. Consider in
the free monoid over the set 4 U 4 the congruence generated by the
relations

aa=aa=1, ac A.

a. Show that each word has a unique representative of minimal
length, called a reduced word.

b. Show that the quotient of (AU 4)* by this congruence is a group
F; the inverse of the reduced word w is denoted by w.

¢. Show that for any mapping a of 4 into a group G, there exists a
unique morphism ¢ of F onto G making the following diagram
commutative:

A F

N

G



*1.1.3.

Problems

F is called the free group over A (see Magnus, Karass, and Solitar
1976 or Hall 1959 or Lyndon and Schupp 1977). Henceforth in
problems about free groups,

p: F—(AUA)*,

denotes the mapping associating to each element of F the unique

reduced word representing it.

Let ¢: A* — A* be the mapping assigning to each word w& A* the

longest word that is both a proper left and a proper right factor

of w.

a. Let w=a,a,---a, and denote ¢(i)= j instead of ¢(a,---a,)=
a,---a; show that the following algorithm allows computation
of @:

Loo(1)<0;
2. for i< 2 until n do

begin

Jeo(i—1)

while j>0 and a;# a; , do j — ¢(j);

ifj=0anda; # a;, | then (i) < 0

else (i)« j+1;

end
(For the notations concerning algorithms, see Aho, Hopcroft, and
Ullman 1974.)

b. Show that the number of successive comparisons of two letters of
the word w in performing the foregoing algorithm does not
exceed 2n. (Hint: Note that the variable j can be increased at
most n times by one unit.)

c. Show that the foregoing algorithm can be used to test whether a
word u€ A" is a factor of a word v€ A™. (Hint: Apply the
algorithm of (a) to the word w = uv.)

This is called a string-matching algorithm (see Knuth, Morris, and

Pratt 1977).

v W

Section 1.2

*1.2.1.

Let F be the free group over the set 4 and H be a subgroup of F.

a. Show that it is possible tochoose a set Q of representatives of the
right cosets of H in F such that the set p(Q) of reduced words
representing Q contains all its left factors. Such a set Q is called a
Schreier system for H.

b. Let Q be a Schreier system for H and

X={pag|p,q€EQ,a€ A, pac(H—1)q)};
Show that X generates H.
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1.2.2.

1.2.3.

1.2.4.
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¢. Show that each pag€ X is reduced as written and that, in the
product of two elements of XUX the letters a in the triple
{ p, a, q) never cancel unless the whole product does.

d. Deduce from (a), (b), and (c) that any subgroup H of a free group
F is free and that if H is of finite index d in F, then it is
isomorphic with a free group on r generators with

r—1=d(k—1), k=Card(4)

(Schreier’s formula; see the references of Problem 1.1.2).
A submonoid N of A* is generated by a prefix iff it satisfies:

m,mm&e& N=neN

for all m, n€ A*. Such a submonoid is called (right) unitary.
Let P be the set of words

P={ww|lwe 4*}.

Then P is the set of palindromes (i.e., u=ii) of even length. Show
that the submonoid P* is right and left unitary.

(Hint: Let I be the basis of P*; show that II is prefix.) (See Knuth,
Morris and Pratt 1977.)

Let 6: A* —» B* be a morphism and P C B* be a free submonoid of
B*. Show that 7 '(P) is a free submonoid of 4*.

Section 1.3

1.3.1.

1.3.2.

Show that two words x, y& A* are conjugate iff they are conjugate
in the free group F over A —that is, iff there exists an element g of F
such that

x=gyg ',

(Identify 4* to a subset of F.)
( Mobius inversion formula) Let u be the Mobius function; show that

1 if n=
Su(d)=|, =1,

dln ifn=2.

Deduce from this that two functions ¢,y of N—0 in Z are related
by
2 ¥(d)=¢(n)
din
iff
2 w(d)g(n/d)=y(n).

din



1.3.3.

1.34.

1.3.5.

Problems

Show directly (without using the defect theorem, that is) that if
{x, y} is not a code, then x and y are powers of a single word.
(Problem 1.1.3) Show that ¢(w)=u iff

w= (st)kHs, u= (st)ks, k=0,s,1€ A*

with |s| minimal. Deduce that the algorithm of Problem 1.1.3 allows
computation of the primitive word such that w=v", n=1 (Hinr:
Use Proposition 1.3.5.)

Let w=a,a,---a,,n=1,a,€A. For 1<i<n, let y(i) be the
greatest integer j < i —1 such that

R R A It

with ¥(i) = 0 if no such integer j exists.
a. Show that the following algorithm computes y:

L Y1)« 0;

2.i<1; j<0;

3. whilei<<ndo
begin

4. while j>0 and a,# a; do j < Y(j);

5. ie—i+1; Jej+1;

6 if a, = a, then Y(i) = Y(j) else Y(i) < J;
end

(Hint: Show that the value of the variable ; at line 6 is (i —1)+1
wheres ¢ is as in Problem 1.1.3.)

b. Show that the algorithm of problem part (a) can be used to test
whether a word u is a factor of a word v.

¢. Show that the number of consecutive times the while loop of line
4 may be executed does not exceed the integer r such that

ApsSn<X .,

where A, is the rth term of the Fibonacci sequence. Show, using
the sequence of Example 1.3.6 that this bound can be reached.
(See Knuth, Morris and Pratt 1978; Duval 1981.)

Section 1.4

1.4.1.

For any mapping a of 4 into an associative K-algebra R, there exists
a unique morphism ¢ of K{A) into R such that the following
diagram is commutative:

K(4)

NZ
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1.4.2 Let W< A" be a set of words such that no proper factor of a word of
Wisin W
P =A* — A*WA*
be the set of words having no factor in W. Let for each ue W,
X, = A*u — A*WA*

be the set of words having u as a right factor but no other factor in
W. For each u,vE W, let R, , be the finite set

R, ,={t€A" — A*v|m € A*v}.

a. Show that the following equalities hold in Z{{A4)):

1+PA=P+ 3 X, (a.1)
uew
and for each ue W,
Pu=X,+ 3 XR,, (a.2)
vEW

b. Show that the system of equalities (a.1) and (a.2), for u€ W,
allows computation of P.
¢. Show that the formal series

A= X A,z"

n=0

with A, = Card(A"NP), is rational. (Hint: Use the morphism of
Z{({A)) onto Z{{z)) sending a€ 4 on z.)
d. Apply the foregoing method to show that for W= {aba} one has

n:2}\n—l_kn—2+>\n-3’ n=3.

(See Schiitzenberger 1964; for a general reference concerning
linear equations in the ring Z{{A)), see Eilenberg 1974.)



