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Introduction

K. OTSUKA AND C. M. WAYMAN

Symbols for Chapters 1 and 2

A, reverse transformation finish temperature

A, reverse transformation start temperature

B lattice deformation matrix

d, shape strain direction (unit column vector)

F, diagonal matrix

F, symmetric matrix

g™ chemical free energy of the martensitic phase
per unit volume

g® chemical free energy of the parent phase per unit
volume

Ag, = g™ — ¢g® chemical free energy change upon
martensitic transformation per unit volume

G™ Gibbs free energy of the martensitic phase

G? Gibbs free energy of the parent phase

AGP™™ = G™ — GP

AG® free energy change due to an applied stress

AG, = AGP™™ chemical free energy change upon
martensitic transformation

AG, strain energy arising from martensitic
transformation

AG,. = AG, + AG, non-chemical term in the free
energy change upon martensitic transformation

AG, surface energy arising from martensitic
transformation

H hexagonal (Ramsdel notation)

AH* enthalpy of transformation

I identity matrix

K, twinning plane

K, undistorted plane

m, magnitude of shape strain

m” dilatational component of shape strain (AV/V)

m’ shear component of shape strain

M, martensite finish temperature

M, martensite start temperature

p hydrostatic pressure

p, invariant plane normal (habit plane normal) (p,’
unit row vector)

P, shape strain matrix

P, lattice invariant shear matrix

R rhombohedral (Ramsdel notation)

R rotation matrix

s twinning shear

AS entropy of transformation

T temperature

T, equilibrium temperature between parent and
martensite

V volume of the parent phase

AV volume change upon martensitic
transformation

¢ strain associated with the martensitic
transformation

¢, calculated transformation strain

n, twinning shear direction

n, the intersection of the plane of shear and the K,
plane

A an angle between the shear component of the
shape strain and the tensile axis

o applied stress

o, normal component of an applied stress along
the habit plane normal

7 shear stress component of an applied stress along
the shear component of the shape strain

y an angle between the habit plane and the tensile
axis

1.1 Invitation to shape memory effect and the notion of martensitic
transformation

The shape memory effect (to be abbreviated SME hereafter) is a unique
property of certain alloys exhibiting martensitic transformations, as typically
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(c)

{d)

Fig. 1.1. Demonstration of shape memory effect by a space antenna of Ti—Ni wires.
The antenna deformed in the martensitic state in (a) reverts to the original shape
(b—d) upon heating by solar heat. (Courtesy Goodyear Aerospace Corporation)

shown in Fig. 1.1. Even though the alloy is deformed in the low temperature
phase, it recovers its original shape by the reverse transformation upon heating
to a critical temperature called the reverse transformation temperature. This
effect was first found in a Au—47.5at% Cd alloy by Chang and Read,! and then
it was publicized with the discovery in Ti—Ni alloys by Buehler et al.> Many
other alloys such as In-T1,** Cu—Zn3 and Cu—Al-Ni® were found between the
above two and thereafter. (See Ref. [7] for historical developments.) The same
alloys have another unique property called ‘superelasticity’ (SE) at a higher
temperature, which is associated with a large (several-18 %) nonlinear recover-
able strain upon loading and unloading. Since these alloys have a unique
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martensite

parent phase

martensite

parent phase

Fig. 1.2. A simplified model of martensitic transformation. See text for details.

property in remembering the original shape, having an actuator function and
having superelasticity, they are now being used for various applications such
as pipe couplings, various actuators in electric appliances, automobile applica-
tions, antennae for cellular phones and medical implants and guidewires etc.
Besides, since they have the function of an actuator as well as a sensor, they are
promising candidates for miniaturization of actuators such as microactuators
or micromachines or robots. These will be discussed in detail in later chapters.

Since both SME and SE are closely related to the martensitic transform-
ation (MT), the basic notion of MT is first given in a very naive and over-
simplified manner. More accurate descriptions will follow in the next section.
The martensitic transformation is a diffusionless phase transformation in
solids, in which atoms move cooperatively, and often by a shear-like mechan-
ism. Usually the parent phase (a high temperature phase) is cubic, and the
martensite (a lower temperature phase) has a lower symmetry. The transfor-
mation is schematically shown in Fig. 1.2. When the temperature is lowered
below some critical one, M T starts by a shear-like mechanism, as shown in the
figure. The martensites in region A and in region B have the same structure, but
the orientations are different. These are called the correspondence variants of
the martensites. Since the martensite has a lower symmetry, many variants can
be formed from the same parent phase. Now, if the temperature is raised and
the martensite becomes unstable, the reverse transformation (RT) occurs, and
if it is crystallographically reversible, the martensite reverts to the parent phase
in the original orientation. This is the origin of SME, which will be described in
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Fig. 1.3. Optical micrograph of spear-like y,” martensite in Cu—14.2 mass%
Al-4.2 mass% Ni alloy.

more detail later. The above example clearly shows that the characteristics of
MT lie in the cooperative movement of atoms. Because of this nature, MT is
sometimes called the displacive transformation or military transformation,
which are equivalent in usage to MT. Thus, even though the relative atomic
displacements are small (compared with inter-atomic distance), a macroscopic
shape change appears associated with MT, as seen in Fig. 1.2. It is in this
respect that MT is closely related to SME and SE.
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(a) parent phase (P)

Y—surface relief
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Fig. 1.4. Schematic representation of shape change associated with martensitic trans-
formation; (a) original parent single crystal, (b} surface relief due to transformation, (c)
change in direction of pre-scratched straight line upon martensitic transformation.

Figure 1.3 shows an optical micrograph of a typical martensite in a
Cu-Al-Ni alloy. The flat region in light contrast represents a parent phase,
while the plate-like morphology of martensite variants is observable by surface
relief (surface upheaval) effects. The thin band contrasts in each martensite
variant are twins, which will be discussed later. Similarly, when a straight line is
marked on the surface of a specimen, the line changes direction upon MT, as
schematically shown in Fig. 1.4(c). These experiments clearly show that the
shape change associated with MT is linear, since upon MT, a line and a surface
are changed into another line and surface, respectively. This means that the
shape change associated with MT can be described by a matrix as an operator.

1.2 Martensitic transformations: crystallography
1.2.1 Linear algebra describing a deformation (mathematical preparation)

When a deformation is linear, the deformation is represented by the following
equation.

X3 ayy Gyp Ady3\ /X
Ya | =141 G2z a3l V1| (1.1)
Z; dsy dzz Q33/ \Z;

In a compact form, it may be written as
r, = Ary, (1.2)

where A represents the matrix a;; etc. That is, any vector r, is transformed into
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r, by a matrix 4 as an operator. The examples of 4 will be given in the
following sections. When we use linear algebra, a coordinate transformation is
also necessary, since we refer to both the parent phase and the martensite,
which have different structures. There are some important formulas for a
coordinate transformation, which apply for any crystal system. Suppose we
have two axis systems represented by the base vectors a, b, ¢ (we call this the
old system) and A4, B, C(we call this the new system). Then, we can immediately
write down Eq. (1.3). Then, by solving a, b, ¢ as a function of 4, B, Cin Eq.(1.3),
we obtain Eq. (1.4). These equations represent the relations between the old
and the new axis systems in direct space. However, it is proven that similar
equations hold in reciprocal space as shown in Egs. (1.5) and (1.6), where a*,
b*, c* represent the base vectors in reciprocal space, which correspond to a, b,
¢, and the same thing applies to 4*, B*, C*.%

A =54+ 5,b+5.5¢
B = s,.a + 5,,b + 5,3¢ (1.3)
C =s3a+ 55, + s5;5¢
a=t,A+t,B+1t,;C
b=t,A+1t,,B+1,,C (1.4)
c=1t34+1t3,B+1;,C

A* =t a* +t, b* + t;,c*
B* =t ,a* + t,,b* + t;,c* (1.5)
C* =t 3a* + t,30* + t35¢*
a* =5, A* + 5, B* + 55, C*
b* = 5.,A* + 5,,B* + 55,C* (1.6)
c* = 5,34% + 5,,B* + 5;,C*

Furthermore, there are other important formulas for arbitrary vector compo-
nents in direct and in reciprocal space, as shown below.

X S11 Sa1 S3p\ /X
Vi=1[812 822 s || ¥ (1.7)
z S13 Sz S33/\Z
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H S11 S12 Si3\/h
K|={s3 S22 Sp3]lk (1.8)
L S31 S32 S33/\l

new old

where xyz and X YZ refer to the direct lattice (i.e. direction) and hkl and HKL
to the reciprocal lattice (i.e. plane).

When a coordinate transformation is applied for a vector or a plane, an
operator is also transformed following the similarity transformation given
below. (The proof is simple. See Ref. [9] for the proof.)

A=R 'AR or A = RAR™! (1.9
A =RAR or A = RAR™ (when R is orthogonal), (1.10)

where A is an operator in the old system, while A is that in the new system, R is
a rotation matrix, and R~ ! is an inverse of R, and R" is R transposed. In the
martensite crystallography calculations, the similarity transformation is often
used, since operators often refer to the parent phase in such calculations.

1.2.2 Structural change without diffusion: lattice correspondence,
correspondence variant and lattice deformation

We now discuss how the martensite crystal is produced from the parent crystal
without diffusion. As a typical example, we describe this for the well-known
FCC (Face-Centered Cubic)}-BCT (Body-Centered Tetragonal) transform-
ation in steels. Figure 1.5(a) shows two FCC unit cells, in which we notice a
BCT lattice with the axial ratio c/a = \/ 2. Thus, if the X and Y axes in the
figure are elongated and the Z axis is contracted so that c¢/a becomes the value
of the martensite (i.e. a value close to 1), then a BCT martensite is created, as
shown in Fig. 1.5(b). This is the mechanism originally proposed by Bain.!?
Although the mechanism is different from one alloy to another, it is always
possible to create a martensite from a parent by the combination of elongation,
contraction and shear along certain directions. If the lattice parameter of the
FCC is a,, and those of the BCT are a and c, then the lattice deformation
matrix with respect to the X YZ axes is written as follows.

ﬁa/ao 0 0
B=| 0 J2a/a, O (1.11)
0 0 c/ag

By utilizing the similarity transformation, the lattice deformation matrix with
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Fig. 1.5. Mechanism of FCC-BCT (or BCC) transformation by Bain. xyz represents
the crystal axes in the parent FCC lattice, while X YZ represents those axes in the
BCT martensite. See text for details.

respect to the parent lattice (i.e. the xyz axes in (a)) is given as follows.
B = RBR"

12 1//2 0\ n/2a/a, 0 0\/1/2 —1,/2 0

=| -1/2 /2 of o  J2aa, O |[14/2 12 0]
0 0 1 0 0 c/a, 0 0 1

(1.12)

Another important notion is the lattice correspondence, which is associated
with the lattice deformation. Since MT is diffusionless, there is a one-to-one
correspondence in the directions and planes between the parent and the
martensite. It is clear in the figure that [1/21/20] and [1/21/2 0], correspond
to [100],, and [010],, respectively, where the subscripts p and m correspond
to parent and martensite respectively. Then, how an arbitrary [xyz], and (hkD),
in the parent phase correspond to which [X YZ], and (HKL)_ in the marten-
site is the main problem here. This is essentially the problem of coordinate
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transformation. In Fig. 1.5(a), it is easy to write down the coordinate trans-
formation between the xyz system and the X YZ system. When we transform
from the X YZ system in (a) to the X YZ system in (b), lattice change (by lattice
deformation) occurs, but the Miller indices are invariant under this transform-
ation. Thus, the above obtained equation of coordinate transformation still
holds, as follows.

X 12 172 0/X H 12 —1/2 0O\ /h
yl=1—-12 12 0| Y] K|={12 12 0| k]| (1.13)
z 0 0 1/\Z L 0 0 1/\I
old new new old

From these equations, we can easily find that [101], corresponds to [111],,
[112], to [011], and (111), to (011),, by lattice correspondence.

One more important notion associated with lattice correspondence is the
correspondence variant (c.v.). In Fig. 1.5, we chose the z axis as the ¢ axis of the
martensite. We could equally choose the x and y axes as the ¢ axis of the
martensite. Thus, three correspondence variants are possible in the FCC-BCT
transformation.

Among many structural changes in various MTs, those in -phase alloys are
important. Thus, they are briefly described below. The f-phase alloys, such as
Au—Cd, Ag-Cd, Cu-Al+(Ni), Cu—Zn—Al) etc., are characterized by the value of
electron/atom ratio e/a ~ 1.5, at which BCC (Body-Centered Cubic) or or-
dered BCC structure is stabilized due to nesting at the Brillouin zone bound-
ary. The ordered BCC structures are usually B2 type or DO; type. With
lowering temperature, these ordered BCC structures change martensitically
into close-packed structures, which are called ‘long period stacking order
structures’ with a two-dimensional close-packed plane (basal plane), since the
entropy term in the Gibbs free energy becomes negligible at low temperatures
and the decrease of internal energy becomes more important. Following
Nishiyama and Kajiwara,'! we describe the structural change for the B2 type
parent phase using Fig. 1.6, but that for the DO, type parent phase is similar.
The structure of the B2 type parent phase is shown in (a). This structure may be
viewed as that in which the (110)g, plane is stacked in A{B;A B, ... order, as
shown in (b). Upon MT, the (110)z, plane changes into a more close-packed
plane (001),, in (c), by contracting along [001], and elongating along [110]s,,
so that the indicated angle changes from 70° 32’ to close to 60°. Once the plane
becomes a close-packed one as shown in (c), we have three stacking positions
A, B, C shown in (c). Then, we can create various stacking order structures.
Theoretically, we can create an infinite number of long period stacking order
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1001)as

te— [001]Jsp——>1

(dy 2ZH(11) () 9R(21), H 3R(1)s (& 7TR(52).

Fig. 1.6. The structural change from B2 parent phase into various martensites with
long period stacking order structures. See text for details.

structures, but practically the first three (d—f) are most common, and the fourth
(g)is a new one. There are two notations to describe these long period stacking
order structures, i.e. Ramsdel notation and Zdanov symbol.!>** The mean-
ings of these notations are as follows. In (d), the period along the c-axisis 2, and
the symmetry is hexagonal, when ordering is disregarded. Thus, it is called 2H
in Ramsdel notation. The Zdanov symbols in parentheses represent the numb-
er of layers in a clockwise sequence (positive number) and that in an anti-
clockwise sequence (negative number). Since the stacking sequence in the case
of (d)is ABAB..., it is written as (11). In the case of (¢), the period is 9, and the
symmetry is thombohedral. Thus, it is called 9R in Ramsdel notation. In the
case of (g), 7R is the wrong notation, since it does not have rhombohedral
symmetry, even though ordering is disregarded, but the term is commonly
used erroneously. The usage of the two notations for (f) will be easily under-
stood. In the above, the usage of Ramsdel notation is slightly different between
Refs. [12,13] and Ref. [14]. We followed Refs. [12,13] by Kakinoki in the
above. Thus care should be taken. There is another new notation proposed by
the present authors'® which is more logical and more accurate. However, we

[001hx
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have omitted to describe it here, considering the character of this book and
space limitation. For more details on MTs in -phase alloys, see Refs. [16,17].

1.2.3 Lattice invariant shear and deformation twinning

Since MT is a first order transformation, it proceeds by nucleation and growth.
Since MT is associated with a shape change as described above, a large strain
arises around the martensite when it is formed in the parent phase. To reduce
the strain is essentially important in the nucleation and growth processes of
MT. There are two ways to attain it; either by introducing slip (b) or by
introducing twins (c), as shown in Fig. 1.7(b) and (c). These are called the lattice
invariant shear (LIS), since neither process changes the structure of the mar-
tensite. That is, either slip or twinning is a necessary process in MT for the
above reason, and twins or dislocations are usually observed in martensites
under electron microscopy. Which of slip or twinning is introduced depends
upon the kind of alloys, but twinning is usually introduced as a LIS in SMAs.
Thus, twinning is described in more detail in the following. Two twin crystals
are generally related by a symmetry operation with respect to a mirror plane or
a rotation axis. In deformation twinning, a twin is created by a proper shear,
while twins are introduced upon MT for the above reason, and they can act as

_> %
(b)

_’ E
(c)

parent phase martensite

Fig. 1.7. Schematically shows why the lattice invariant shear is required upon
martensitic transformation; (a) shape change upon martensitic transformation; (b)
and (c) represent the accommodation of strain by introducing slip (b) or twins (c),

respectively.
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A

“z k!
N

13

~ 29

0 K e

Fig. 1.8. The deformation of a unit sphere into an ellipsoid by shear, and the definition
of K, K,, 1, 11, and s. See text for details.

a deformation mode under stress. In this connection twins have a close
relationship with SME. Now, when we discuss deformation twinning, we use a
unit sphere and an ellipsoid as a result of a shear, as shown in Fig. 1.8. In this
shearing process, K, and 7, represent the shear plane and the direction of the
shear, respectively. Obviously K, is an invariant plane and K, is another
undistorted plane in this process. The plane which is normal to K, and is
parallel to 5, is called the plane of shear, and the intersection of K, and the
plane of shear is called #,. K, K,, 1;, 1, and a twinning shear s are called the
twinning elements. In order to create a twin by this process, the original lattice
must be restored by this process. To satisfy the condition, there are two
cases.!® In case I, two lattice vectors lie on the K, plane, and the third lattice
vector is parallel to the 5, direction. In this case, K, and #, are represented by
rational indices, and the two twin crystals are related by a mirror symmetry
with respect to the K, plane. This is called type I twinning. In case 1I, two
lattice vectors lie on the K, plane, and the third lattice vector is parallel to the
1, direction. In this case, K, and #, are represented by rational indices, K; and
1, being irrational, and the two twin crystals are related by the rotation by =
around the #, axis. This is called type II twinning. In some crystal systems, K ,,
K,, n, and n, may all become rational indices. This is called compound
twinning, and the two twin crystals have both symmetry characteristics. With
respect to the transformation twins as a lattice invariant strain, the following is
proved:'® K, for type I twinning must originate from the mirror plane in the
parent phase, while #, for type II twinning must originate from the two-fold
axis in the parent phase. The twinning elements can be calculated by the
Bilby—Crocker theory,?° and they are listed in Table 1.1?! for various MTs,
which are experimentally confirmed. See Refs. [20,22,32] for the details of
deformation twinning.



[os]IN-1L,

l6v] IN-1L»

[sv]lel-1L, PO-0V,

[t INIYV-1Dq Do =4,
"parestpur sof[e oyroads 10§ UMOYS a1e saN[eA 953y} sny [, ‘s1aswered 95119e] Jo sanfea ay) uodn puadop s19quINy [BUOBLIL 9[q8) 9A0GE S} U]

IN-LL 8€T0 [ro0] Loot] (oo1) (100)
IN-LL 20870 LTS T {110) {110} {I'1°s0zL°0} (orurpoucy
IN-1L fraan 4114 CILIISOLITSTY  {T°SLEC0°8899°0} {rriy -9
IN-IL 01€0 1D C1'9657°0°P0PS 0> {E1905°0°0LPT 0} 1y OTUIOOUOIN
{orquoyoyO
p61°0 {60T°06L50°88L°0> 11> {111} {177°0°€T8°0°CCS 0} < 0D4)
eI-1L 61°0 417 <60T06LS0'88L°0> {1TT0€T80°TLS 0} {111} 21QUIOYI0YIQ
(HZ < 79)
eL-1L ‘pO-8Y ‘pO-ny 29610 Mo <09Z900PLEDTY  {LT6TTELOLOT} {111} HT
IN-IV-1D oPPLO0 <101> <1or> {101} {101}
IN-TV-10) 1970 {LO6S0ES6L DT> < {121} {9£05°0'9€05'1°1} (HZ < fOq)
us-n) ‘Tv-1) ‘IN-1y-1D 41920 a1 {LO6S0ES6LOT>  {9£050°9C0S T T} {121} HT
oslquIoyIoylIQ
e/t
A-TL OIN-IL IL [l.\/i (dDH + D0d)
LT+ ALY — iy {es1) [euoneL [euonein {1101} dDH
(4€ < 29)
IV-IN fo/M =gt @ @ {111} {ir} [euosena
pd-a:I 1d—9 ‘ad-u] (LDd < D043)
PO-U[ ‘ND-UN ‘TL-UI L —4 10> {110) {110} {110} 104
(1LD4 < D09)
up-0y dr—4 10y <I10Y {110} {110} 109
-4 L —4 10> 110> {110} {110} (109 < 004)
01000 D-IN-2 D2 ot/ /e — 1) a a1 {e1) {ein} 108
(009 < 004)
W N2 M am Ip {er) {ain} 004
s Ty T Ty Ty
PaA1asqQ sAO[Y SjuaWS JuruuIm |, AInIONNg

[ £221SUdLDW Ul SApowt Buguuim ] T A[qeL



14 1 Introduction

1.2.4 Essence of the phenomenological theory of martensitic transformations

The final target of the theory of martensitic transformations from a crystallo-
graphic point of view is to predict quantitatively all the crystallographic
parameters associated with the transformations, such as habit plane and
orientation relationship between parent and martensite etc. We now have two
theories, the so-called ‘phenomenological theories of martensitic
transformations’, which make the predictions possible. These were developed
by Wechsler-Lieberman-Read (WLR)?>#2° and Bowles—Mackenzie (BM)*°
independently. Although the formulations are different, they are shown to be
equivalent.?” Since it is difficult to explain the theory in this short section, we
describe only the basic ideas of the theory in order to understand the later
sections, following the WLR theory, which is easier to follow physically.

The shape strain matrix P, as an operator, representing the whole MT is
given as follows.

P, = ®,P,B, (1.14)

where B represents the lattice deformation matrix to create a martensite lattice
from a parent lattice, P, a lattice invariant shear matrix, and ®, a lattice
rotation matrix. In the theory, we focus attention on minimizing the strain
energy associated with the transformation. Since such strains concentrate at
the boundary between parent and martensite, we can eliminate such strains
effectively by making the boundary an invariant plane, which is undistorted
and unrotated on average. Since the invariant plane cannot be made only by B,
P, is necessary, as schematically shown in Fig. 1.7. Although an undistorted
plane can be made by the introduction of P,, another ®, is necessary to make
it unrotated. Thus, P, is given by Eq. (1.14). That is, solving Eq. (1.14) under
an invariant plane strain condition is the essence of the ‘phenomenological
theory’, and the habit plane is given by the invariant plane. Although we omit
the detailed descriptions, we continue to explain the basic ideas in the follow-
ing. If we write P,B = F, it is always possible to separate Finto the product of a
symmetric matrix F, and a rotation matrix ¥, and the symmetric matrix can be
diagonalized by the principal axis transformation. Thus,

F=YF,=¥YIFI", (1.15)

where F, is a diagonal matrix, I is a matrix for the diagonalization,and ' is a
transpose of I'. By inserting this into Eq. (1.14), we obtain,



