The Insects
Structure and Function

4th edition

R. F. Chapman
Contents

Preface xi

Acknowledgments xiii

PART I The Head, Ingestion, Utilization and Distribution of Food

1 Head 3
 1.1 Head 3
 1.2 Neck 6
 1.3 Antennae 8
 References 11

2 Mouthparts and feeding 12
 2.1 Ectognathous mouthparts 12
 2.2 Mechanics and control of feeding 18
 2.3 Regulation of feeding 26
 2.4 The consequences of feeding 30
 2.5 Head glands 30
 References 36

3 Alimentary canal, digestion and absorption 38
 3.1 Alimentary canal 38
 3.2 Passage of food through the gut 51
 3.3 Digestion 51
 3.4 Absorption 60
 3.5 Efficiency of digestion and absorption 65
 References 66

4 Nutrition 69
 4.1 Nutritional requirements 69
 4.2 Balance of nutrients 78
 4.3 Feeding on nutritionally poor substrates 82
 4.4 Nutritional effects on growth and development 89
 References 91

5 Circulatory system, blood and immune systems 94
 5.1 Circulatory system 94
 5.2 Hemolymph 106
 5.3 Immunity 121
 5.4 Connective tissue 126
 References 127
PART II The Thorax and Locomotion

7 Thorax 145
 7.1 Segmentation 145
 7.2 Thorax 146
 References 150

8 Legs and locomotion 151
 8.1 Basic structure of the legs 151
 8.2 Modifications of the basic leg structure 157
 8.3 Maintenance of stance 160
 8.4 Locomotion 160
 8.5 Locomotion in aquatic insects 174
 References 182

9 Wings and flight 185
 9.1 Occurrence and structure of wings 185
 9.2 Modifications of the wings 190
 9.3 Wing coupling 192
 9.4 Articulation of the wings with the thorax 194
 9.5 Sensilla on the wings and the halteres 195
 9.6 Muscles associated with the wings 196
 9.7 Mechanisms of wing movement 198
 9.8 Movements of the wings 202
 9.9 Aerodynamics 206
 9.10 Control of wingbeat 210
 9.11 Stability in flight 214
 9.12 Power for flight 218
 References 225

10 Muscles 229
 10.1 Structure 229
 10.2 Changes during development 239
 10.3 Muscle contraction 244
 10.4 Energetics of muscle contraction 249
 10.5 Muscular control in the intact insect 251
 References 253

PART III The Abdomen, Reproduction and Development

11 Abdomen 259
 11.1 Segmentation 259
 11.2 Abdominal appendages and outgrowths 261
 References 267
12 Reproductive system: male 268
 12.1 Anatomy of the internal reproductive organs 268
 12.2 Spermatozoa 270
 12.3 Transfer of sperm to the female 276
 12.4 Other effects of mating 288
 12.5 Sperm capacitation 291
 References 292

13 Reproductive system: female 295
 13.1 Anatomy of the internal reproductive organs 295
 13.2 Oogenesis 298
 13.3 Ovulation 312
 13.4 Fertilization of the egg 313
 13.5 Oviposition 313
 References 321

14 The egg and embryology 325
 14.1 The egg 325
 14.2 Embryology 332
 14.3 Viviparity 351
 14.4 Polyembryony 355
 14.5 Parthenogenesis 356
 14.6 Pedogenesis 358
 References 359

15 Postembryonic development 363
 15.1 Hatching 363
 15.2 Larval development 365
 15.3 Metamorphosis 378
 15.4 Control of postembryonic development 394
 15.5 Polyphenism 400
 15.6 Diapause 403
 References 408

PART IV The Integument, Gas Exchange and Homeostasis

16 Integument 415
 16.1 Epidermis 415
 16.2 Basic structure of cuticle 417
 16.3 Different types of cuticle 422
 16.4 Molting 427
 16.5 Cuticle formation 432
 16.6 Expansion of the new cuticle 434
 16.7 Changes in the intermoult cuticle 435
 16.8 Functions of the cuticle 438
 References 438

17 Gaseous exchange 441
 17.1 Tracheal system 441
 17.2 Spiracles 448
B. Perception of the Environment

22 Vision 587
22.1 Compound eyes 587
22.2 Functioning of the eye 592
22.3 Vision 600
22.4 Dorsal ocelli 603
22.5 Stemmata 605
22.6 Other visual receptors 606
References 607

23 Mechanoreception 610
23.1 Cuticular mechanoreceptors 610
23.2 Chordotonal organs 617
23.3 Stretch receptors 629
References 633

24 Chemoreception 636
24.1 Olfaction 636
24.2 Contact chemoreception 645
References 652

C. Communication with Other Organisms

25 Visual signals: color and light production 657
25.1 The nature of color 657
25.2 Physical colors 657
25.3 Pigmentary colors 660
25.4 The colors of insects 665
25.5 Color change 665
25.6 Significance of color 671
25.7 Light production 674
References 678

26 Mechanical communication: producing sound and substrate vibrations 680
26.1 Mechanisms producing vibrations 680
26.2 Signal transmission 692
26.3 Patterns of vibrational signals 692
26.4 Neural regulation of sound production 696
26.5 Significance of vibrational signals 698
References 701

27 Chemical communication: pheromones and chemicals with interspecific significance 704
27.1 Pheromones 704
27.2 Secretions with interspecific significance 725
References 736

Taxonomic index 741

Subject index 749
1 Head

Insects and other arthropods are built up on a segmental plan and their characteristic feature is a hard, jointed exoskeleton. The cuticle, which forms the exoskeleton, is continuous over the whole of the outside of the body and consists of a series of hard plates, the sclerites, joined to each other by flexible membranes, which are also cuticular. Sometimes the sclerites are articulated together so as to give precise movement of one on the next. Each segment of the body primitively has a dorsal sclerite, the tergum, joined to a ventral sclerite, the sternum, by lateral membranous areas, the pleura. Arising from the sternopleural region on each side is a jointed appendage.

In insects, the segments are grouped into three units, the head, thorax and abdomen, in which the various basic parts of the segments may be lost or greatly modified. Typical walking legs are only retained on the three thoracic segments. In the head, the appendages are modified for sensory and feeding purposes and in the abdomen they are lost, except that some may be modified as the genitalia and in Apterygota some pregenital appendages are retained.

1.1 HEAD

The insect head is a strongly sclerotized capsule joined to the thorax by a flexible membranous neck. It bears the mouthparts, comprising the labrum, mandibles, maxillae and labium, and also important sense organs, the antennae, compound eyes and ocelli. On the outside it is marked by grooves most of which indicate ridges on the inside, and some of these inflexions extend deep into the head, fusing with each other to form an internal skeleton. These structures serve to strengthen the head and provide attachments for muscles as well as supporting and protecting the brain and foregut.

The head is derived from the primitive pre-oral archecerebrum and a number of primitively post-oral segments. Molecular studies of Drosophila suggest that there are seven postoral segments: labral, ocular, antennal, intercalary, mandibular, maxillary and labial (Schmidt-Ott et al., 1994). The last three segments are often called the gnathal segments because their appendages form the mouthparts of the insect.

1.1.1 Orientation

The orientation of the head with respect to the rest of the body varies (Fig. 1.1). The hypognathous condition, with the mouthparts in a continuous series with the legs, is probably primitive. This orientation occurs most commonly in phytophagous species living in open habitats. In the prognathous condition the mouthparts point forwards and this is found in predaceous species that actively pursue their prey, and in larvae, particularly of Coleoptera, which use their mandibles in burrowing. In Hemiptera, the elongate proboscis slopes backwards between the forelegs. This is the opisthorhynchous condition.

The mouthparts enclose a cavity, the pre-oral cavity, with the mouth at its inner end (Fig. 1.2). The part of the pre-oral cavity enclosed by the proximal part of the hypopharynx and the clypeus is known as the cibarium. Between the hypopharynx and the labium is a smaller cavity known as the salivarium, into which the salivary duct opens.

1.1.2 Rigidity

The head is a continuously sclerotized capsule with no outward appearance of segmentation, but it is marked by a number of grooves. Most of these grooves are sulci (singular: sulcus), marking lines along which the cuticle is inflected to give increased rigidity. The term suture should be retained for grooves marking the line of fusion of two formerly distinct plates. The groove which ends between the points of attachment of maxillae and labium at the back of the head is generally believed to represent the line of fusion of the maxillary and labial segments and it is therefore known as the postoccipital suture.

Since the sulci are functional mechanical developments to resist the various strains imposed on the head capsule, they are variable in position in different species and any one of them may be completely absent. However, the needs
for strengthening the head wall are similar in the majority of insects, so some of the sulci are fairly constant in occurrence and position (Fig. 1.3). The most constant is the epistomal (frontoclypeal) sulcus, which acts as a brace between the anterior mandibular articulations. At each end of this sulcus is a pit, the anterior tentorial pit, which marks the position of a deep invagination to form the anterior arm of the tentorium. The lateral margins of the head above the mandibular articulations are strengthened by a horizontal inflexion indicated externally by the subgenal sulcus. This sulcus is generally a continuation of the epistomal sulcus to the postoccipital suture. The part of the subgenal sulcus above the mandible is called the pleurostomal sulcus, the part behind the mandible is the hypostomal sulcus. Another commonly occurring groove is the circumocular sulcus, which strengthens the rim of the eye and may develop into a deep flange protecting the inner side of the eye. Sometimes this sulcus is connected to the subgenal sulcus by a vertical subocular sulcus; the inflexions associated with these sulci act as a brace against the pull of the muscles associated with feeding. The circumantennal ridge, marked by a sulcus externally, strengthens the head at the point of insertion of the antenna, while running across the back of the head, behind the compound eyes, is the occipital sulcus.

The areas of the head defined by the sulci are given names for descriptive purposes, but they do not represent primitive sclerites. Since the sulci are variable in position, so
too are the areas which they delimit. The front of the head, the frontoclypeal area, is divided by the epistomal sulcus into the frons above and the clypeus below (Fig. 1.3). It is common to regard the arms of the ecdysial cleavage line as delimiting the frons dorsally, but this is not necessarily so (Snodgrass, 1960). From the frons, muscles run to the pharynx, the labrum and the hypopharynx; from the clypeus arise the dilators of the cibarium. The two groups of muscles are always separated by the frontal ganglion and its connectives to the brain (Fig. 1.2). Dorsally the frons continues into the vertex and posteriorly this is separated from the occiput by the occipital sulcus. The occiput is divided from the postocciput behind it by the postoccipital suture, while at the back of the head, where it joins the neck, is an opening, the occipital foramen, through which the alimentary canal, nerve cord and some muscles pass into the thorax.

The lateral area of the head beneath the eyes is called the gena, from which the subgena is cut off below by the subgenal sulcus, and the postgena behind by the occipital sulcus. The region of the subgena above the mandible is called the pleurostoma and that part behind the mandible is the hypostoma.

In hypognathous insects with a thick neck, the posterior ventral part of the head capsule is membranous. The postmentum of the labium is contiguous with this membrane, articulating with the subgena on either side. The hypostomal sulci bend upwards posteriorly and are continuous with the postoccipital suture (Fig. 1.4a). In insects with a narrow neck, permitting greater mobility of the head, and in prognathous insects, the cuticle of the head below the occipital foramen is sclerotized. This region has different origins. In Diptera, the hypostomata of the two sides meet in the midline below the occipital foramen to form a hypostomal bridge which is continuous with the postocciput (Fig. 1.4b). In other cases, Hymenoptera and the water bugs Notonecta and Naucoris, a similar bridge is formed by the postgenae, but the bridge is separated from the postocciput by the postoccipital suture (Fig. 1.4c). Where the head is held in the prognathous position, the lower ends of the postocciput fuse and extend forwards to form a median ventral plate, the gula (Fig. 1.4d), which may be a continuous sclerotization with the labium. Often the gula is reduced to a narrow strip by enlargement of the postgenae and sometimes the postgenae meet in the midline, so that the gula is obliterated. The median ventral suture which is thus formed at the point of contact of the postgenae is called the gular suture.

In all insects, the rigidity of the head is increased by four deep cuticular invaginations, known as apodemes, which usually meet internally to form a brace for the head.

Fig. 1.3. Common lines or grooves on the insect head and the areas which they define (italicized) (modified after Snodgrass, 1960).
and for the attachment of muscles. The structure formed by these invaginations is called the tentorium (Fig. 1.5). Its two anterior arms arise from the anterior tentorial pits, which in Apterygota and Ephemeroptera are ventral and medial to the mandibles. In Odonata, Plecoptera and Dermaptera the pits are lateral to the mandibles, while in most higher insects they are facial at either end of the epis- tomal sulcus. The posterior arms arise from pits at the ventral ends of the postoccipital suture and they unite to form a bridge running across the head from one side to the other. In Pterygota the anterior arms also join up with the bridge, but the development of the tentorium as a whole is very variable. Sometimes a pair of dorsal arms arise from the anterior arms and they may be attached to the dorsal wall of the head by short muscles. In Machilidae (Archaecognatha) the posterior bridge is present, but the anterior arms do not reach it, while in Lepismatidae (Thysanura) the posterior arms unite to form a central plate near the bridge and are joined to it by very short muscles.

1.1.3 Molting
Immature insects nearly always have a line along the dorsal midline of the head dividing into two lines on the face so as to form an inverted Y (Fig. 1.3). There is no groove or ridge along this line, and it is simply a line of weakness, continuous with that on the thorax, along which the cuticle splits when the insect molts (see Fig. 16.11). It is therefore called the ecdysial cleavage line, but has commonly been termed the epicranial suture. The anterior arms of this line are very variable in their development and position and, in Apterygota, they are reduced or absent. The ecdysial cleavage line may persist in the adult insect and sometimes the cranium is in- flected along this line to form a true sulcus. Other ecdysial lines may be present on the ventral surface of the head of larval insects (Hinton, 1963).

1.2 NECK
The neck or cervix is a membranous region which gives freedom of movement to the head. It extends from the postocciput at the back of the head to the prothorax, and possibly
Fig. 1.5. Tentorium. Cutaway of the head capsule to show the tentorium and its relationship with the grooves and ridges of the head (after Snodgrass, 1935).

Fig. 1.6. Neck and cervical sclerites of a grasshopper. (a) Seen from the inside to show the muscles (after Imms, 1957). (b) Diagrams showing how a change in the angle between the second and third cervical sclerites retracts or protracts the head. (The first cervical sclerite is small and is not shown). Arrows indicate points of articulation.
represents the posterior part of the labial segment together with the anterior part of the prothoracic segment. Laterally in the neck membrane are the cervical sclerites. Sometimes there is only one, as in Ephemeroptera, but there may be two or three. In Schistocerca (Orthoptera) the first lateral cervical sclerite, which articulates with the occipital condyle at the back of the head, is very small. The second sclerite articulates with it by a ball and socket joint allowing movement in all planes. Posteriorly it meets the third (posterior) cervical sclerite and movement at this joint is restricted to the vertical plane. The third cervical sclerite connects with the prothoracic episternum, relative to which it can move in all planes.

Muscles arising from the postocciput and the pronotum are inserted on the cervical sclerites (Fig. 1.6a) and their contraction increases the angle between the sclerites so that the head is pushed forwards (Fig. 1.6b). A muscle arising ventrally and inserted on to the second cervical sclerite may aid in retraction or lateral movements of the head. Running through the neck are longitudinal muscles, dorsal muscles from the antecostal ridge of the mesothorax to the postcIoccipital ridge, and ventral muscles from the sternal apophyses of the prothorax to the postcIoccipital ridge or the tentorium. These muscles serve to retract the head on to the prothorax, while their differential contraction will cause lateral movements of the head. Schistocerca has 16 muscles on each side of the neck, each of which is innervated by several axons, often including an inhibitory fiber. This polyneuronal innervation, together with the versatility of the cervical articulations and the complexity of the musculature, permits movement of the head in a highly versatile and accurately controlled manner.

1.3 ANTENNAE

All insects possess a pair of antennae, but they may be greatly reduced, especially in larval forms. Amongst the non-insectan Hexapoda, Collembola and Diplura have antennae, but Protura do not.

1.3.1 Antennal structure

The antenna consists of a basal scape, a pedicel and a flagellum. The scape is inserted into a membranous region of the head wall and pivoted on a single marginal point, the antennifer (Fig. 1.8a), so it is free to move in all directions. Frequently the flagellum is divided into a number of similar annuli joined to each other by membranes so that the flagellum as a whole is flexible. The term segmented should be avoided with reference to the flagellum of insects since the annuli are not regarded as equivalent to leg segments.

The antennae of insects are moved by levator and depressor muscles arising on the anterior tentorial arms and inserted into the scape, and by flexor and extensor muscles arising in the scape and inserted into the pedicel (Fig. 1.7a). There are no muscles in the flagellum, and the nerve which

![Fig. 1.7. Antenna. Proximal region showing the musculature. (a) Typical insect annulated antenna. There are no muscles in the flagellum (Locusta, Orthoptera). (b) Segmented antenna of a non-insect hexapod (Japyx, Diplura) (after Imms, 1940).](image)
traverses the flagellum is purely sensory. This is the annulated type of antenna. In Collembola and Diplura the musculature at the base of the antenna is similar to that in insects, but, in addition, there is an intrinsic musculature in each unit of the flagellum (Fig. 1.7b), and, consequently, these units are regarded as true segments.

The number of annuli is very variable between species. Adult Odonata, for example, have five or fewer annuli while adult Periplaneta have over 150, increasing from about 48 in the first stage larva.

The form of the antenna varies considerably depending on its precise function (Fig. 1.8). Sometimes the modification produces an increase in surface area allowing a large number of sensilla to be accommodated on the antenna (Fig. 1.9) and, in the case of the plumose antennae of some male moths, enabling them to sample a large volume of air. Sexual dimorphism in the antennae is common, those of the male often being more complex than those of the female. This often occurs where the male is attracted to or recognizes the female by her scent. Conversely, in chalcids scent plays an important part in host-finding by the female and in this case the female’s antennae are more specialized than the male’s.

The antennae of larval hemimetabolous insects are similar to those of the adult, but with fewer annuli. The number increases at each molt (see Fig. 15.10). In Periplaneta, for example, there are only 48 annuli in the first stage larva compared with over 150 in the adult. The antennae of larval holometabolous insects are usually considerably different from those of the adult. The larval antennae of Neuroptera and Megaloptera have a number of annuli, but in larval Coleoptera and Lepidoptera the antennae are reduced to three simple segments. In some larval Diptera and Hymenoptera the antennae are very small and may be no more than swellings of the head wall.

1.3.2 Sensilla on the antennae
The antennae are primarily sensory structures and they are richly endowed with sensilla in most insects. It is characteristic of insects that the pedicel contains a chordotonal organ, Johnston’s organ, which responds to movement of the flagellum with respect to the pedicel (see section 23.2.3.2). In addition, the scape and pedicel often have hair plates and groups of campaniform sensilla that provide information on the positions of the basal segments with respect to the head and to each other. Scattered mechanosensory hairs are also often present on these segments.

The principal sensilla on the flagellum of most insects are olfactory, and these have a variety of forms (see section 24.1.1). It is common for contact chemoreceptors, mechanoreceptors...
and thermohygroceptors also to be present. Where the flagellum is made up of a series of similar annuli, successive annuli often have a similar arrangement of sensilla, but the sensilla are often concentrated in particular regions. In *Melanoplus* (Orthoptera), for instance, there are no basiconic or coeloconic pegs on the proximal annuli; most of these sensilla are found on the annuli in the middle of the flagellum (Fig. 1.10). In Pieridae (Lepidoptera), most of the antennal sensilla are aggregated on the terminal club. The terminal annulus often has a group of contact chemoreceptors at its tip. The total numbers of sensilla on an antenna are often very large. Adult male *Periplaneta*, for instance, have about 250,000 sensilla on each antenna and male corn borer moths, *Ostrinia*, about 8000. When the antennae are sexually dimorphic, as in many Lepidoptera, the more complex antenna bears a much larger number of sensilla. For example, male *Telea* have over 65,000 sensilla on one antenna, while the female has only about 13,000.

Review: Zacharuk, 1985

1.3.3 Functions of antennae

The antennae function primarily as sense organs and they are the primary olfactory receptors of all insects (see section 24.1.1). They also have a tactile function by virtue of the large number of mechanosensitive sensilla that are often present. Very long antennae, such as occur in the cockroach, are possibly associated with their use as feelers. Johnston’s organ is important in the regulation of airspeed in flying insects (see Fig. 9.36) and in some insects, male mosquitoes, female *Drosophila* and worker honeybees, for example, it is concerned in the perception of near-field sounds (see Fig. 23.11).

Sometimes the antennae have other functions. The adult water beetle *Hydrophilus* submerges with a film of air over its ventral surface which it renews at intervals when it comes to the surface. At the water surface the body is inclined to one side and a funnel of air, connecting the ventral air bubble to the outside air, appears between the head, the prothorax and the distal annuli of the antenna, which is held along the side of the head. The four terminal annuli of the antenna are enlarged and are clothed with hydrofuge hairs.

Fig. 1.9. Antenna. Plumose form providing space for large numbers of sensilla (male of the moth *Telea polyphemus*) (after Boeckh, Kaissling & Schneider, 1960). (a) The whole antenna seen from above. Two slender branches arise on opposite sides of each annulus. (b) Detail of two annuli from the side showing the bases of the branches and arrangement of long trichoid olfactory sensilla along the branches.

Fig. 1.10. Distribution of sensilla along the flagellum of a male grasshopper. Only olfactory sensilla are shown. 1 = most proximal annulus, adjacent to the pedicel; 25 = most distal annulus (*Melanoplus*) (data from Slifer et al., 1959).
which facilitate the formation of the air funnel. In the newly hatched larva of *Hydrophilus* the antennae assist the mandibles in masticating the prey. This is facilitated by a number of sharp spines on the inside of the antennae.

In fleas and Collembola the antennae are used in mating. Male fleas use the antennae to clasp the female from below and the inner surfaces bear large numbers of adhesive discs. These discs, about 5 μm in diameter, are set on stalks above the general surface of the cuticle and within each one there is a gland, presumably secreting an adhesive material. Species with sessile or semi-sessile females lack these organs (Rothschild and Hinton, 1968). In many Collembola the males have prehensile antennae with which they hold on to the antennae of the female and, in *Sminthurides aquaticus*, the male may be carried about by the female, holding on to her antennae, for several days.

REFERENCES

