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1

Holonomies and the
group of loops

1.1 Introduction

In this chapter we will introduce holonomies and some associated con-
cepts which will be important in the description of gauge theories to be
presented in the following chapters. We will describe the group of loops
and its infinitesimal generators, which will turn out to be a fundamental
tool in describing gauge theories in the loop language.

Connections and the associated concept of parallel transport play a
key role in locally invariant field theories like Yang-Mills and general
relativity. All the fundamental forces in nature that we know of may
be described in terms of such fields. A connection allows us to compare
points in neighboring fibers (vectors or group elements depending on the
description of the particular theory) in an invariant form. If we know how
to parallel transport an object along a curve, we can define the derivative
of this object in the direction of the curve. On the other hand, given a
notion of covariant derivative, one can immediately introduce a notion of
parallel transport along any curve.

For an arbitrary closed curve, the result of a parallel transport in general
depends on the choice of the curve. To each closed curve v in the base
manifold with origin at some point o the parallel transport will associate
an element H of the Lie group G associated to the fiber bundle. The
parallel transported element of the fiber is obtained from the original one
by the action of the group element H. The path dependent object H(v)
is usually called the holonomy. It has been considered in various contexts
in physics and given different names. For instance, it is known as the
Wu—Yang phase factor in particle physics.

Curvature is related to the failure of an element of the fiber to return
to its original value when parallel transported along a small closed curve.
When evaluated on an infinitesimal closed curve with basepoint o, the

1



2 1 Holonomies and the group of loops

holonomy has the same information as the curvature at 0. Knowledge of
the holonomy for any closed curve with a base point o allows one, un-
der very general hypotheses, to reconstruct the connection at any point
of the base manifold up to a gauge transformation. An important fact
about holonomies is their invariance under the set of gauge transforma-
tions which act trivially at the base point. We will later show that this
will imply that the physical configurations of any gauge theory can be
faithfully and uniquely (up to transformations at the base point) repre-
sented by their holonomies. They can therefore be used to encode all the
kinematical information about the theory in question.

Since the early 1960s several descriptions of gauge theories in terms of
holonomies have been considered. They seem to be particularly well suited
to study the non-perturbative features at the quantum level. In recent
years interest in the non-local descriptions of gauge theories has been
greatly increased by the introduction of a new set of canonical variables
that allow one to describe the phase space of general relativity in a manner
that resembles an SU(2) Yang-Mills theory. In fact, holonomies may well
provide a common geometrical framework for all the fundamental forces
in nature

A generalization of the notion of holonomy may be defined intrinsically
without any reference to connections. It will turn out that this point of
view has more than a purely mathematical interest and is the origin of im-
portant results that are relevant to the physical applications. Holonomies
can be viewed as homomorphisms from a group structure defined in terms
of equivalence classes of closed curves onto a Lie group G. Each equiva-
lence class of closed curves is what we will technically call a loop and the
group structure defined by them is called the group of loops.

The group of loops is the basic underlying structure of all the non-local
formulations of gauge theories in terms of holonomies. In particular,
when quantizing the theory, wavefunctions in the “loop representation”
are really functions dependent on the elements of the group of loops*. This
is the physical reason why it is important to understand the structure
of the group of loops, since it is the “arena” where the quantum loop
representation takes place.

In spite of the fact that the group of loops is not a Lie group, it is pos-
sible to define infinitesimal generators for it. When they are represented
in the space of functions of loops, they give rise to differential operators
in loop space. Some of these operators have appeared in various physical
contexts and have been given diverse names such as “area derivative”,

* In this context the group of loops is usually referred to as “loop space” and we will loosely
use this terminology when it does not give rise to ambiguities. Notice that it is not related
to the “loop groups” in the main mathematical literature.
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“keyboard derivative”, “loop derivative”. In most of these presentations
the group properties of loops were largely ignored and this resulted in var-
ious inconsistencies. In the approach we follow in this chapter all these
operators arise simply and consistently as representations of the infinites-
imal generators of the group of loops.

In many presentations, loop space is formulated with parametrized
curves. In this context differential operators are usually written in terms
of functional derivatives. The group structure of loops is hidden by these
formulations and it is easy to overlook it, again leading to inconsistencies.
In this book we will deal with unparametrized loops which allow for a
cleaner formulation, only resorting to parametrizations for some particu-
lar results.

This chapter is structured in the following way. In section 1.2 we de-
fine the group of loops and discuss its topology and its action on open
paths. In section 1.3 we introduce the infinitesimal generators of the group
and their differential representation. We also introduce differential oper-
ators acting on open paths. In section 1.3.3 we introduce the connection
derivative, its relation to the loop derivative and to usual notions of gauge
theory. In section 1.3.4 we discuss the contact and functional derivatives
in loop space and their relations with diffeomorphisms. In section 1.4 we
introduce the idea of representations of the group of loops in a Lie group
and we retrieve the classical kinematics of gauge theories. We end with a
summary of the ideas developed in this chapter.

1.2 The group of loops

We start by considering a set of parametrized curves on a manifold M
that are continuous and piecewise smooth. A curve p is a map

p:[0,s1]U[s1,82]  [sn-1,1] = M (1.1)

smooth in each closed interval [s;, s;+1] and continuous in the whole do-
main. There is a natural composition of parametrized curves. Given two
piecewise smooth curves p; and p2 such that the end point of p; is the
same as the beginning point of py, we denote by p; o ps the curve:

(2s), for s € [0,1/2]
pLopas) = { D e —1/2)) forse 1)1 (1.2)

The curve traversed in the opposite orientation (“opposite curve”) is
given by
pi(s) :=p(1 - s). (1.3)

In what follows, we will mainly be interested in unparametrized curves.
We will therefore define an equivalence relation by identifying the curve
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p and po ¢ for all orientation preserving differentiable reparametrizations
¢ :[0,1] — [0,1]. It is important to note that the composition of un-
parametrized curves is well defined and independent of the members of
the equivalence classes used in their definition.

We will now consider closed curves [, m, ..., that is, curves which start
and end at the same point 0. We denote by L, the set of all these closed
curves. The set L, is a semi-group under the composition law (I,m) —
l om. The identity element (“null curve”) is defined to be the constant
curve i(s) = o for any s and any parametrization. However, we do not
have a group structure, since the opposite curve [ ! is not a group inverse
in the sense that [ o™ # 4.

Holonomies are associated with the parallel transport around closed
curves. In the case of a trivial bundle the connection is given by a Lie-
algebra-valued one form A, on M. The parallel transport around a closed
curve [ € L, is a map from the fiber over o to itself given by the path
ordered exponential (for the definition of path ordered exponential see
reference [1]),

HAW) = Pexp [ Au(w)dy®. (1.4)

In the general case of a principal fiber bundle P(M, G) with group G
over M the holonomy map is defined as follows. We choose a point 6 in
the fiber over o and by using the connection A we lift the closed curve [
in M to a curve [ in P such that the beginning point is

i(0)y=6 (1.5)
and the end point is given by
i(1) = i) HA(D), (1.6)

which defines H4(l). The holonomy H 4 is an element of the group G and
the product denotes the right action of G. The main property of Hy4 is

Ha(lom) = Ha(l)Ha(m). (1.7)

A change in the choice of the point on the fiber over o replacing 6 for
o' = 6g induces the transformation

Hy(l) = g7 Ha(l)g. (1.8)

In order to transform the set L, into a group, we need to introduce a
further equivalence relation. The rationale for this relation is to try to
identify all closed curves leading to the the same holonomy for all smooth
connections, since curves with the same holonomy carry the same infor-
mation towards building the physical quantities of the theory. The classes
of equivalence under this relation are what we will from now on call loops
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and we will denote them with Greek letters, to distinguish them from the
individual curves which form the equivalence classes. Several definitions
of this equivalence relation have been proposed. Each of them sheds some
light on the group structure so we will take a minute to consider them in
some detail.

Definition 1
Let

Hjp:Lo— G (1.9)

be the holonomy map of a connection A defined on a bundle P(M,G).
Two curves [,m € L, are equivalent [2] [4] | ~ m iff

Hy(l) = Ha(m) (1.10)
for every bundle P(M, G) and smooth connection A.

Definition 2

We start by defining loops which are equivalent to the identity. A closed
curve [ is called a tree[5] or thin [6] if there exists a homotopy of [ to the
null curve in which the image of the homotopy is included in the image
of [. This kind of curves does not “enclose any area” of M. Two closed
curves [,m € L, are equivalent [ ~ m iff [ o m~! is thin. Obviously a thin
curve is equivalent to the null curve.

Definition 3 (7]
Given the closed curves [ and m and three open curves p;, p2 and ¢
such that

I=piopy (1.11)
m=piogoq lopy (1.12)

then [ ~ m.

There is a fourth definition, due to Chen [7], that requires the use of
a set of objects (Chen integrals, which we will call “loop multitangents”)
that we will define in chapter 2, but we will not discuss it here.

It can be shown that definitions 2 and 3 are equivalent. Moreover,
it is also immediate to notice that two curves equivalent under defini-
tions 2 or 3 are also equivalent under definition 1. The reciprocal is not
obvious. Partial results can be found in reference [7] and a complete
proof for piecewise analytic curves has been presented by Ashtekar and
Lewandowski [40].

With any of these definitions one can show that the composition be-
tween loops is well defined and is again a loop. In other words if o = [I]
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o o o

Fig. 1.1. Curves p and p’ differ by a tree. The composition of a curve and its
inverse is a tree.

and 8 = [m] then oo f = [l o m] where by [] we denote the equiva-
lence classes. From now on we will denote loops with greek letters, to
distinguish them from curves’.

Notice that with the equivalence relation defined, it makes sense to
define an inverse of a loop. Since the composition of a curve with its
opposite yields a tree (see figure 1.1) it is natural, given a loop «, to
define its inverse a™! by a0 ! = . where ¢ is the set of closed curves
equivalent to the null curve (thin loops or trees). a~! is the set of curves
opposite to the elements of a.

We will denote the set of loops basepointed at o by £,. Under the
composition law given by o this set is a non-Abelian group, which is
called the group of loops.

A well known result [5] is that any homomorphism,

L, — G, (1.13)

where G is a Lie group, defines a holonomy associated with a “general-

ized” connection. By generalized we mean that the connection will not,
in general, be a smooth function (for instance it could be distributional or
worse). One can, by imposing extra smoothness conditions [6, 4] on the
homomorphism, ensure that a differentiable principal fiber bundle and a
connection are defined such that H is the holonomy of this connection.
Recall that under a homomorphism, the composition law of the group of
loops is mapped onto the composition law of the Lie group G,

H(ao p) = H(a)H(B), (1.14)

 Notice that in this book we will use the word loop in a very precise sense, denoting the
holonomic-equivalent classes of curves. Other equivalences can be considered. The idea
of a group of loops has appeared in other unrelated contexts [42]. For this reason some
authors have proposed calling the holonomic equivalence classes “hoops” to avoid confusion

(3].
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and that inverses are mapped to each other,
H(a™) = (H(a)) % (1.15)

We will come back to this property in section 1.4 when we discuss the
infinitesimal generators and their relations to the physical quantities.

From now on we will routinely use functions of loops, such as the holon-
omy that we just introduced. Obviously, not any function of curves qual-
ifies as a function of loops. An immediate example of this would be to
consider the length of a curve, which takes different values on the different
curves that form the equivalence class defining a loop.

It is useful to introduce a notion of continuity in loop space, since we
will be frequently using functions defined on this space. We will define
two loops a and (3 to be close, in the sense that « in a neighborhood U, ()
if there exist at least two parametrized curves a(s) € a and b(s) € [ such
that a(s) € U(b(s)) with the usual topology of curves in the manifold?.
With this topology, the group of loops is a topological group.

It is convenient for future use to introduce an equivalence relation for
open curves similar to the one we introduced for closed curves. We will
call the equivalence classes of open curves “paths”. Given two open curves
pZ and ¢F from the basepoint to a point z in the manifold, we will define
these curves to be equivalent iff pZq~1; is a tree}. We will denote paths
with Greek letters as we do for loops, but indicating the origin and end
points, as in . Given two different paths starting and ending at the
same points, it is immediate to see that the composition of one with the
opposite of the other is a loop. Analogously one can compose loops with
paths to produce new paths with the same end points. Furthermore, the
notion of topology introduced for loops can immediately be generalized to
paths. However, paths cannot be structured into a group, since it is not
possible to compose, in general, two paths to form a new path (the end
of one of them has to coincide with the beginning of the other in order to
do this).

1.3 Infinitesimal generators of the group of loops

We will now consider a representation of the group of loops given by
operators acting on continuous functions under the topology introduced
in the previous section. We will introduce a set of differential operators

! Lewandowski [4], elaborating on a suggestion by Barrett {6] has introduced a topology
defined in terms of homotopies of loops. The group of loops endowed with this topology
is a topological Haussdorff group.

§ From now on we will interchangeably use the notations ¢g~17 and ¢2 to designate the same
object, the curve g traversed from z to o. A similar convention will be adopted for paths.
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Fig. 1.2. The infinitesimal loop that defines the loop derivative.

acting on these functions that are related to the infinitesimal generators of
the group of loops, in terms of which one can construct the elements of the
group. In later chapters we will show that these operators are related to
physical quantities of gauge theories. Although the explicit introduction
of the differential operators will be made in a coordinate chart, we will
show that the definitions do not depend on the particular chart chosen.
A more intrinsic definition, also making use of the properties of the group
of loops has been proposed by Tavares [43].

1.3.1 The loop derivative

Given ¥(v) a continuous, complex-valued function of £, we want to con-
sider its variation when the loop « is changed by the addition of an in-
finitesimal loop 6 basepointed at a point z connected by a path 72 to
the basepoint of v, as shown in figure 1.2. That is, we want to evalu-
ate the change in the function when changing its argument from v to
7y 0 by omd o. In order to do this we will consider a two-parameter
family of infinitesimal loops &y that contain in a particular coordinate
chart the curve obtained by traversing the vector u® from z° to % + €;u?,
the vector v* from z% + €;u® to z% + €;u® + €2v%, the vector —u® from
z% + €;u® + €2v® to 2% + e9v® and the vector —v? from z2 + e;v® back to
z% as shown in figure 1.2. We will denote these kinds of curves with the
notation¥ Sudvéués.

1 In order not to clutter the notation we will not distinguish between curves and paths here.
We also drop the ¢; dependence of each path. The path 6@ = (§u)~1.
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For a given 7 and -y a loop differentiable function depends only on the
infinitesimal vectors €;u® and e;v®. We will assume it has the following
expansion with respect to them,

U(rp 0 byomzoy) = ¥(7) + e1u’Qa(m;) ¥(7y) + €20" Po(mg) ¥(7)
+iere2(uv’ + v2u?) Sy (nZ) T ()
+%€162(uavb — v%u?) A gy ()T (). (1.16)

where Q, P, S, A are differential operators on the space of functions ¥(vy).
If €1 or €3 vanishes or if u is collinear with v then §v is a tree and all the
terms of the right-hand side except the first one must vanish. This means
that @ = P = S = 0. Since the antisymmetric combination (u®v® — v®ub)
vanishes, A need not be zero. That is, a function is loop differentiable if
for any path 77 and vectors u, v, the effect of an infinitesimal deformation
is completely contained in the path dependent antisymmetric operator

Aab("rg)’
U(xg 0 byongoy) = (1+ 5o®(2)Aus(75)) (), (1.17)

where 0%(z) = 2¢;ez(ul®0?) is the element of area of the infinitesimal
loop 4. We will call this operator the loop derivative.

Notice that we have proved that for an arbitrary function of loop space,
one does not have contributions from the terms @, P, S in the expansion
(1.16). If one considers functions of curves rather than of loops, these
terms will in general be present. As an example, they are present if one
considers the function given by the length of the curve. On the other hand,
not every function of loop space is differentiable. For instance, we will see
when we consider knot invariants — functionals of loops invariant under
smooth deformations of the loops — that they are not strictly speaking
loop differentiable. The reason for this is that sometimes appending an
infinitesimal loop could enable us to change the topology of the knots and
therefore to induce finite changes in the values of the functions.

Loop derivatives of various kinds were considered by several authors.
The idea was introduced by Mandelstam [8]. Later generalizations can be
found in the work of Chen [7], Makeenko and Migdal {10, 12], Polyakov
[44], Gambini and Trias [13, 14, 15], Blencowe [16] and Briigmann and
Pullin [26]. Other references can be found in Loll [17]. The various
definitions are not equivalent, and many of them refer to objects that are
in reality different from the loop derivative we are defining here. One of
the main differences is that in many treatments the infinitesimal loop,
instead of being appended at an arbitrary fixed point of the manifold
defined by a path #) as is our case, is appended to a point that lies
on the loop. Since one is considering functions of arbitrary loops that
means that the point where the derivative acts has to be redefined when
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considering its value on a new loop. In other words, the domain of the
function that results when applying these kinds of derivatives is not the
loop space defined in section 1.2, but the space of loops with a marked
point. Makeenko and Migdal [12] noticed this fact and this drove them
to call it “keyboard derivative.”

Notice that this is not the case for the derivative we defined. The
result of the application of the loop derivative to a function of a loop
is also a function of a loop. For each arbitrary open path there is a
different derivative. For these definitions to work it is crucial to have a
basepoint, which provides a fixed point for any loop on which to attach
the open path that defines the derivative. These considerations are of
crucial importance. For instance, we will soon prove that our derivative
satisfies Bianchi identities, a fact that cannot be proven for derivatives
that act only on points of the loop. The relevance of the group of loops
and the path dependence of the loop derivative were first recognized by
Gambini and Trias {13, 15].

At the end of section 1.2 we noted that the elements of the group of
loops have a natural action on open paths, giving as a result a deformation
of the path. We can immediately find an example of this fact in terms of
a differential operator defined by simply extending the definition of the
loop derivative (1.17) to give for open paths

U(ng 0 by omgony) = (1 +50%(2)Aw(nE)) ¥ (). (1.18)

We will take some notational latitude to give the same name to the loop
derivative acting on paths and on loops. In all cases the context will
uniquely determine to which derivative we are referring. Notice that this
extension to open paths is not at all clear for derivatives that depend on
a point of the loop as is the case of the “keyboard derivative”.

1.3.2 Properties of the loop derivative

e Tensor character. By its very definition, (1.17), it is immediate to see
that the loop derivative has to behave as a tensor under local coordinate
transformations containing the end point of the path #Z for loop differ-
entiable functions. One need just require that the whole expression be
invariant and notice that the loop derivative is contracted with the tensor
0%, Therefore by quotient law, it must be a tensor. Notice that the
loop derivative is really associated with the surface spanned by du® and
dv® rather than with the individual infinitesimal vectors, being invariant
under vector transformations that preserve the element of area.

e Commutation relations. The loop derivatives are non-commutative
operators. This, as we will see later, is naturally associated with the fact
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du

dv

Fig. 1.3. The two paths used to compute the commutation relation

that they correspond to the generators of a non-Abelian group. Their
commutation relations can be computed directly from the geometric prop-
erties of the group of loops in the following way. Consider two infinitesimal
loops 611, én2 given by

bm = 75 o bubvéubvony and éne = x§ o 6qbréqét o X, (1.19)
and with area elements
0% = e1e9(u? —vub) and 02 = e3e4(g%r® — rgb). (1.20)
Then we can derive the following relation:
U(8my 0 6 0 (5m) " o (6m2) L0 y) = (1 + JoiPAus(n?))
x(1+ 3052 Aa(x8)) (1 — 0T Acs (1)) (1 — 308" Agn(x4)) T () =
(1+ 301205 Das(73), Aea OB ¥ (7). (1.21)

The first equality follows from the definition of the loop derivative and
of the loops é7;. To prove the second, one expands keeping only terms of
first order in each ¢; and neglecting those of order €?.

We will now define an open path by composing the two paths we have
been using

XY =m0 xY. (1.22)

This allows us to rewrite the loop composed by the first three loops in
the argument of ¥ in the left-hand side of equation (1.21) as,

8ny 0 6mz 0 (M)~ = XY 0 6q616G6T o X'y (1.23)
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Therefore,
T(8my 0 bmp 0 (5m) "o (6mz) o) =
(1+ 308 A (X)) — L0520 (r).  (1.24)

And again expanding in es and keeping only the first order in each ¢;
we get

(1+ 308 Bab(X'D) (1 = 505 Aca)) T (7) =
(1 + 01087 Aa(73)[Aca D)) T (7), (1.25)

where in the last expression Agy(72)[Acq(xY)] represents the action of the
first loop derivative only on the path dependence of the second derivative.
All this implies

[Aas(75), Acd(X5)] = Aea(X3)[Aas(73)], (1.26)
from which it is immediate to show that
Agp(m)[Aca(X3)] = —Aca(X3)[Aas(T5)]- (1.27)

These expressions highlight the path dependence of the loop derivative,
in the sense that they express the variation of the derivative when the path
is varied. We will see at the end of this subsection how these expressions
can be naturally interpreted as a group commutator when we prove that
the loop derivative is a generator of the group of loops.

This commutation relation can be viewed in a different light by consid-
ering its integral expression. In order to do this, we will introduce a loop
dependent operator U(a) on the space of functions of loops which has the
effect of introducing a finite deformation in the argument of the function,

U(a)¥(y) = ¥(aon). (1.28)
The operator has a naturally defined inverse,
Ul) ' =U(a™), (1.29)
and has a natural composition law,
U(@)U(B)¥(7) = Ulao B)¥(y). (1.30)

We now consider the action of the loop derivative evaluated along a de-
formed path, shown in figure 1.4, on a function of loop, and applying the
definition of loop derivative (1.17) we get

(1+ 30" Ag(aom5))¥(y) = Y(aoniobdyongoatoy),  (1.31)

where & is the infinitesimal loop associated with the area element 0.
We then use the definition of the operator U (1.28) to get

B(aonZosyonZoa o) = Ula)(1+Lo® Ag(n2))U (@)1 ¥ (), (1.32)



