Introductory microbiology

J. Heritage, E. G. V. Evans and R. A. Killington
Department of Microbiology, University of Leeds

Published in association with the Institute of Biology
p. cm. -- (Studies in biology)
Includes index.
ISBN 0 521 44516 7
1. Microbiology. I. Evans, E. Glyn V. II. Killington, R. A.
III. Series.
QR41.2.H46 1996
576--dc20 95-10245 CIP

ISBN 0 521 44516 7 hardback
ISBN 0 521 44977 4 paperback

Transferred to digital printing 2003
Contents

General preface to the series xi
Preface xiii

1 Microbial structure and mode of life 1
1.1 Introduction 1
1.2 A comparison of eukaryotic and prokaryotic cells 2
1.3 Morphology of fungi 8
 1.3.1 Moulds and their structures 8
 1.3.2 Yeasts and their structures 11
 1.3.3 Dimorphic fungi 11
 1.3.4 The fungal cell wall 12
1.4 Reproduction in fungi 13
 1.4.1 Asexual reproduction in fungi 14
 1.4.2 Sexual reproduction in fungi 18
 Sexual reproduction in Phycomycetes 19
 Sexual reproduction in Ascomycetes (Ascomycotina) 19
 Sexual reproduction in Basidiomycetes (Basidiomycotina) 20
1.5 Nutrition of fungi 22
1.6 Bacterial morphology 23
1.7 Bacterial cell structure 26
 1.7.1 The nucleoid 27
 1.7.2 The bacterial cytoplasm and membrane 29
 1.7.3 The bacterial cell wall 30
 The Gram-positive cell wall 32
 The Gram-negative cell wall 32
 The cell walls of acid-fast and coryneform bacteria 34
 The cell walls of archaeabacteria 37
 Spheroplasts and protoplasts 40
 1.7.4 Structures external to the bacterial cell wall 40
Contents

1.7.5 Flagella 42
1.7.6 Fimbriae and pili 43

1.8 Bacterial spores 46
1.8.1 Spore structure 46
1.8.2 Spore formation 47
1.8.3 Spore germination 48

1.9 Diversity of bacterial nutrition 49
1.9.1 Autotrophic bacteria 50
1.9.2 Heterotrophic bacteria 51

1.10 Gene transfer in bacteria 52
1.10.1 Conjugation 54
1.10.2 Transformation 55
1.10.3 Transduction 57
 Generalised transduction 57
 Specialised transduction 59

1.11 The nature of viruses 59
1.11.1 The development of virology as a science 63

1.12 Structure and composition of viruses 64

2 Handling microbes 69
2.1 Safe handling of microbes 69

2.2 Sterilisation and disinfection 73
2.2.1 Physical agents used for sterilisation and disinfection 76
2.2.2 Chemical disinfection 81

2.3 Microscopy 83
2.3.1 Bright-field microscopy 87
2.3.2 Dark-ground microscopy 89
2.3.3 Phase contrast microscopy 89
2.3.4 Fluorescence microscopy 91
2.3.5 Electron microscopy 93

2.4 Simple and differential staining of bacteria 96
2.4.1 Gram staining 96
2.4.2 Ziehl Neelsen staining 98
2.4.3 Other differential stains 98
2.4.4 Visualising fungi 99

2.5 Enumeration of microbes 101
2.5.1 Total cell counts 101
 Microscopic counts of microbial cells 102
 Turbidimetric counting of microbes 103
 Wet and dry weight counting of bacteria 104
 Microbial counts based upon chemical analysis 104
 Microbial counting using electrical impedance 105
2.5.2 Viable microbial counts 106
 Viable counts using the spread-plate technique 106
 Viable counts using the pour-plate method 107
 Viable counts determined using the method of Miles and Misra 107
2.6 Growth of microbial populations

2.6.1 Batch culture of microbes

2.6.2 Simple continuous culture of microbes

2.7 Artificial culture of fungi

2.8 Multiplication of viruses

2.8.1 Replication of bacteriophages

2.8.2 Replication of animal viruses

2.9 The effects of environment on microbial growth

2.9.1 Temperature

2.9.2 Atmosphere

2.9.3 pH

2.9.4 Osmotic factors

3 Isolation, classification and identification of microbes

3.1 Isolation of bacteria

3.1.1 Separation of bacteria by mechanical means

3.1.2 Selective culture techniques

3.2 Isolation of fungi

3.2.1 Fungal culture techniques

3.2.2 Media used in the cultivation of fungi

3.2.3 Special techniques used for fungal culture

3.3 Laboratory culture and assay of viruses

3.3.1 Plaque assays

3.3.2 Animal culture

3.3.3 Tissue cultures

3.4 Classification and identification of fungi

3.4.1 Classification of fungi

3.4.2 Identification of moulds

3.4.3 Identification of yeasts

3.5 Classification and identification of bacteria

3.5.1 Bacterial nomenclature

3.5.2 Bacterial taxonomy

3.5.3 The diversity of bacteria as represented by Bergey's Manual of Systematic Bacteriology

3.5.4 Identification of bacteria

The microscopic examination of bacteria

Colony appearance and morphology

Biochemical tests used in bacterial identification

Nutritional requirements of bacteria

Antimicrobial sensitivities

Pathogenicity factors

The antigenic structure of bacteria

Genetic constitution of bacteria
Contents

3.6 Virus classification 185

Further reading 190
Glossary 192
Index 227
1

Microbial structure and mode of life

1.1 Introduction

Early biologists found it convenient to classify all living things as either animals or plants. To many people today, this grouping still seems perfectly adequate. However, examination of the life-forms that exist on Earth shows that this classification is unsatisfactory. Although there is a superficial resemblance between green plants and the fungi, these two groups are divided by profound biological differences. Unlike green plants, fungi cannot manufacture their own food from water and carbon dioxide by the process of photosynthesis. Rather, they require a supply of organic matter from which they can derive their energy. Fungal cellular composition is dissimilar from that of green plants, and the structural polymers of their cell walls are markedly different. Fungi are therefore now accorded their own status as a third kingdom. Furthermore, for many years the classification of microscopic organisms proved to be difficult. Photosynthetic microbes behave very differently from higher plants. It was therefore proposed towards the end of the nineteenth century that microscopic life forms should be classified as a fourth kingdom. This was the kingdom Protista, proposed in 1866, at a time when the scientific study of microbiology was in its infancy. This was, however, almost 200 years after Antonie van Leeuwenhoek described ‘animalcules’ following his development of the optical microscope.

During the twentieth century there have been many advances in microscopy, including the development of the electron microscope. This has enabled subcellular structures to be studied in great detail and has revealed that the Protista may be divided into two major groups. Primitive microorgan-
isms such as bacteria lack a clearly defined, membrane-bound nucleus and are called prokaryotes. This word is derived from two Greek words; pro, meaning before, and karyon, a kernel. Prokaryotes are organisms that evolved before the cell’s nucleus, its kernel, was properly developed. More advanced microscopic life-forms, as well as having a variety of subcellular organelles, also possess a proper membrane-bound nucleus. These are referred to as eukaryotes because they have a true nucleus (Greek: eu-, well, true or easy). Biologists now reserve the kingdom Protista for eukaryotic microbial life-forms and separate prokaryotes into their own kingdom, the Monera. Monera is ‘new’ Latin for non-nucleated protoplasmic masses. Some microbiologists prefer to refer to this kingdom as the Prokaryotes. Thus, life-forms may be classified into five kingdoms: Animals, Plants, Fungi, Protista, and Monera or Prokaryotes. Table 1.1 indicates the characteristic features of members of the different kingdoms.

Microbiology is the study of microscopic life-forms including the microscopic fungi and Protista as well as prokaryotes. It also encompasses a study of viruses: subcellular structures comprising nucleic acid inside a protein coat and sometimes covered in a membrane. Viruses cannot replicate outside a host cell, and thus represent the ultimate parasites. Despite their limitations, viruses have managed to parasitise animal, plant and even bacterial cells. In a book of this size, it is not possible to cover the whole of microbiology, and so the text is devoted to a description of the biology of bacteria (prokaryotes), viruses and the microfungi.

1.2 A comparison of eukaryotic and prokaryotic cells

The cells of eukaryotic organisms have a much more complex structure than do prokaryotic cells. Eukaryotic cells have a highly developed internal membrane and microtubular structure, together with subcellular organelles. Such structures are absent from many prokaryotes, although some prokaryotes do have specialised internal membranes associated with particular metabolic functions. The nucleus of the eukaryotic cell is membrane bound. Associated with the nucleus is the centriole, a structure used in the regulation of mitosis. This is the process of cell division that ensures that each daughter cell receives a complete set of chromosomes. Protein synthesis in eukaryotic cells is carried out on ribosomes associated with the endoplasmic reticulum, a network of internal membranes. The endoplasmic reticulum is contiguous with the Golgi apparatus; a structure associated with the export of proteins (Fig. 1.1).
<table>
<thead>
<tr>
<th>Characteristic feature</th>
<th>Animals</th>
<th>Plants</th>
<th>Fungi</th>
<th>Protista</th>
<th>Prokaryotes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multicellular</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Membrane-bound nucleus</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Nuclear material present as naked DNA</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Cytoplasmic membrane-bound organelles</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Cell walls</td>
<td>No</td>
<td>Yes (mainly cellulose-based)</td>
<td>Yes (mainly chitin-based)</td>
<td>Some</td>
<td>The vast majority. Mostly peptido-glycan-based, but other polymers are found Some</td>
</tr>
<tr>
<td>Growth can be achieved using simple chemicals</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Some</td>
<td>Some</td>
</tr>
<tr>
<td>Growth requires a supply of complex organic molecules</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Some</td>
<td>Some</td>
</tr>
<tr>
<td>Chloroplasts</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Some</td>
<td>No</td>
</tr>
<tr>
<td>Mitochondria</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Ribosomes</td>
<td>Larger cytoplasmic, smaller mitochondrial</td>
<td>Larger cytoplasmic, smaller mitochondrial and chloroplast</td>
<td>Larger cytoplasmic, smaller mitochondrial and chloroplast (if present)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Fig. 1.1. Stylised eukaryotic cells. (a) A stylised animal cell and (b) a stylised plant cell.
Cellular respiration, generating ATP, is carried out in mitochondria. These are organelles delineated by a double membrane. The mitochondrial inner membrane carries the respiratory enzymes or cytochromes, and is highly convoluted to form cristae. These greatly increase the surface area of the mitochondrial inner membrane, the surface at which ATP generation occurs. Plant cells, in addition, carry plastids. These are also organelles bounded by a double membrane, and in green plant tissues plastids become specialised as chloroplasts, which are also involved in the generation of ATP. Chloroplasts generate ATP by the process of photosynthesis whereas mitochondria generate ATP by aerobic respiration. Chloroplasts have elaborate internal membrane structures called thylakoids. Both mitochondria and chloroplasts have their own DNA and are capable of synthesising particular proteins. This process is much more akin to bacterial protein synthesis than to cytoplasmic protein synthesis in eukaryotic cells. Many biologists believe that mitochondria and chloroplasts represent the descendants of obligate intracellular endosymbiotic bacteria that date from the earliest days of eukaryotic cells. The ancestral endosymbionts are thought to have evolved to lose most of their bacterial structure. However, mitochondria and chloroplasts retain a genetic apparatus that provides them with the ability to synthesise certain of their own proteins. They also provide metabolic processes that have proved to be of great value to the eukaryotic host (Fig. 1.2).

Both plant and animal cells have membrane-bound vacuoles. Plant cell vacuoles are large and bounded by a special membrane called a tonoplast. Animal cells contain smaller, more numerous vacuoles. Additionally, animal cells contain lysosomes; subcellular sacs filled with lytic enzymes. These may fuse with vacuoles containing foreign bodies to form phagosomes. Inside the phagosome, lytic enzymes digest foreign material, and the breakdown products may be absorbed into the cell. Cytoplasmic streaming in eukaryotic cells is the process by which metabolites are distributed through the cell. It is controlled by a system of microtubules. Some eukaryotic cells elaborate (or develop) organelles of motility that extend into the environment. Short structures are referred to as cilia; longer organelles are called flagella. Eukaryotic cilia and flagella have a characteristic internal structure comprising nine pairs of microtubules encircling a further two pairs of tubules. This is often referred to as a 9 + 2 structure, and is confined to eukaryotic cells.

Eukaryotic cells are bounded by a cytoplasmic membrane, the plasmalemma. In animal cells, the plasmalemma is the outermost structure; plant cells have a cellulose-based cell wall outside the plasmalemma to provide additional protection. Eukaryotic membranes are stabilised by the presence of sterols.
Fig. 1.2. Some subcellular structures found in eukaryotic cells. (a) A cut-away diagram of a mitochondrion, (b) section through a chloroplast, and (c) cross-section through a eukaryotic flagellum, showing the typical ‘9 + 2’ structure.
In contrast to eukaryotic cells, prokaryotes have a very simple internal structure. As their name implies, they do not have a clearly defined nucleus delineated by a nuclear membrane. Rather, the chromosome forms a densely packed area within the cytoplasm known as the nucleoid. Extrachromosomal DNA structures, at one time called episomes and now more commonly known as plasmids, also exist within the cytoplasm. The prokaryotic ribosomes, which are smaller than those found in eukaryotic cells, are not attached to internal membranes. Rather, multiple ribosomes line up along messenger RNA molecules to form structures called polysomes.

The size of ribosomes is conventionally expressed as the rate at which they sediment in a density gradient such as a sucrose gradient. The unit of measurement is the Svedberg unit. Eukaryotic cytoplasmic ribosomes are described as 80 S ribosomes, and these are larger than prokaryotic 70 S ribosomes. Ribosomes are made up of two subunits. In eukaryotic cells these are 60 S and 40 S subunits, whereas in prokaryotes there are 50 S and 30 S subunits. The sedimentation rate of a body depends upon its shape as well as its density. Thus the whole ribosome unit has a lower sedimentation rate than that of its component subunits. The ribosomes found in chloroplasts and mitochondria are much closer in size, and behaviour, to the 70 S prokaryotic ribosome than to the 80 S eukaryotic ribosome. This observation lends weight to the endosymbiotic theory for the origin of mitochondria and chloroplasts.

Archaeabacteria represent some of the most ancient of life-forms that persist today. They can be found in some of the most extreme habitats on Earth. For example archaeabacteria have been isolated from coal slag heaps, in an environment with a temperature of about 60 °C, and pH of about 1, and they can be found around underwater volcanoes. They may be differentiated from other bacteria, the eubacteria, using a variety of characteristics, especially with respect to ribosomal and membrane structures, but these differences are not sufficient to warrant the separation of archaeabacteria and eubacteria into two separate kingdoms. The prefix archae- comes from the Greek word arkhaios, meaning ancient. Eubacteria are the most familiar and commonly studied of bacteria.

The cytoplasm of prokaryotic cells is bounded by a cell membrane, and many bacteria have a cell wall outside the cell membrane. The principal cell wall polymer of archaeabacteria varies from group to group, whereas in eubacteria the main component is peptidoglycan. Various structures that act in cellular adhesion and locomotion are associated with the prokaryotic cell wall. Many prokaryotes have an additional outer membrane beyond the cell wall, and some bacteria have external structures beyond this.
1.3 Morphology of fungi

The study of fungi is referred to as mycology, and is one of the oldest disciplines in microbiology. Fungi are amongst the most generally familiar organisms that are studied in microbiology. Everyone will recognise the furry growths that appear on stale bread and rotting fruits, and since time immemorial, fungi have been exploited for the production of leavened bread and alcoholic beverages. Indeed, so important are fungal products to humans that bread and wine are two of the principal symbols of the Christian Church, representing the body and blood of Christ. The role of fungi in the decay of vegetable and animal matter has also long been recognised. Fungi have been so intimately linked with the decomposition of organic matter that they have become synonymous with mouldiness, putrefaction and decay.

Fungi range dramatically in size from relatively large and compact structures such as puff-balls, mushrooms, toadstools and bracket fungi that can be seen attached to decaying trees, through the diverse network of filaments in soil, frequently associated with plant roots, down to the microscopic unicellular yeasts. However, all fungi are eukaryotic organisms. They possess a membrane-bound nucleus and nucleoli, cellular respiration occurs in mitochondria present in the cytoplasm, and fungal cells have an elaborate arrangement of internal membrane systems.

1.3.1 Moulds and their structures

The fungi display an astonishing variety of size and shape, but can be broadly divided into two groups, the moulds and the yeasts. The moulds are also referred to as filamentous or mycelial fungi, and they are composed of a network of filaments called hyphae (singular: hypha) that are interwoven into a structure called a mycelium (plural: mycelia). *Hyphae* is the Greek word for a web, and mycelium is derived from *muke* meaning mushroom. Moulds reproduce asexually or sexually, and the mycelium and *fruiting bodies* of a mould are collectively referred to as the fungal thallus, this being the Greek for green shoot. The spores of fungi are of primary importance in the identification of fungi, and are discussed in detail below. Mycelial tissue is also sometimes referred to as an *anastomosis* because it comprises a web of cross-connecting hyphae. The development of mycelial structures is by growth from the tips of the hyphae, with branching of the filaments occurring intermittently. The cytoplasm of young hyphae fills the filament, but further back from the growing tip, the cytoplasm becomes increasingly vacuolated, and the oldest
hyphae are empty structures that may become cut off from the rest of the mycelium.

In the majority of moulds, hyphae are divided into sections by the regular occurrence of cross-walls or septa (singular: septum). These structures add rigidity to the filament, and help to control the flow of nutrients through the mycelial network. Septa vary in complexity; simple septa have a single central pore, but some septa seen in higher fungi have a dolipore structure, in which a narrow central pore is flanked by a cap-like, perforated membrane (parenthosomes) made up of amorphous material (Fig. 1.3). Individual compartments in the septate hypha may contain a single nucleus, and these are said to be uninucleate or they may contain several nuclei, and are thus described as multinucleate. In more primitive fungi such as the Phycomycetes, there are no septa to divide the hyphae into sections, and the asceptate hypha is described as coenocytic (Greek: kinos, common; kutos, a vessel). Septa do occasionally develop in Phycomycetes, but their function is to separate the reproductive structures from the vegetative body of the fungus, or to cut off the old sections of the thallus. Unlike the septa of other fungi, the structures elaborated by the Phycomycetes are solid plates, and they do not have a central pore (Fig. 1.4).

In certain higher fungi, adjacent hyphae can fuse vegetatively to give a three-dimensional network structure. It is from such structures that reproductive fruiting bodies are formed. Hyphae can also aggregate to give rise to other specialised structures that exhibit a high degree of internal organisation as a result of coordinated growth. Rhizomorphs, literally resembling root structures, are rope-like strands that have a highly differentiated structure. These structures appear to develop in response to stress, and in nature they develop in relatively dry environments such as are found in sandy soils. Sclerotia (singular: sclerotium) are hardened structures that enable certain moulds to survive in a dormant state. In culture, sclerotia are pigmented, and are sufficiently large to be seen by the naked eye. They are generally rounded, but may display an irregular shape. The cells of the outer wall of a sclerotium possess thick walls, and thus the structure has a thick, protective coat. This encloses a central cortex of hyphae that contains the food reserves necessary for dormancy. Nutrients are typically stored either as oil droplets or as glycogen. The most familiar structures generated by fungi, however, are the mushrooms and toadstools. These are highly complex reproductive structures that demonstrate an astonishing level of internal differentiation and organisation. A stalk or stipe supports the cap or pileus under which the gills develop. It is from these gills that spores are released. The development of gills is a highly coordinated process that responds to environmental stimuli. In order for
Fig. 1.3. (a) A dolipore and (b) a ‘normal’ septum.

Fig. 1.4. Aseptate (coenocytic) and septate hyphae. (a) An aseptate or coenocytic hypha; the hypha shown in (b) is divided by regular septa.
spores to be released efficiently, gills must develop vertically. This is achieved by geotropism, as shown by the observation that if the developing structure is tilted, then the gills will still form to lie vertically.

1.3.2 Yeasts and their structures

In yeasts, the fungal thallus is generally a single cell. Yeasts are predominantly unicellular fungi that are round, oval or elongated in shape. They vary from 2 to about 10 micrometres in size. A limited number of yeasts elaborate extracellular capsules. An example is *Cryptococcus neoformans*, a human pathogen that causes a chronic form of meningitis increasingly seen in patients with acquired immune deficiency syndrome (AIDS). In this instance, the capsule mucopolysaccharide helps the yeast to evade the body's defence mechanisms, and thus allows it to cause disease.

Yeasts generally reproduce by the asexual process of budding. The parental cell develops a protrusion that swells and enlarges into a blastospore that eventually separates from its parent (Greek: *blastos*, sprout). However, in fission yeasts, such as *Schizosaccharomyces pombe*, a parental cell divides into two progeny in a manner somewhat similar to the transverse binary fission seen in bacterial reproduction. Yeasts rarely form true multicellular structures. Some yeasts form chains of elongated cells that are called pseudomycelia (singular: pseudomyceium) or pseudohyphae (singular: pseudohypha). Pseudomycelia are elongated yeast cells that arise from buds adhering together in branching chains. The individual cells within a pseudomycelium are independent of one another and, unlike the units within the septate hyphae of moulds, they are not connected by pores. Yeast cells with a typical unicellular morphology may cluster terminally or along the side of a pseudomycelium. These are called secondary blastospores. Some yeasts can produce septate, true mycelia under certain growth conditions (Fig. 1.5).

1.3.3 Dimorphic fungi

Although it is convenient to divide fungi into two groups, moulds and yeasts, there are fungi that are capable of adapting their structures in response to changes in their environment. They may grow in either a mycelial or a yeast form, depending on the prevalent growth conditions. These are referred to as dimorphic fungi. The mycelia formed by dimorphic fungi are true mycelia, unlike the pseudomycelia produced by some yeasts. Many of the fungi that
cause diseases in humans and animals are dimorphic, for example *Candida albicans*, the fungus that causes thrush. This is an infection that affects mucous membranes such as are found in the mouth or the genital tract. The visible symptoms of oral thrush are white plaques in the mouth, and vaginal thrush appears as an itchy white vaginal discharge.

1.3.4 The fungal cell wall

Fungi have been described as plant-like, because they are generally non-motile, and because their cells are bounded by a well-defined, multi-layered cell wall. However, the cell wall structure of plants and fungi differs considerably, with plant cell walls being made of celluloses and hemi-celluloses, and the fungal cell walls composed mainly of other polysaccharides including chitin, a polymer of *N*-acetylglucosamine. As well as being one of the principal components of fungal cell walls, chitin is a structural polymer that is found in the exoskeleton of the arthropod invertebrates.

The major component of the cell walls of both moulds and yeasts is polysaccharide, with up to 80% of the cell wall material comprising crystalline microfibrils in an amorphous matrix material. Of the remaining 20% of cell
wall components, protein and lipid are present in approximately equal proportions. The cell wall polysaccharide component depends upon the type of fungus. In moulds, chitin is the principal fibrillar component and polymers of glucose known as glucans form the amorphous matrix material. In contrast to moulds, mannans, polymers of mannose, are the predominant structural components of yeast cell walls where they are also found with glucans. In baker’s yeast, Saccharomyces cerevisiae, the cell wall contains less than 1% chitin, and this polymer is principally associated with bud scars, in which it forms a plug of material. In a special group of fungi (Oomycetes) within the Phycomycetes, cellulose forms the dominant structural component of the cell wall material.

The cell wall of fungi has five layers. It is exemplified by the architecture of the cell wall of the mature hyphae of the mould Neurospora crassa. The plasmalemma forms the foundation of the cell wall. Above this lies a layer of chitin microfibrils in an amorphous matrix of proteins, mannans and glucans that is about 20 nanometres thick. Beyond this lies a discrete protein layer of about 10 nanometres in thickness. This supports a glycoprotein network embedded in protein. This layer is about 50 nanometres thick. The outer layer of the cell wall is the thickest, and is made up of amorphous glucans. This layer is about 90 nanometres thick in Neurospora crassa (Fig. 1.6).

1.4 Reproduction in fungi

Reproduction in fungi may be asexual or sexual and, in both cases, spores are the structures that are responsible for dispersing progeny to colonise new
locations. Some spores are designed to withstand adverse growth conditions or to provide for a period of dormancy. The mycelia of moulds may also become fragmented, and the resulting fragments may each subsequently develop into an individual thallus by the process of **vegetative reproduction**. The term vegetative reproduction is used to refer to asexual reproduction where special reproductive structures other than spores are not formed. The vegetative or asexual state of a fungus is known as the **anamorph** and the sexual state as the **teleomorph** (perfect state).

1.4.1 Asexual reproduction in fungi

The simplest form of asexual reproduction is the production of vegetative spores. There are two principal structures associated with vegetative reproduction. These are **arthroconidia**, and **chlamydoconidia**. *Arthron* is the Greek for joint, and arthroconidia are produced by the hyphae that become disjointed and fragment. These may also be referred to as **thallospores**. Chlamydoconidia are usually larger than arthroconidia, are rounder and are swollen with food reserves. The Greek word for cloak is *kblamus*, and chlamydoconidia derive their name from their thick cell wall. Formation of these structures is usually a response to environmental stresses. Under favourable conditions, both arthroconidia and chlamydoconidia germinate to produce new mycelia (Fig. 1.7(a)).

True asexual spores of fungi differ from vegetative spores in that they are formed on or in specialised structures called **sporophores**. They are also generally produced in large numbers. They arise because cells divide mitotically, and so the genetic composition of the spores is identical with that of the parent. There is an astonishing variety of size, shape, complexity and colour displayed by the asexual spores of fungi. This provides an excellent means of identifying fungi, and also in part forms the basis of mycological classification. Some fungi produce only one type of asexual spore, whereas others may produce different types of spore.

The majority of spores are disseminated by wind, water or insects. Asexual spores provide a means of reproduction for the fungus and, because of the large numbers of spores that are produced, widespread dissemination of the species is possible. Some asexual spores are short-lived, and are sensitive to external stresses such as ultraviolet irradiation and desiccation. However, this is not always the case. Some spores, particularly those that are darkly pigmented or thick-walled, are resistant to such environmental pressures. Resistant spores can be used as a dormant stage in the life-cycle of fungi.
Asexual spores can be produced either **exogenously** on the tips or sides of hyphae, or **endogenously** in specialised sac-like structures called **sporangia** (singular: sporangium). Lower fungi produce spores in sporangia that are typically formed at the tips of ordinary hyphae or on specialised hyphae called **sporangiophores**, although they may be formed along the hyphal structure. Sporangiophores usually contain large numbers of **sporangiospores** that may be motile or non-motile. Some sporangiophores form a **columella**. This is a dome-shaped structure that separates the sporulating and non-sporulating region within the sporangium. A columella of a sporangium that has discharged its spores may take on the appearance of an umbrella. Many terrestrial fungi produce non-motile spores called **aplanospores** (Greek: α-, not; plano,