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1
The Simple Chemostat

1. Introduction

Competition modeling is one of the more challenging aspects of mathe-
matical biology. Competition is clearly important in nature, yet there are
so many ways for populations to compete that the modeling is difficult to
carry out in any generality. On the other hand, the mathematical idea
seems quite simple: when one population increases, the growth rate of the
others should diminish (or at least not increase), a concept that is quite
easily expressed by partial derivatives of the specific growth rates. If an
ecosystem is modeled by a system of ordinary differential equations - for
example, by

Yi=yifi(y),
where i=1,2,...,n, f; is a continuously differentiable function defined
onR”, and y = (y,, ¥3, ..., V,) - then competition is expressed by the con-
dition
o <0

when i/ # J. Dynamical systems with such properties have been studied ex-
tensively; see Hirsch [Hil; Hi2] and Smith [S3].

Such models easily refiect the direct impact of one population upon the
other - for example, the production by one population of a metabolic
product that inhibits the growth of the other. The simplest form of com-
petition, however, occurs when two or more populations compete for
the same resource, such as a common food supply or a growth-limiting
nutrient. This is called exploitative competition. A simple example of this
type of competition occurs in a laboratory device, called a chemosrat or



2 The Simple Chemostat

a continuous culture, that models competition in a very simple lake. This
device is important in ecological studies because the mathematics is trac-
table and the relevant experiments are possible (although by no means
easy). Its place in theoretical ecology is well documented in the surveys of
Bungay and Bungay [BB], Cunningham and Nisbet [CN2], Fredrickson
and Stephanopoulos [FSt], Jannash and Mateles [JM], Taylor and Wil-
liams [TW], Veldcamp [ V], Waltman [W1; W2], and Waltman, Hubbell,
and Hsu [WHH]. The chemostat model also plays a role in wastewater
treatment problems - two examples are D’Ans, Kokotovié, and Gottlieb
[DKG] and La Riviere [La] - and in the study of recombinant problems in
genetically altered organisms, for example, in Stephanopoulis and Lapidus
[SLa] and Stewart and Levin [SL2]. Moreover, the chemostat model is
the starting point for many variations that yield more realistic biological
models and interesting mathematical problems. The following quotations
reflect the importance of the chemostat.

The chemostat is the best laboratory idealization of nature for population studies.
It is a dynamic system with continuous material inputs and outputs, thus model-
ing the open system character and temporal continuity of nature. The input and
removal of nutrient analogs the continuous turnover of nutrients in nature. The
washout of organisms is equivalent to non-age specific death, predation or emi-
gration which always occurs in nature. [Wi]

An ecosystem is so complex, so difficult to comprehend, that any attempt to under-
stand the interactions of the component parts in situ is frequently doomed to fail-
ure because of a lack of rigorous controls. Under such circumstances the behavior
displayed by one component may be ascribed to any number of phenomena. Con-
sequently, if we wish to understand the mechanisms by which populations interact
we must study them under simplified, controllable laboratory conditions. These
should be modeled for theoretical insight, and under ideal circumstances the be-
havior displayed should be predictable under a variety of conditions imposed by
the experimentalist.

From such a perspective, mixed microbial cultures inhabiting simple continuous
culture devices are ideal model systems for the study of many ecological phe-
nomena. Unfortunately, population biology has neglected this whole field of re-
search for far too long and without good reason; for micro-organisms are not
only economically and ecologically important, their world is every bit as fasci-
nating as that of higher forms of life that are the stable diet of our researchers.
Indeed, they can provide unique insights unavailable from almost any other ex-
perimental approach. [De]

The name “chemostat” seems to have originated with Novick and Szilard
[NS].

In this monograph the basic literature on competition in the chemostat
is collected and explained from a common viewpoint. The subject is by
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no means complete, but sufficient progress has been made to warrant
exposition in a single place. There are also many biological situations that
can be modeled by similar techniques. It is also hoped that successful
analysis of the models presented here will help to convince biologists of
the importance and utility of modern mathematics in ecological studies.

2. Derivation of the Basic Equations of Growth

The apparatus consists of three connected vessels as shown in the sche-
matic in Figure 2.1. The leftmost vessel is called the feed bottle and con-
tains all of the nutrients needed for growth of a microorganism - all in
excess except for one, which is referred to as the limiting nutrient. The
second vessel is called the culture vessel, and it is here that the “action”
takes place. The third vessel is the overflow or collection vessel; it is here
that the products of the culture vessel are collected. It will contain nu-
trient, organisms, and perhaps products produced by those organisms.
Note that measurements can be made on the contents of the collection
vessel without disturbing the action in the culture vessel. Since some nu-
trient is always in shortest supply, we focus on that limiting nutrient,
hereafter simply called the nutrient, and ignore the others that are present
in surplus quantities. We emphasize that Figure 2.1 is a schematic; the
actual realization of the device can take many forms.

The contents of the feed bottle are pumped at a constant rate into the
culture vessel; the contents of the culture vessel are pumped at the same
constant rate into the collection vessel. Let V' denote the volume of cul-
ture vessel (¥ has units of /3, where / stands for length), and let F denote
the volumetric flow rate (F has units of /%/¢, where ¢ is time). The con-
centration of the input nutrient, denoted by S?, is kept constant. Con-
centration has units of mass//>.

The culture vessel is charged with a variety of microorganisms, so it
contains a mixture of nutrient and organisms. The culture vessel is well

N fJ\ R o | fi

S

Figure 2.1. A schematic of the simple chemostat. (From [W2], Copyright 1990,
Rocky Mountain Mathematics Consortium. Reproduced by permission.)



4 The Simple Chemostat

stirred, and all other significant parameters (e.g. temperature) affecting
growth are kept constant. Since the output is continuous, the chemostat
is often referred to as a “continuous culture” in contrast with the more
common “batch culture.”

We seek to write differential equations for this model, and begin by
considering just one organism growing in the chemostat. (A more com-
plete derivation can be found elsewhere; see e.g. Herbert, Elsworth, and
Telling [HET].) The rate of change of the nutrient can be expressed as

rate of change = input — washout — consumption,
while that of the organism can be expressed as
rate of change = growth — washout.

Let S(¢) denote the concentration of nutrient in the culture vessel at time
t. Thus VS(t) denotes the amount of nutrient in the vessel at that time.
The rate of change of nutrient is the difference between the amount of
nutrient being pumped into the vessel per unit time and the amount of
nutrient being pumped out of the vessel per unit time. If there were no
organisms, and hence no consumption, then the equation for the nutrient
would be

(VSy(t) = SOF—S()F,

where the prime denotes the derivative with respect to time. Note that the
units on each side are mass/time. Since V' is constant, the quantity on the
left can be written as VS’(¢) and both sides divided by V. The quantity
F/V, called the dilution (or washout) rate, is denoted by D and has units
of 1/t. The equation then becomes

S(t)=SOD—-S(t)D.

The formulation of the consumption term, based on experimental evi-
dence, goes back at least to Monod [Mol; Mo2]. The term takes the form

mSx
a+S’

where x is the concentration of the organism (units are mass//?), m is the
maximal growth rate (units are 1/¢), and a is the Michaelis—-Menten (or
half-saturation) constant with units of concentration. The form (and the
terminology) of the consumption term is that of enzyme kinetics, where
S would be a substrate. Both ¢ and m can be measured experimentally.
Since it is generally accepted by microbial ecologists, and since it contains
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parameters that can be measured, the Michaelis-Menten (or Monod) for-
mulation is most often used as the uptake function, but the mathematical
results are valid for much more general functions. Simple monotonicity
in S, with a limit as S tends to infinity, is usually sufficient. Trying to
squeeze the greatest mathematical generality from the theorems could
interfere with our presentation, so the emphasis here is on the Monod
formulation. (A partial justification is given in Chapter 2, where it is
shown that - for the simple chemostat — a more general response function
does not introduce any new types of behavior.)

As noted, the form of the consumption term depends on experimental
evidence and does not rest on any physiological basis. The uptake of
nutrient is a very complex phenomenon from the standpoint of molecular
biology. Indeed, the transport of the nutrient through the cell wall is itself
a very complex phenomenon. Dawes and Sutherland [DSu] give a de-
scriptive (i.e. nonmathematical) introduction to microbial physiology and
its complexities. Koch [Ko] considers the uptake and the factors affecting
growth in considerable detail. The Monod and other similar formula-
tions give an aggregate description of the nutrient uptake; to do other-
wise would make the modeling problem very difficult. One can, however,
take into account that the uptake by “larger” cells is more than that of
“smaller” ones [Cu2].

The differential equation for S takes the form

§'=(sO-s5)p- M5 X @.1)
a+S vy
while that of the corresponding equation for the microorganism, assum-
ing growth is proportional to consumption, is

mS
' = -D 2.
x x<a+S >’ 2:2)

where v is a “yield” constant reflecting the conversion of nutrient to or-
ganism. The constant v can be determined (in batch culture) by measuring

mass of the organism formed

mass of the substrate used

and hence is dimensionless. (We will scale it out in the simple chemostat,
but it is important for multiple-nutrient problems.) That v is a constant
is a hypothesis; this hypothesis will be reconsidered in Chapter 8. The
assumption that reproduction is proportional to nutrient uptake is a vast
simplification. The cell cycle is a very complex phenomenon, and entire
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books have been devoted to its description {(see e.g. Murray and Hunt
[MH]). Incorporating the essentials of the cell cycle into the chemostat
model would be an interesting problem. From the mathematical point of
view, this introduces a delay between nutrient uptake and cell division.
Comments on the delay models can be found in Chapter 10, and their
proper incorporation in microbial models is very much an open problem.

The appropriate initial conditions are S(0) = 0 and x(0) > 0. The num-
ber of parameters in the system is excessive, so some scaling is in order.
First of all, note that S® and D (the input concentration and the washout
rate) are under the control of the experimenter. The S® term has units of
concentration and D has units of reciprocal time. Equations (2.1) and
(2.2) may be rewritten as

S (1S mS/S¥ x
SO T\ SO )7 /80 4 §/50) §00°

x [ x mS/S‘9 b
SOy T\ SOy /\ g/S© 4 §/5O '
By measuring S, @, and x/v in units of $® and time in units of D™, one

obtains the following nondimensional differential equations (note that m
and a have changed their meanings):

§'=1-§-M5X
a+S
, (mS ) (2.3)
X' =x -1},
a+S

S$(0)=0, x(0)>0.

This sort of scaling will occur frequently in the problems that follow.
The constants m and a can be regarded as the “natural” parameters of the
organism in this particular environment. We have standardized the envi-
ronment, scaling out the factors that can be changed by the experimenter;
hence the use of natural parameters expressed in (2.3). This unclutters
the mathematics from the “real” world and focuses attention on the selec-
tion of the parameters ¢ and m. This, of course, is in marked contrast to
the point of view of a person who wishes to perform an experiment. There
the parameters @ and m are given; they come from the organism selected.
An experimenter wishes to tune the chemostat to make the organisms
grow. Thus, particularly in the engineering literature, one finds an em-
phasis on presenting results in the form of “operating diagrams,” graphs
that show where to operate the chemostat. Since the emphasis here is
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theoretical, the scaling just described will be used whenever possible; re-
sults in terms of the original parameters can easily be obtained by rein-
terpreting the parameters.

3. Dynamical Systems

Although the system of equations (2.3) is simple enough to handle di-
rectly, we pause here to introduce some mathematical material that will
be important in the remainder of the book. The reader who is not inter-
ested in mathematical tidiness may just note the definitions and go on to
the next section. [CL] and [H2] are standard references for the material
presented here. The focus throughout the book will be on the “dynamical
systems” point of view. Dynamical systems are used primarily as a lan-
guage, not because we need many deep results from that subject. The
language, however, does seem natural for the problems considered. The
dynamical system will be defined in terms of R”, but the natural (and
most efficient) formulation is that of a metric space. In a later chapter we
will use the space C[0, 1], the space of continuous functions on the in-
terval [0, 1] with the usual sup norm, and the definition will be expanded
at that time.

The most basic concept is that of a dynamical (or a semidynamical) sys-
tem. Let 7: M XR — M be a function of two variables, where M is R”
and R denotes the real numbers. (We use M for the first variable or state
space to suggest that the results are true in greater generality.) The func-
tion 7 is said to be a continuous dynamical system if = is continuous and
has the following properties:

(i) 7(x,0) =x;
(i) w(x, t+s) =7w(x(x, 1), s).

An ordinary differential equation of the form

y'=f(), 3.1

with ye R" and f: R” - R” and where f is continuously differentiable,
generates such a system by defining w(x, ) to be the value y(7), where
y(t) is the solution of (3.1) satisfying the initial condition y(0) = x. (We
are tacitly assuming, of course, that all initial value problems for (3.1)
exist for all time.) When (ii) holds only for positive s and ¢, 7 is said to be
a semidynamical system.

Given a point x, the set {w(x,¢), =0} is called the positive orbit or
positive trajectory through the point and is denoted by v*(x). If only
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nonpositive ¢ are considered, the set is called the negative orbit or nega-
tive trajectory through the point and is denoted by vy (x). The union
of the positive and negative orbits is simply called the orbit or trajectory
through the point, denoted by y(x). For emphasis, the latter is sometimes
called the full orbit. For biological systems one wants to determine the
eventual behavior - the asymptotic properties - of trajectories. Biological
models require that trajectories remain positive (concentrations or popu-
lations are positive numbers) and that trajectories do not tend to infinity
with increasing time. If a set S is such that all trajectories that begin (have
their initial condition) in S remain in S for all positive time, then S is said
to be positively invariant. (If trajectories remain in S for both positive
and negative time, S is said to be invariant.) Hence the basic condition
for positivity (of the dependent variables) can be stated as “the positive
cone is positively invariant for the dynamical system generated by (3.1).”
The dynamical system is said to be dissipative if all positive trajectories
eventually lie in a bounded set. This is sufficient to ensure that all solu-
tions of (3.1) exist for all positive time.

Let {t,} be a sequence of real numbers which tends to infinity as n tends
to infinity. (Such a sequence is sometimes called an extensive sequence.)
If P, = 7(x, t,) converges to a point P, then P is said to be an omega limit
point of x. (More correctly, P is an omega limit point of the positive tra-
jectory vt (x); both references will be used, but since there is a unique
trajectory through each point x, the abuse of terminology will cause no
confusion when dealing with systems of the form (3.1).) The set of all
such omega limit points is called the omega limit set of x, denoted w(x).
If the system is dissipative, the omega limit set is a non-empty, compact,
connected, invariant set. Moreover, the orbit 4 (x) is asymptotic to the
omega limit set of x in the sense that the distance from = (x, ) and w(x)
tends to zero as ¢ tends to infinity.

Now let {t,} be a sequence of real numbers which tends to negative in-
finity as » tends to infinity. If P, = w(x, ¢,) converges to a point P, then
P is said to be an alpha limit point of x. The set of all such alpha limit
points is called the alpha limit set of x, denoted a(x). It enjoys similar
properties if the trajectory lies in a compact set for r < 0.

A particularly important class of solutions are the constant ones, which
are called steady states, rest points, or equilibrium points. In terms of
(3.1), such a solution is a zero of f(), that is, a vector y*e R”" such that
F(y*) =0. In the terminology of dynamical systems, a rest point is an
element pe M such that «w(p,t) = p for all re R. Similarly, a periodic
orbit is one that satisfies 7(p, t+ T) = w(p, t) for all r and for some fixed
number 7. The corresponding solution of (3.1) will be a periodic function.
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If the omega limit set is particularly simple - a rest point or a periodic
orbit - this gives information about the asymptotic behavior of the tra-
jectory. An invariant set which is the omega limit set of a neighborhood
of itself is called a (local) attractor. If (3.1) is two-dimensional then the
following theorem is very useful, since it severely restricts the structure
of possible attractors.

THEOREM (Poincaré-Bendixson). If (3.1) is two-dimensional and if v (x)
remains in a closed and bounded region of the plane without rest points,
then either v*(x) is a periodic orbit (and v*(x) = w(x)) or w(x) is a
periodic orbit.

Although this is the classical statement of this theorem, a simple conse-
quence is often useful. This is sometimes called the Poincaré-Bendixson
trichotomy.

THEOREM. Let y*(y,) be a positive semi-orbit of (3.1) which remains in
a closed and bounded subset K of R?, and suppose that K contains only
a finite number of rest points. Then one of the following holds:

(1) w(yg) is a rest point;
(i) w(yy) is a periodic orbit;
(iii) w(yo) contains a finite number of rest points and a set of trajec-
tories v; whose alpha and omega limit sets consist of one of these
rest points for each trajectory «;.

Figure 3.1 illustrates the possibilities. Additionally, if a two-dimensional
system has a periodic orbit then it must have a rest point “inside” that
orbit. These simple facts (and their generalizations) play an important
role in the analysis presented here.

While the Poincaré-Bendixson theorem yields the existence of limit
cycles, it is often important to know when limit cycles do not exist. For
two-dimensional systems, a result in this direction which complements
the Poincaré-Bendixson theorem is called the Dulac criterion. Its proof
is a direct application of the classical Green’s theorem in the plane (after
an assumption that the theorem is false) and will not be given here; a
good reference is [ALGM].

TareorEM (Dulac criterion). Suppose that (3.1) is two-dimensional. Let
T be a simply connected region in R? and let 3(x) be a continuously dif-
ferentiable scalar function defined on T. If V(f(x)B(x)) is of one sign
(excluding zero) in the region T then there are no periodic orbits in T,
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—w(x)

Figure 3.1. Examples of limit sets for planar systems: a a rest point; b a periodic
orbit; ¢ multiple rest points with connecting orbits.

By V is meant the gradient of the resulting two-dimensional vector func-
tion.

Local stability considerations also play a role in the analysis. For sim-
plicity denote the solution of the autonomous system (3.1) through the
point y, at time =0 by ¢(f, yy). Let ||:| denote the Euclidean norm
in R”. The solution ¢ (¢, yo) is said to be stable if, for any € > 0, there
exists a 6 > 0 such that if ||y, —x,] <& then ||@(7, yo) — ¢ (1, Xp)|| < € for
all £ > 0. The solution ¢(t, y,) is said to be asymptotically stable if it is
stable and if there is a neighborhood N of y, such that if x,€ N then
Hm, , of|o (2, x0) — (2, ¥o)|| = 0. We shall be concerned with the case where
¢(1, yy) 1s a constant solution or rest point, that is, where ¢(z, yo) =¥y
for all . We usually use y* to denote a rest point. Note that a rest point
y* is asymptotically stable if it is stable and an attractor.

The system

x'=f0"x (3.2)

is said to be the linearization of (3.1) around the rest point y*, where
f,(»y*) is the Jacobian matrix
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af; }
Iian
This matrix is called the variational matrix at y*.

If all of the eigenvalues of the variational matrix have negative real
parts, then y* is an asymptotically stable rest point of (3.1). When this
happens it is possible to find an arbitrarily small neighborhood around
the rest point such that, on the boundary of the neighborhood, all trajec-
tories cross the boundary from outside to inside.

If an omega limit set contains an asymptotically stable rest point P,
then that point is the entire omega limit set. If all of the eigenvalues of
the variational matrix have positive real part then the rest point is said
to be a repeller; such a rest point cannot be in the omega limit set of
any trajectory other than itself. If k eigenvalues have positive real part
and n—k eigenvalues have negative real part then there exist two sets:
M™(P), called the stable manifold and defined by

y=y*

M*(P) = {x]|lim,_ , m(x,1) = P};
and M ~(P), called the unstable manifold and defined by
M™(P)={x|lim,, _o 7(x,t) = P}.

The sets M *(P) and M ~(P) are locally manifolds of dimension n—k
and k, respectively, and all trajectories with initial conditions on these
sets tend to the rest point as ¢ tends to infinity (stable) or as ¢ tends to
negative infinity (unstable). One should think of these manifolds as sur-
faces in the appropriate space. On these surfaces, trajectories tend to the
rest point as ¢ tends either to positive or to negative infinity. (To assist
with the notation, the reader should associate the plus sign on M * with
positive time and the minus sign on M ~ with negative time.) In particular,
a single eigenvalue with positive real part makes the rest point unstable.
The corresponding eigenvectors generate the tangent space to the respec-
tive manifolds. When no eigenvalue of the variational matrix has zero
real part, the rest point is said to be Ayperbolic.

Let P, O be hyperbolic rest points (not necessarily distinct). P is said to
be chained to Q, written P— Q, if there exists an element x, x¢e PUQ,
such that xe M~ (P)NM*(Q). A finite sequence P, P,, ..., P, of hyper-
bolic rest points will be called a chain if P, —»P,— --- > P, (P, - P, if
k =1). The chain will be called a ¢ycle if P, = P,. A chain reflects the
connections between equilibrium states. A cycle will turn out to be an “un-
desirable” type of connection.

The following theorem is often useful.
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THEOREM (Butler-McGehee). Suppose that P is a hyperbolic rest point
of (3.1) which is in w(x), the omega limit set of v*(x), but is not the en-
tire omega limit set. Then w(x) has nontrivial (i.e., different from P)
intersection with the stable and the unstable manifolds of P.

Figure 3.1c, where P is any of the three equilibria, illustrates the theorem.
A short proof (due to McGehee) can be found in the appendix of [FW2],
but it requires some advanced concepts from dynamical systems. The
result is very general and theorems in the same spirit can be found in
[BW], [BFW], [DRS], [T1], or [HaW] in very abstract settings. Note
that the linearization around such a point P cannot have all of its eigen-
values with negative real part else P = w(x); it also cannot have all eigen-
values with positive real part, for a repeller cannot be in the omega limit
set of a point other than itself. Hence the stable and unstable manifolds
are not empty. The intuition behind the result is that an orbit cannot
“sneak” into and out of a neighborhood of P infinitely often without
having accumulation points on the stable and unstable manifolds. The
proof simply makes this idea precise. (The proof may be skipped on first
reading.)

Proof of the Butler-McGehee Theorem. Since P is a hyperbolic equi-
librium, there exists a bounded open set U containing P, but not x, with
the property that if «(y, t)e U for all 1 > 0 (¢ < 0), then y belongs to the
local stable (unstable) manifold M *(P) (M ~(P)); see [H2]. (P is the
largest invariant set in U, or U isolates P from any other invariant sets.)
By taking a smaller open set ¥, PeV C ¥V C U, we have that «(y,t) eV
for all > 0 (¢ < 0) implies y e M T (P) (M ~(P)).

Since P € w(x), there exists a sequence {¢,}, lim,, _, , ¢, = %, such that
lim, .o x, =lim, ,, 7(x, t,) = P. It follows that x,eV for all large n.
Since x ¢ M *(P), else w(x) = P, from the property of the neighborhood
V' one may conclude that there exist positive numbers r,,s, such that
ry <ty, w(x,,t)eV for —r, <t <s,, and w(x,, —r,), x{x,,s,)€adV. By
the continuity of = (x, t), solutions that start near P must remain near P;
hence it follows that r, and s, tend to infinity as » tends to infinity. How-
ever, V is compact, so (passing to a subsequence if necessary) one may
conclude that lim, ., n(x,, —r,) =¢geV and lim,_ . 7(x,,s,) =geV.
We continue the proof for q; the other case is similar.

It is claimed that =(q, ¢)eV for all #> 0. Recall that lim,_ g, =g
where g, = n(x,, —r,). Fix > 0. By the continuity of =, lim,, _, , 7(g,, ) =
n(g,t). Since —r, < f—r, <0 for all large n, n(q,,t) = w(x,, i—r,) eV
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for all large n. It follows that w(q, t) € V. Since f > 0 was arbitrary, the
claim is established.

Since 7(q, ) e V for all ¢ > 0, we have g € M *(P) by the isolating prop-
erty of V cited in the first sentence of the proof. However, g€ y¥(x) =
yH(x)Uw(x). Since ge M *(P), g¢~v*(x) and hence g € w(x), which es-
tablishes one case of the theorem. Ol

For many of the systems of interest here, the dynamics restricted to the var-
ious boundaries of the positive cone in R” will be dynamical systems in their
own right - the boundaries will be invariant sets. It may happen that a rest
point P will be asymptotically stable when regarded as a rest point of the
lower-dimensional dynamical system and yet have unstable components
when the full system is considered. If the entire stable manifold is contained
in the boundary, then the Butler-McGehee theorem can be used to con-
clude that no trajectory from the interior of the positive cone can have P as
an omega limit point. Indeed, the omega limit set cannot equal P because
the initial point does not belong to the stable manifold of P. If the limit
set contains P then it would also contain a point of the stable manifold dis-
tinct from P, by the Butler-McGehee theorem, and would therefore con-
tain the closure of the entire orbit through this point since the omega limit
set is closed and invariant. However, this typically leads to a contradic-
tion, since orbits in the stable manifold of P are either unbounded or their
limit sets contain equilibria that can be readily excluded from the original
limit set (e.g. are repellors). Section 5 will use the theorem in this way.

4. Analysis of the Growth Equations

For system (2.3) the positive cone is positively invariant (see Appendix B,
Proposition B.7). In simpler terms, if the system is given positive initial
conditions then the two components of the solution remain positive for
all finite time. Moreover, if one adds the two equations and defines £ =
1—S—x, then one obtains a single equation

L'=-%

with £(0) > 0. It follows at once that lim,_, , Z(¢) =0 and that the con-
vergence is exponential. This not only gives the required dissipativeness
but also leads to the simplification of the system by the elimination of
one variable. From lim,_, [ S(¢)+x(#)] =1, one can conclude that the
omega limit set of the system (2.3) must lie in this set, and trajectories on
the omega limit set must satisfy
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, {m(l -x)

X =X

1], 0=sx<l. 4.1
I+a—x } x “.1)

It might seem at first that it was extremely fortuitous that the afore-
mentioned limit should exist. However, there is a simple, intuitive expla-
nation. If there were no organisms in the model - that is, if only nutrient
were present in the equation - then the nutrient would satisfy

S'=1-8 and lim,,,S()=1.

The scaling in the system has expressed the concentration of organism in
terms of its “nutrient equivalent.” Since nothing is created or destroyed
in the system, the sum should satisfy the same equation. The quantity X
(more accurately, 1 —I) reflects this. Indeed, if all of the variables in the
model are properly accounted for, this will always be true for the sum of
the variables in a chemostat.

Since all trajectories of the original system are asymptotic to their omega
limit set, in analyzing this equation it is sufficient to determine the asymp-
totic behavior of (2.3). From a more intuitive viewpoint this is merely
starting on the manifold S+ x =1, to which all solutions must tend; the
mathematical support for this is rigorously established later (see the proof
of Theorem 5.1 or Appendix F). Define, for m > 1,

pR— ;
m—1

A is called the break-even concentration. Equation (4.1) has two rest
points, x = 0 and x = 1 — A, and the equation can be rewritten as

, m—1
X —x{m}[l~/\—x]. 4.2)
Clearly, if m<lorm>1and A> 1, then lim, _, ,, x{(¢) =0 (x'(¢) is nega-
tive and x(¢) is bounded below by zero). On the other hand, if A< 1 and
m>1, then lim,_, ., x(f) =1—A (and hence lim,_ , S(f) = A). If m <1,
the organism is washing out faster than its maximal growth rate, whereas
if A= 1 there is insufficient nutrient available for the organism to survive.
In either case, extinction is not a surprising outcome. The case m =11is
handled by using (4.1) directly.

5. Competition

To study competition in the chemostat, introduce two different microorga-
nisms into the system, labeled x; and x,, with corresponding parameters
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a;and m;, i =1, 2. We assume that the corresponding lambdas, A, and A,,
are different. The overall system becomes

mlel m25X2
a1+S a2+S ’

X[=x < S l)
U g+s ) .1)
, sz

* =x2<a +S _l>’
2

S(O) = O, X](O) > O, X2(O) > 0.

S'=1-8

Again, let £(¢) = 1—S(¢) —x,(t) — x,(¢), and rewrite the system as

£'=-%,

=y [T =B =X — X)) —1
! ! a1+1—2—x1—x2 ’

(5.1

, (mz(l—E_XI—XZ) l)
2 I

=X ay+1-T—x;—x,
L(0) =1, x1(0) >0, x,(0)>0.
In the same manner as before, one has that
lim, o X(¢t) =0,

where the convergence is exponential. Again this shows that the system is
dissipative and that, on the set L = 0, trajectories satisfy

1— —
x{=x1<m1( X xz)_1>,
a1+1_X1_X2
my(l—x,— 5.2
x§=x2< Al =X xz)_1>’ (5.2)
a+1l—x—x,

X](O) > 0, Xz(o) > O, Xjtxy, =< 1

or
xX[=x m 1 [1=A;—x;—x5]
! 1 1+al—XI_X2 ! ! 2b
xXj=x my 1 [1—Ay—x; — 3]
= e —— —_ —_— — X .
2 2 1+a2*X1_X2 2 ! 2

X1(0)>0, X2(0)>0, X1+X251.
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The system (5.2) has three rest points:
Ey=(0,0), E;=(01-X,0), E,=(0,1—-2,).

If Ay is different from A, then there is no “interior” rest point, that is,
a rest point with both components positive. In view of the results for
growth without a competitor, the only interesting cases are where m, > 1
and 0 < A; < 1fori=1and 2. If not, the corresponding population washes
out of the chemostat even without a competitor (and hence is called an
inadequate competitor).

The following is the principal theorem for competition between two
adequate competitors under Michaelis-Menten dynamics. Proofs (with
varying degrees of mathematical rigor) may be found in [AH; HHW; P;
SL1]. Extensions will be discussed in the next chapter.

THEOREM 5.1. Suppose that m; > 1, i =1and 2, and that 0 < A\; < A, <1,
Then any solution of the system (5.2) with x;(0) > 0 satisfies
limlaoo S(Z) = /\l’
limtaoo xl(t) =1 _Al,
lim, . x,(t) =0.
Proof. We begin by analyzing (5.2). The first step is to compute the sta-
bility of the rest points of system (5.2) by finding the eigenvalues of the

Jacobian matrix evaluated at each of these rest points. At (0, 0) this ma-
trix takes the form

(m;—1)(1—-Ay) 0
1+al
0 (m—D(1=Ay)
1+az

Both eigenvalues are positive and the origin is a repeller. In particular,
the origin is not in the omega limit set of any trajectory (other than itself).
At (1—A,, 0), the variational matrix is of the form

(A —D(aymy) (A —1)(aymy)
(A+a))? (A +ap)?
(my—=1) (A1 —Ay)
Ata,

0
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Since 0 < A; < A, and m, > 1, both eigenvalues are negative. Thus E| is
(locally) asymptotically stable. At (0,1—A,), the variational matrix takes
the form

(m—=1)(Ay—Ayp) 0
)\2+a1
A—D(aymy) (A, —D)(aymy)
(A2 +ay)? (A2 +ay)?

One eigenvalue is negative since A, < 1 and one is positive since A; < A,.
Thus the stable manifold is one-dimensional and, since E, attracts along
the x, = 0 axis, the stable manifold lies there. In particular, the Butler-
McGehee theorem (stated in Section 3) allows one to conclude that no
trajectory with positive initial conditions can have E, as an omega limit
point. Since the initial data are positive, the omega limit set cannot equal
E,. If it contained E,, then it must also contain an entire orbit different
from F, belonging to the stable manifold of E,. There are only two pos-
sible orbits; one is unbounded, and the other has alpha limit set E,. But
the omega limit set cannot contain an unbounded orbit and it cannot
contain Ej since it is a repeller. Therefore, E, is not a limit point.

Since E; is a local attractor, to prove the theorem it remains only to
show that it is a global attractor. This is taken care of by the Poincaré-
Bendixson theorem. As noted previously, stability conditions preclude a
trajectory with positive initial conditions from having E, or E, in its omega
limit set. The system is dissipative and the omega limit set is not empty.
Thus, by the Poincaré-Bendixson theorem, the omega limit set of any
such trajectory must be an interior periodic orbit or a rest point. However,
if there were a periodic orbit then it would have to have a rest point in its
interior, and there are no such rest points. Hence every orbit with positive
initial conditions must tend to E,. (Actually, two-dimensional competi-
tive systems cannot have periodic orbits.) Figure 5.1 shows the x,-x, plane.

Although this argument resolves the asymptotic behavior on the set
L =0, there remains the question of whether the systems (5.1} and (5.2)
have the same asymptotic behavior. This question is answered in con-
siderable generality in Appendix F; however, we give a direct proof of
the current case.

Although the stable manifold of E, was E, in the planar system, and
the stable manifold of £, was one-dimensional in that system, these man-
ifolds have an extra dimension when one considers the full system (5.1')
involving . Specifically,



