The solar–terrestrial environment

An introduction to geospace – the science of the terrestrial upper atmosphere, ionosphere and magnetosphere.

J. K. Hargreaves

University of Lancaster
The solar-terrestrial environment: an introduction to geospace – the science of the terrestrial upper atmosphere, ionosphere and magnetosphere / J. K. Hargreaves.

Includes index.

 4. Ionosphere. I. Title.
 QC879.H278 1992
 551.5'14 – dc20 91-27182 CIP

ISBN 0 521 32748 2 hardback
ISBN 0 521 42737 1 paperback

Transferred to digital printing 2003
Contents

Preface

1. **The Earth in space**
 1.1 Introduction 1
 1.2 The sun and the solar wind 2
 1.3 The atmosphere and the ionosphere 3
 1.4 Geomagnetic field and magnetosphere 3
 1.5 Nomenclature 4
 1.6 Summary 4

2. **The physics of geospace**
 2.1 Useful units and fundamental constants 6
 2.2 Properties of gases 9
 2.2.1 Gas laws 9
 2.2.2 Thermal equilibrium 10
 2.2.3 Continuity 11
 2.2.4 Collisions 11
 2.2.5 Diffusion 12
 2.3 Magnetoplasma 13
 2.3.1 Electric and magnetic energy 13
 2.3.2 Gyrofrequency 14
 2.3.3 Betatron acceleration 15
 2.3.4 Plasma frequency 16
 2.3.5 Debye length 17
 2.3.6 Frozen-in field 18
 2.3.7 \(\mathbf{E} \times \mathbf{B} \) drift 19
 2.3.8 Fermi acceleration 20
 2.4 Waves 20
 2.4.1 Phase velocity 21
 2.4.2 Refractive index 21
 2.4.3 Group velocity 22
 2.4.4 Polarization 23
 2.4.5 Energy density 24
2.5 Radio waves in an ionized medium
2.5.1 Magneto-ionic theory and the Appleton equation 25
2.5.2 Reflection of an HF radio wave from the ionosphere 27
2.5.3 Partial reflection at a sharp boundary 28
2.5.4 Full wave solutions 29
2.6 Radio propagation through an irregular plasma 29
2.6.1 Introduction 29
2.6.2 Diffraction by a thin screen of weak irregularities 30
2.6.3 Fresnel zone effects 33
2.6.4 Diffraction by strong irregularities 35
2.7 More waves in plasmas 35
2.7.1 Hydromagnetic and magnetosonic waves 35
2.7.2 Whistler and ion-cyclotron waves 36
2.7.3 Electron-acoustic and ion-acoustic waves 39
2.8 Instabilities 40
2.8.1 Introduction 40
2.8.2 Two-stream instability 40
2.8.3 Gradient drift instability 41
2.8.4 Kelvin–Helmholtz instability 43

Further reading

3 Techniques for observing geospace
3.1 The importance of observations 44
3.2 Direct sensing of a gaseous medium 45
3.2.1 Direct measurements of the neutral atmosphere 46
3.2.2 Langmuir probe and derivatives 49
3.2.3 Impedance and resonance probes 52
3.2.4 Mass spectrometers 53
3.3 Radiation sensors 54
3.3.1 Energetic particle detectors 55
3.3.2 Optical and other electromagnetic receivers 55
3.3.3 Magnetometers and electric field sensors 57
3.4 Indirect sensing of the neutral atmosphere 58
3.4.1 Falling spheres and dragging satellites 58
3.4.2 The measurement of upper atmosphere winds 61
3.5 Remote sensing by radio waves 61
3.5.1 Ionospheric sounding 61
3.5.2 Trans-ionospheric propagation 67
3.5.3 VLF propagation 73
3.5.4 Whistlers 74
3.5.5 Partial reflections 76
3.6 Scatter radar techniques 77
3.6.1 Volume scattering 77
3.6.2 Coherence 79
3.6.3 Coherent scatter radar 79
3.6.4 Incoherent scatter radar – principles 81
3.6.5 Incoherent scatter radar – measurements 86
3.6.6 MST radar 88
3.6.7 Lidar 90
3.7 Ionospheric modification
3.7.1 Plasma and beam injection
3.7.2 Heat injection
3.7.3 Wave injection
3.7.4 Water and hydrogen injection
Further reading

4 The neutral atmosphere
4.1 Vertical structure
4.1.1 Nomenclature of atmospheric vertical structure
4.1.2 Hydrostatic equilibrium
4.1.3 The exosphere
4.1.4 Heat balance and vertical temperature profile
4.1.5 Composition
4.2 Winds and tides
4.2.1 Introduction
4.2.2 The measurement of high-altitude winds
4.2.3 Winds in the stratosphere and mesosphere
4.2.4 Thermospheric tides
4.3 Waves propagating in the neutral air
4.3.1 Theory of acoustic–gravity waves
4.3.2 Observations
4.4 Standard atmospheres and models
Further reading

5 The solar wind and the magnetosphere
5.1 Introduction
5.2 Solar radiations
5.2.1 Solar electromagnetic radiation
5.2.2 The phenomenon of the solar flare
5.2.3 Radio emissions from the Sun
5.2.4 Solar activity cycles
5.2.5 Proton emissions
5.3 The solar wind
5.3.1 Discovery
5.3.2 Theory of the solar wind
5.3.3 Properties of the solar wind
5.3.4 Interplanetary magnetic field and sector structure
5.3.5 The coronal hole and fast solar streams
5.4 The geomagnetic cavity
5.4.1 The geomagnetic field
5.4.2 The magnetopause
5.4.3 The magnetosheath and the shock
5.4.4 The polar cusps
5.4.5 The magnetotail
5.5 Circulation of the magnetosphere
5.5.1 Circulation patterns
5.5.2 Field merging in the neutral sheet and at the magnetopause
5.5.3 Magnetospheric electric fields
5.6 Particles in the magnetosphere 164
 5.6.1 Principal particle populations 164
 5.6.2 The plasmasphere and its dynamics 164
 5.6.3 The plasma sheet 169
 5.6.4 Boundary layers 173
5.7 Van Allen particles 174
 5.7.1 Discovery 174
 5.7.2 Trapping theory 175
 5.7.3 Sources, sinks and morphology 183
5.8 Magnetospheric current systems 189
 5.8.1 The magnetopause current 190
 5.8.2 The tail current 191
 5.8.3 The ring current 191
 5.8.4 Birkeland currents 194
5.9 Substorms in the magnetosphere 196
 5.9.1 Consequences of intermittent merging 196
 5.9.2 Substorm triggering and the influence of the IMF 200
 5.9.3 Substorm currents 201
5.10 Magnetospheres of other planets 202
 Further reading 205

6 Principles of the ionosphere at middle and low latitudes 208
 6.1 Introduction 208
 6.2 Physical aeronomy 209
 6.2.1 Principles 209
 6.2.2 The Chapman production function 210
 6.2.3 Ionization by energetic particles 213
 6.2.4 Principles of chemical recombination 218
 6.2.5 Vertical transport 220
 6.3 Chemical aeronomy 222
 6.3.1 Introduction 222
 6.3.2 E and F1 regions 225
 6.3.3 F2 region and protonosphere 227
 6.3.4 D region 229
 6.4 Principles of airglow 233
 6.5 Charged particle motions and electrical conductivity 236
 6.5.1 Introduction 236
 6.5.2 Particle motion in a magnetic field in the presence of collisions 237
 6.5.3 Responses to a neutral-air wind 240
 6.5.4 Response to an electric field 242
 6.5.5 Conductivity 243
 Further reading 247

7 Ionospheric phenomena at middle and low latitudes 249
 7.1 Observed behaviour of the mid-latitude ionosphere 249
 7.1.1 E region and sporadic-E 250
 7.1.2 F1 region 253
 7.1.3 F2 region and its anomalies 253
 7.1.4 D region 261
 7.1.5 Effects of solar flares 261
7.1.6 Variations with sunspot cycle 263
7.1.7 Eclipse effects 266
7.1.8 Ionospheric models 269
7.2 Ionospheric electric currents 272
7.2.1 Generation of global ionospheric currents 272
7.2.2 S_d current system 272
7.2.3 F-region drifts 274
7.2.4 Ion drag effects 275
7.3 Peculiarities of the low latitude ionosphere 276
7.4 Storms 278
7.4.1 Introduction 278
7.4.2 Magnetic storm and the D_n index 279
7.4.3 The F-region ionospheric storm 279
7.4.4 D-region storms 285
7.4.5 Winter anomaly of radio absorption 289
7.5 Irregularities 295
7.5.1 Scintillations 295
7.5.2 Scintillation drifts 300
7.5.3 Spread-F, bubbles and F-region irregularities at low latitude 302
7.5.4 Irregularities in the equatorial electrojet 303
7.5.5 Travelling ionospheric disturbances 305

Further reading 310

8 The ionosphere at high latitude 312
8.1 Dynamics of the polar ionosphere 312
8.1.1 F-region circulation 312
8.1.2 Interaction with the neutral air 315
8.1.3 The S_p current system 317
8.1.4 Polar wind 318
8.1.5 The polar cusps 319
8.1.6 Troughs 321
8.2 High-latitude irregularities 323
8.2.1 Blobs, enhancements, or patches 323
8.2.2 Scintillation-producing irregularities 325
8.2.3 E-region irregularities 325
8.3 The aurora 327
8.3.1 Introduction 327
8.3.2 Luminous aurora: distribution and intensity 329
8.3.3 Luminous aurora: spectroscopy 335
8.3.4 Auroral electrons 335
8.3.5 Radar aurora 338
8.3.6 Auroral radio absorption 339
8.3.7 X-rays 339
8.3.8 VLF and ULF emissions 340
8.4 Magnetic storms and substorms at high latitude 341
8.4.1 Magnetic bays 341
8.4.2 Auroral electrojets 342
8.4.3 Magnetic indices 345
8.4.4 Substorm in the luminous aurora 346
8.4.5 The unity of auroral phenomena 348
Contents

8.5 Polar cap events
 8.5.1 Introduction
 8.5.2 Propagation from Sun to Earth
 8.5.3 Proton propagation in the magnetosphere – Störmer theory
 8.5.4 Atmospheric effects of solar protons
 Further reading

9 Magnetospheric waves
 9.1 Wave generation by magnetospheric particles
 9.2 Observations from the ground
 9.2.1 VLF signals
 9.2.2 Micropulsations
 9.3 Space observations
 9.4 Effects of waves on particles
 9.4.1 Particle precipitation by waves
 9.4.2 The Trimpi event
 9.4.3 Controlled injection of whistler waves
 9.4.4 Power-line effects
 9.4.5 Cyclotron resonance instability
 Further reading

10 Technological application of geospace science
 10.1 Introduction
 10.2 Communications
 10.2.1 Radio propagation predictions
 10.2.2 Satellite communications
 10.2.3 Navigation, positioning and timekeeping
 10.2.4 Effects on remote sensing systems
 10.3 Power lines, pipelines and magnetic prospecting
 10.4 Space operations
 10.4.1 Effects on satellites
 10.4.2 Effects on space travellers
 10.5 Activity monitoring and forecasting
 10.5.1 The users
 10.5.2 Monitoring systems
 10.5.3 Solar cycle predictions
 10.5.4 Flare forecasting
 10.5.5Geomagnetic activity
 10.6 Data services
 Further reading

Index
The Earth in space

Far out in the uncharted backwaters of the unfashionable end of the Western Spiral arm of the Galaxy lies a small unregarded yellow sun. Orbiting this at a distance of roughly ninety-two million miles is an utterly insignificant little blue green planet whose ape-descended life forms are so amazingly primitive that they still think digital watches are a pretty neat idea.

1.1 Introduction

The solar–terrestrial environment, nowadays sometimes called geospace, includes the upper part of the terrestrial atmosphere, the outer part of the geomagnetic field, and the solar emissions which affect them. It could be defined as that region of space closest to the planet Earth, a region close enough to affect human activities and to be studied from the Earth, but remote enough to be beyond everyday experience. Clearly, it is not the familiar atmosphere of meteorology; nor is it the inter-planetary space of astronomy, though it interacts with both. The material found there is mainly terrestrial in origin and strictly a part of the atmosphere of the Earth, though it is greatly affected by energy arriving from the Sun. Starting some 50–70 km above the Earth’s surface and extending to distances measured in tens of Earth radii, geospace is a region of interactions and of boundaries: interactions between terrestrial matter and solar radiation, between solar and terrestrial magnetic fields, between magnetic fields and charged particles; and boundaries between solar and terrestrial matter, and between regions dominated by different patterns of flow.

Having an origin in the geomagnetism of the 19th century, our subject first began to develop rapidly about 60 years ago with the increasing use of radio waves in communications and the first scientific studies of the ionosphere during the 1930s. The development of radar just before and during the war of 1939–45 was technically significant, and the technology of war also brought rocketry as a tool for high altitude sounding. Then, in the late 1950s, there took place the first satellite launches which within only a few years brought a great expansion of space activity. Measuring instruments could now be placed in the media of the upper atmosphere, the magnetosphere and interplanetary space, and left there for long periods. Communications and other technological satellites began to be developed for commercial use, and it became possible for human beings to live and work in a space environment for extended periods. There have been problems, but at the present time (1990) it is safe
to say that reusable vehicles (the Space Shuttle) are well established, and space station technology (Mir) is already highly developed. We may expect to see further developments in shuttle/space station technology over the next few years in each of the major space centres, and one day we shall perhaps see these competing efforts growing together into a single global enterprise.

All of this depends on a knowledge and understanding of geospace. But in addition to its importance in applications, the science is important in its own right for fundamental studies such as of the properties of tenuous atmospheres and their photochemistry, of wave propagation and of plasma physics. The medium of near space and its physics are not readily reproduced in earth-bound laboratory conditions, and to a large extent geospace provides its own laboratory.

We shall be concerned with three broad regions:

- The space between Sun and Earth, across which solar–terrestrial influences propagate;
- The terrestrial atmosphere, neutral and ionized, with which the solar emissions react;
- The geomagnetic field external to the solid Earth, which influences the ionized atmosphere and controls the Earth’s outermost regions.

1.2 The Sun and the solar wind

The rather ordinary star at the centre of the solar system establishes for each planet a radiation environment which controls its temperature and determines the rate of evolution of that planet, the composition of its atmosphere, and its suitability for life. It is our good fortune – though if it were not we should not be here to complain about it – that planet Earth is intermediate between the extreme heat of the planets closer to the Sun and the extreme cold of the outer planets. The Earth’s surface temperature permits water to exist in all three phases. Life emerged in the liquid phase and proceeded to alter the composition of the atmosphere, adding oxygen to the nitrogen and carbon dioxide already present. The presence of water as vapour also provided, and continues to provide, a source of hydrogen, which, as we shall see, is important at the atmosphere’s higher levels.

Thus the general level of solar radiation, combined with the distance between Sun and Earth, has largely determined the nature of the Earth’s atmosphere. While long term change in this energy output may be responsible for slow climatic changes such as produced the Ice Ages, short term changes over days, weeks or a few years appear to have little climatic effect – despite strenuous efforts to discover some. At the higher levels of the atmosphere, though, the changes that accompany variations of solar activity may be large and rapid. The upper atmosphere, where most of the more energetic solar radiations are stopped, and which is heated by them, is very responsive to solar activity variations in general, as well as to the short-lived, intense and localized outbursts known as solar flares.

In addition to radiation the Sun also emits a stream of matter. We think of planets like the Earth as stable, self-contained bodies that do not evaporate into space to any significant extent. Not so the Sun, which is not in equilibrium and continuously loses matter as well as radiation into space. This stream of matter is the solar wind, which
forms the second vital connection between Sun and Earth. Also important is the weak magnetic field, the interplanetary magnetic field, which is embedded in the solar wind and is carried with it past the Earth, where it largely determines how strongly the solar wind couples with the matter of the remote terrestrial atmosphere. Although the solar wind does not penetrate down to the ground it is highly significant in geospace; indeed, some of the most remarkable behaviour is directly attributable to the variations of the solar wind and its magnetic field. The interactions are subtle ones and we shall spend some time dealing with them.

1.3 The atmosphere and the ionosphere

Less is known about the Earth’s atmosphere than many people imagine. Near the ground the atmosphere is a relatively dense gas, mainly composed of molecular nitrogen and oxygen with smaller amounts of carbon dioxide, water and various trace gases. With increasing altitude the pressure and density decline. At 50 km 99.9% of the mass of the atmosphere is below, and at 100 km all but 1 part per million. Into these rarified upper levels penetrate the ultra-violet and X-ray emissions emanating from the Sun, photons which are sufficiently energetic to dissociate and to ionize the atmospheric species, thereby altering the atmosphere’s composition and heating it. The heating creates a hot upper region called the thermosphere which is less turbulent than the lower regions, and in which gases of different density may separate. Thus the composition of the atmosphere changes with altitude, the lighter gases, particularly hydrogen, becoming progressively more dominant.

Because of the low pressure above about 100 km, ionized species do not necessarily recombine quickly, and there is a permanent population of ions and free electrons. The net concentration of ions and free electrons (generally in equal numbers) is greatest at heights of a few hundred kilometres, and although the electron concentration may amount to only 1% of the neutral concentration the presence of these electrons has a profound effect on the properties and behaviour of the medium. This ionosphere is electrically conducting and can support strong electric currents. The ionized medium also affects radio waves, and as a plasma it can support and generate a variety of waves, interactions and instabilities that are not found in a neutral gas.

The upper atmosphere and ionosphere sit on the lower atmosphere, the domain of the meteorologists. We shall see that some of the behaviour of the higher regions is similar to that taught in meteorology, but that there is much more besides.

1.4 Geomagnetic field and magnetosphere

As William Gilbert, physician to Queen Elizabeth I, realized 400 years ago, the Earth is itself a magnet. The geomagnetic field is generated by electric currents flowing deep within the solid Earth and to a first approximation may be represented as though due to a short bar magnet at the centre of the Earth. As a dipole field it extends beyond the planetary surface, through the troposphere on which it has no effect, and into the ionized atmosphere where its effects are considerable. The geomagnetic field affects the motions of ionized particles, and thus modifies ionospheric electric currents and the
bulk movement of the plasma. The importance of the magnetic field increases with altitude as the atmosphere becomes more sparse and its degree of ionization increases. At the highest levels, more than a few thousand kilometres above the surface, all behaviour is so dominated by the geomagnetic field that this region is called the magnetosphere. There is no sharp boundary between the ionosphere and the magnetosphere, but between the magnetosphere and the solar wind is a boundary, the magnetopause, which is very significant. At this boundary energy is coupled into the magnetosphere from the solar wind, and here is determined much of the behaviour of the magnetosphere and of the ionosphere at high latitudes. In the sunward direction the magnetopause is encountered at about 10 Earth-radii, but in the anti-solar direction the magnetosphere is extended downwind in a long tail, the magnetotail, within which occur plasma processes of great significance for the geospace regions.

1.5 Nomenclature
The solar–terrestrial environment has many parts, which may be one reason why it has been difficult to find an apposite all-embracing appellation. Relevant material may be found in the literature under various titles. Internationally, the topic is considered a branch of geophysics and is sometimes called external geophysics, though in some countries there persists an outdated practice of confining the term ‘geophysics’ to the solid Earth (properly internal geophysics). The upper atmosphere is a term of some generality for the higher reaches of the atmosphere, though some use it to mean the neutral gas only. It should not be confused with the meteorologists’ ‘upper air’, which is actually within the troposphere and stratosphere and therefore largely beneath the level of our considerations. The addition of ‘physics’ to ‘upper atmosphere’ obviously means that the physical processes of the region are being addressed. Aeronomy – literally, ‘measurement of the air’ – is a good modern term meaning the processes, physical and chemical, of the upper atmosphere. Ionosphere refers to the ionized component of the upper atmosphere, and magnetosphere to the outermost regions dominated by the geomagnetic field. These regions will be treated in some detail, but there is no clearly defined boundary between them. Much relevant material also appears under the heading of space physics, which is not unreasonable because most space data are taken not too far from the Earth in practice. We shall also use the term geospace, a recently coined word meaning the region of space relevant to the Earth. As an inclusive term it appears to be as good as any yet suggested.

1.6 Summary
It should be clear from the foregoing sketch that the contents of geospace are rather different from the more familiar atmospheric gas of the troposphere. In this book we shall be dealing with the physics of tenuous gases, with ionization and ionic recombination processes, with electrical conduction in a gas, with particle as well as electromagnetic radiations of various energies, and with the behaviour of a plasma permeated by a magnetic field. None of these has anything like as much significance in the atmosphere near the ground. We shall also be concerned with dynamics and transport, which are important throughout the atmosphere and magnetosphere.

It follows that the science of the solar–terrestrial environment is based principally on
classical physics, though some knowledge of chemistry and, of course, mathematics is also needed. In Chapter 2 we shall summarize some aspects of basic physics that are particularly important for an appreciation of the more specialized material to follow.