Numerical Recipes
Routines and Examples
in BASIC

companion manual to
Numerical Recipes: The Art of Scientific Computing

Julien C. Sprott

University of Wisconsin - Madison

in association with Numerical Recipes Software

= CAMBRIDGE
) UNIVERSITY PRESS




Published by the Press Syndicate of the University of Cambridge
The Pitt Building, Trumpington Street, Cambridge CB2 IRP

40 West 20th Street, New York, NY 10011-4211. USA

10 Stamford Road, Oakleigh, Melbourne 3166, Australia

Copyright © Cambridge University Press
except for computer programs and procedures which are

Copyright © Numerical Recipes Software 1985, 1991

First published 1991
Reprinted 1992, 1994, 1996, 1998

Typeset in TgX

The computer routines in this book are available on machine-
readable diskette for IBM PCs and compatible machines. There are
also versions of this book and its software available in the FOR-
TRAN, C, and Pascal programming languages.

To purchase diskettes, use the order form at the back of the
book, or write to Cambridge University Press, 110 Midland Av-
enue, Port Chester, New York 10573.

Unlicensed transfer of Numerical Recipes programs from the
above-mentioned IBM PC diskette to any other format, or to any
computer except a single IBM PC or compatible for each diskette
purchased, is strictly prohibited. Licenses for authorized transfers
to other computers are available from Numerical Recipes Software,
P.O. Box 243, Cambridge, MA 02238. Technical questions, cor-
rections, and requests for information on other available formats
should also be directed to this address.

Library of Congress Cataloging-in-Publication Data

Sprott, Julien C.

Numerical recipes : routines and examples in BASIC / Julien C. Sprott.

p. cm.

“Comparison manual to Numerical recipes : the art of scientific computing.”

“In association with Numerical Recipes Software.”

Includes index.

ISBN 0-521-40689-7 paperback. - ISBN 0-521-40688-9 diskette.

1. Numerical analysis-Computer programs. 2. Science-Mathematics-Computer
programs. 3. BASIC (Computer program language) I. Numerical Recipes Software
(Firm) II. Numerical recipes. III. Title.

QA297.868 1991 90-26323
519.4°02085°5133-dc20 CIP
ISBN 0-52140689-7 paperback

ISBN 0-521-40688-9 diskette

Transferred to digital printing 2002



10.

11.

12.

13.

14.

15.

16.

17.

CONTENTS

Foreword by Numerical Recipes Software
Disclaimer of Warranty . . .

Author’s Preface

Important Note on Dialects of BASIC .
Preliminaries

Linear Algebraic Equations
Interpolation and Extrapolation
Integration of Functions

Evaluation of Functions

Special Functions

Random Numbers

Sorting

Root Finding and Sets of Equations
Minimization and Maximization of Functions
Eigensystems

Fourier Methods

Statistical Description of Data
Modeling of Data

Ordinary Differential Equations
Two-Point Boundary Value Problems
Partial Differential Equations

Recipes Index

. Vi

Viii

. 39

. 60

. 78

. 92

137

169

188

214

250

271

297

333

360

376

390

397



Chapter 1: Preliminaries

The routines in Chapter 1 of Numerical Recipes : The Art of Scientific Computing
are introductory and less general in purpose than those in the remainder of the
book. This chapter's routines serve primarily to expose the book's notational
conventions, to illustrate control structures, and perhaps to amuse. You may
even find them useful, but we hope that you will use BADLUK for no serious
purpose.

L O S S

Subroutine FLMOON calculates the phases of the moon, or more exactly, the Julian day and
fraction thereof on which a given phase will occur or has occurred. The program DiR1 asks
the present date and compiles a list of upcoming phases. We have compared the predictions to
lunar tables, with happy results. Shown are the results of a test run, which you may replicate
as a check. In this program, notice that we have set TZONE (the time zone) to 5.0 to signify the
five-hour separation of the Eastern Standard time zone from Greenwich, England. Our parochial
viewpoint requires you to use negative values of TZONE if you are east of Greenwich. The Julian
day results are converted to calendar dates through the use of CALDAT, which appears later in the
chapter. The fractional Julian day and time zone combine to form a correction that can possibly
change the calendar date by one day.

Date Time (EST) Phase
1 9 1982 3 PM full moon
1 16 1982 7 PM last quarter
1 24 1982 11 PM new moon
2 1 1982 10 AM first quarter
2 8 1982 2 full moon
2 15 1982 3 PM last quarter
2 23 1982 4 PM new moon
3 21982 6 PM first quarter
3 9 1982 3 PM full moon
3 17 1982 12 AM last quarter
3 25 1982 5 AM new moon
4 1 1982 0 AM first quarter
4 8 1982 5 AM full moon
4 16 1982 7 AM last quarter
4 23 1982 4 PM new moon
4 30 1982 7 AM first quarter
5 7 1982 8 PM full moon
5 16 1982 0 AM last quarter
6 23 1982 0 AM new moon
5 29 1982 3 PM first quarter

Here is the recipe FLMOON:



2 Numerical Recipes Routines and Examples in BASIC

SUB FLMOON (N, NPH, JD&, FRAC)
Our programs begin with an introductory comment summarizing their purpose and explaining
their calling sequence. This routine calculates the phases of the moon. Given an integer N and
a code NPH for the phase desired (NPH= 0 for new moon, 1 for first quarter, 2 for full, 3 for
last quarter), the routine returns the Julian Day Number JD&, and the fractional part of a day
FRAC to be added to it, of the Nth such phase since January, 1900. Coordinated Universal
Time is assumed.

RAD = .017453293#

C =N+ NPH / 4! This is how we comment an individual line.

T=C/ 1236.85

T2 =T ~ 2

AQ = 359.2242 + 29.105356# * C You aren’t really intended to understand this algorithm,
AM = 306.,0253 + 385.816918# * C + .01073 * T2 but it does work!

JD& = 2415020 + 28 * N + 7 * NPH

XTRA = .75933 + 1.53058868# » C + (.0001178 - 1.55E-07 * T) * T2

IF NPH = O OR NPH = 2 THEN
XTRA = XTRA + (.1734 - .000393 * T) * SIN(RAD * AQ) - .4068 » SIN(RAD * AM)
ELSEIF NPH = 1 OR NPH = 3 THEN
XTRA = XTRA + (.1721 - .0004 * T) * SIN(RAD * AQ) - .628 *» SIN(RAD * AM)
ELSE
PRINT "NPH is unknown."
EXIT SUB This is how we will indicate error conditions.
END IF
IF XTRA >= 0! THEN
I = INT(XTRA)

ELSE
I = INT(XTRA - 1!)

END IF

JDg = Jpg + 1

FRAC = XTRA - I

END SUB

A sample program using FLMOONX is the following:

DECLARE SUB FLMOON (N!, NPH!, JD&, FRAC!)
DECLARE SUB CALDAT (JULIAN&, MM!, ID!, IYYY!)
DECLARE FUNCTION JULDAY& (IM!, ID!, IY!)

/PROGRAM DI1R1
‘Driver for routine FLMOON
CLS
TZONE = 5!
DIM PHASES$(4), TIMSTRS(2)
FOR I =1 TC 4
READ PHASES(I)
NEXT I
DATA ‘“new moon","first quarter”, "full moon","last quarter"”
FOR I =1 TO 2
READ TIMSTRS(I)
NEXT I
DATA " AM"," PM"
PRINT "Date of the next few phases of the moon"
PRINT "Enter today’s date (e.g. 1,31,1982)"
INPUT IM, ID, IY



Chapter 1: Preliminaries 3

PRINT
TIMZON = -TZONE / 24!
’Approximate number of full moons since January 1900
N = INT(12.37 * (IY - 1900 + (IM - .5) / 12!))
NPH = 2
J1& = JULDAY& (IM, ID, IY)
CALL FLMOON (N, NPH, J2&, FRAC)
N = INT(N + (Jl& - J2&) / 28!)
PRINT " Date”, " Time(EST}", " Phase"
FOR I = 1 TO 20
CALL FLMOON (N, NPH, J2&, FRAC)
IFRAC = CINT (24! * (FRAC + TIMZON})
IF IFRAC < 0 THEN
J2& = J2¢ - 1
IFRAC = IFRAC + 24
END IF
IF IFRAC >= 12 THEN
J2& = J2& + 1
IFRAC = IFRAC - 12
ELSE
IFRAC = IFRAC + 12
END IF
IF IFRAC > 12 THEN
IFRAC = IFRAC - 12

ISTR = 2
ELSE

ISTR = 1
END IF

CALL CALDAT(J2&, IM, ID, IY)
PRINT USING "##"; IM;
PRINT USING “###"; ID;
PRINT USING “"#####"; IY;
PRINT USING "######¥###"; IFRAC;
PRINT TIMSTRS(ISTR); * "; PHASES(NPH + 1)
IF NPH = 3 THEN
NPH = 0
N=N+1
ELSE
NPH
END IF
NEXT I
END

I
g
o
+
[

Program JULDAY, our exemplar of the IF control structure, converts calendar dates to Julian
dates. Not many people know the Julian date of their birthday or any other convenient reference
point, for that matter. To remedy this, we offer a list of checkpoints, which appears at the end
of this chapter as the file DATES.DAT. The program D1R2 lists the Julian date for each historic
event for comparison. Then it allows you to make your own choices for entertainment.

Here is the recipe JULDAY:



4 Numerical Recipes Routines and Examples in BASIC

FUNCTION JULDAY& (MM, ID, IYYY)
In this routine JULDAY& returns the Julian Day Number which begins at noon of the calendar
date specified by month MM, day ID, and year IYYY. Positive year signifies A.D.; negative, B.C.
Remember that the year after 1 B.C. was 1 A.D.

IGREGE = 588829 Gregorian Calendar was adopted on Oct. 15, 1582.

IF IYYY = O THEN PRINT "There is no Year Zero.": EXIT FUNCTION

IF IYYY < O THEN IYYY = IYYY + 1

IF MM > 2 THEN Here is an example of a block 1F-structure.
JY = IYYY
M =MM + 1

ELSE
JY = IYYY - 1
JM = MM + 13

END IF

JD& = INT(365.25 * JY) + INT(30.6001 % JM) + ID + 1720995

IF ID + 31 % (MM + 12 * IYYY) >= IGREG& THEN Change to Gregorian
JA = INT(.01 * JY) Calendar?
JD& = JD& + 2 - JA + INT(.25 * JA)

END IF

JULDAYZ = JD&
END FUNCTION

A sample program using JULDAY is the following:
DECLARE FUNCTION JULDAY& (IM!, ID!, IY!)

’PROGRAM D1R2
‘Driver for JULDAY
CLS
DIM NAMQOS (12)
FOR I =1 T0O 12
READ NAMQS (I)
NEXT I
DATA "January", "February", "March", "April", "May", "June"”, "July", "Bugust"”
DATA "September", "October”, "November', "December"
OPEN "DATES.DAT" FOR INPUT AS #1
LINE INPUT #1, DUMS$
LINE INPUT #1, DUMS$
N = VAL (DUMS)
PRINT "Month Day Year Julian Day Event™"
PRINT
FOR I =1 TO N
LINE INPUT #1, DUMS$
IM = VAL(MIDS(DUMS, 1, 2))
ID = VAL(MIDS(DUMS, 3, 3})
IY = VAL(MIDS(DUMS, 6, 5))
TXT$ = MIDS(DUMS, 11)
PRINT NAMQS (IM),
PRINT USING "###"; ID;
PRINT USING "######"; IY,
PRINT USING "######4##4#", JULDAYS& (IM, ID, IY};
PRINT ” "; TXTS
NEXT I
CLOSE #1



Chapter 1: Preliminaries s

PRINT
PRINT "Month,Day, Year (e.g. 1,13,1805)"
PRINT
FOR I =1 TO 20
PRINT "“MM,DD,YYYY"
INPUT IM, ID, IY
IF IM < 0 THEN EXIT FOR
PRINT "Julian Day: "; JULDAY& (IM, ID, IY)
PRINT
NEXT I
END

The next program in Numerical Recipes is BADLUK, an infamous code that combines the best
and worst instincts of man. We include no demonstration program for BADLUK, not just because
we fear it, but also because it is self-contained, with sample results appearing in the text. The
purpose of BADLUK is to find all dates Friday the Thirteenth on which the moon is full.

Here is the recipe BADLUK:

DECLARE SUB FLMOON (N!, NPH!, ID&, FRAC!)
DECLARE FUNCTION JULDAY& (IM!, ID!, IY!)

*PROGRAM BADLUK

CLS
TIMZON = -5! / 24 Time zone —5 is Eastern Standard Time.
READ IYBEG, IYEND The range of dates to be searched.

DATA 1900,2000
PRINT "Full moons on Friday the 13th from'"; IYBEG; "to"; IYEND
PRINT
FOR IYYY = IYBEG TO IYEND Loop over each year,
FOR IM = 1 TO 12 and each month.
JDAYE = JULDAY&(IM, 13, IYYY) Is the thirteenth a Friday?
IDWK = (JDAYE + 1) - 7 * INT((JDAY& + 1) / 7)
IF IDWK = 5 THEN
N = INT(12.37 * (IYYY - 1900 + (IM - .5) / 12!))
This value N is a first approximation to how many full moons have occurred since 1900. We
will feed it into the phase routine and adjust it up or down until we determine that our desired
13th was or was not a full moon. The variable ICON signals the direction of adjustment.
ICON =0
DO
CALL FLMOON(N, 2, JD&, FRAC) Get date of full moon N.
IFRAC = CINT(24! * (FRAC + TIMZON)) Convert to hours in correct time zone.
IF IFRAC < O THEN Convert from Julian Days beginning at noon
JD& = JD& - 1 to civil days beginning at midnight.
IFRAC = IFRAC + 24
END IF
IF IFRAC > 12 THEN
Jbg = JD& + 1
IFRAC = IFRAC - 12

ELSE
IFRAC = IFRAC + 12
END IF
IF JD& = JDAY& THEN Did we hit our target day?

PRINT IM; "/"; 13; “/"; I¥YY



6 Numerical Recipes Routines and Examples in BASIC

PRINT "Full moon"; IFRAC; "hrs after midnight (EST)."
PRINT
EXIT DO Part of the break-structure, case of a match.
ELSE Didn’t hit it.
IC = SGN(JDAY& - JD&)
IF IC = -ICON THEN EXIT DO Another break, case of no match.
ICON = IC
N=N+ IC
END IF
LOOP
END IF
NEXT IM
NEXT IYYY
END

Chapter 1 closes with routine CALDAT, which illustrates no new points, but complements
JULDAY by doing conversions from Julian day number to the month, day, and year on which
the given Julian day began. This offers an opportunity, grasped by the demonstration program
D1R4, to push dates through both JULDAY and CALDAT in succession, to see if they survive intact.
This, of course, tests only your authors’ ability to make mistakes backward as well as forward,
but we hope you will share our optimism that correct results here speak well for both routines.
(We have checked them a bit more carefully in other ways.)

Here is the recipe CALDAT:

SUB CALDAT (JULIAN&, MM, ID, IYYY)

Inverse of the function JULDAY given above. Here JULIANZ is input as a Julian Day Number,
and the routine outputs MM,ID, and IYYY as the month, day, and year on which the specified
Julian Day started at noon.
IGREGE = 2299161 Cross-over to Gregorian Calendar
IF JULIANZ >= IGREG& THEN produces this correction,
JALPHAL = INT(((JULIAN&Z - 1867216) - .25) / 36524.25)
JA% = JULIAN& + 1 + JALPHA& - INT(.25 * JALPHA&)

ELSE or else no correction.
JAZ = JULIANE
END IF
JB& = JAk + 1524
JC& = INT(6680! + ((JB& - 2439870) - 122.1) / 365.25)
JD& = 365 * JC& + INT(.25 * JC&)
JE& = INT((JB& - JD&) / 30.6001)

ID = JB& - JD& - INT(30.6001 * JE&)
MM = JE& - 1

IF MM > 12 THEN MM = MM - 12

IYYY = JC& - 4715

IF MM > 2 THEN IYYY = IYYY - 1

IF IYYY <= O THEN IYYY = IYYY - 1
END SUB



Chapter 1: Preliminaries

A sample program using CALDAT is the following:

DECLARE SUB CALDAT (JULIAN&, MM!, ID!, IYYY!)
DECLARE FUNCTION JULDAY& (IM!, ID!, IY!)

’PROGRAM DI1R4
'Driver for routine CALDAT
CLS
DIM NAMQS (12)
‘Check whether CALDAT properly undoes the operation of JULDAY
FOR I =1 TO 12
READ NAMQS(T)
NEXT I
DATA "January", "February", "March”, "April", "May", "June", "July"”, "August"”
DATA "“September”, "October”, "November", "December"
OPEN "DATES.DAT" FOR INPUT AS #1
LINE INPUT #1, DUMS
LINE INPUT #1, DUMS
N = VAL (DUMS$)

PRINT "Original Date: Reconstructed Date:”
PRINT "Month Day Year Julian Day Month Day Year"
PRINT

FOR I =1 TON
LINE INPUT #1, DUMS
IM = VAL (MIDS(DUMS, 1, 2))
ID VAL (MIDS (DUMS, 3, 3))
IY = VAL(MIDS(DUMS, 6, 10})
IYCOPY = IY
J& = JULDAY& (IM, ID, IYCOPY)
CALL CALDAT(J&, IMM, IDD, IYY)
PRINT NAMQS (IM); TAB(12);
PRINT USING "##"; ID;
PRINT USING "######"; IY;
PRINT " e J&; " "; NAMQS (IMM); TAB(50);
PRINT USING "##"; IDD;
PRINT USING "######"; IYY
NEXT I
END

Appendix
File DATES.DAT:

List of dates for testing routines in Chapter 1
16 entries

12 31 -1 End of millennium

1 One day later

10 14 1582 Day before Gregorian calendar
10 15 1582 Gregorian calendar adopted

01 17 1706 Benjamin Franklin born

04 14 1865 Abraham Lincoln shot

04 18 1906 San Francisco earthquake

05 07 1915 Sinking of the Lusitania

07 20 1923 Pancho Villa assassinated

05 23 1934 Bonnie and Clyde eliminated
07 22 1934 John Dillinger shot



8 Numerical Recipes Routines and Examples in BASIC

04 03 1936 Bruno Hauptmann electrocuted
05 06 1937 Hindenburg disaster
07 26 1956 Sinking of the Andrea Doria
06 05 1976 Teton dam collapse
05 23 1968 Julian Day 2440000



