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CHAPTER 1

The basis of surface singularity
modelling

1.1 Introduction

The principal aims of this book are to outline the fundamental basis
of the surface vorticity boundary integral method for fluid flow
analysis and to present a progressive treatment which will lead the
reader directly to practical computations. Over the past two and a
half decades the surface vorticity method has been developed and
applied as a predictive tool to a wide range of engineering
problems, many of which will be covered by the book. Sample
solutions will be given throughout, sometimes related to Pascal
computer programs which have been collated for a selection of
problems in the Appendix. The main aims of this introductory
chapter are to lay down the fundamental basis of both source and
vorticity surface panel methods, to explain the fluid dynamic
significance of the surface vorticity model and to introduce a few
initial applications to potential flow problems.

As numerical techniques, surface singularity methods were not
without progenitors but grew quite naturally from the very fertile
field of earlier linearised aerofoil theories. Such methods, originally
contrived for hand calculations, traditionally used internal source
distributions to model profile thickness and vortex distributions to
model aerodynamic loading, a quite natural approach consistent
with the well known properties of source and vortex singularities.
On the other hand it can be shown that the potential flow past a
body placed in a uniform stream can be modelled equally well by
replacing the body surface with either a source or a vortex sheet of
appropriate strength, Fig. 1.1. Integral equations can then be
written expressing the Neumann boundary condition of zero normal
surface velocity for the source model or the Dirichlet condition of
zero parallel surface velocity for the vorticity model. Whichever
type of singularity is chosen the final outcome is the same, namely a
prediction of the potential flow velocity close to the body profile.
The numerical strategy is also fairly similar as we shall see from

3



The basis of surface singularity modelling

Source panel
of density o, Vorticity panel
of density y,
{a) Douglas—Neumann (b) Surface vorticity model
source panel model

Fig. 1.1. Surface source and vorticity panel models for three-dimensional
potential flow.

Sections 1.6 and 1.7. Lifting bodies form an important exception to
this remark, since lift forces normal to a uniform stream cannot be
simulated by sources alone but require also the introduction of
vorticity distributions, a matter which will be taken up in Chapter 2.
On the other hand the surface vorticity model is capable of handling
potential flows for any situation including lifting bodies. We shall
begin in Sections 1.2 and 1.3 with a presentation of these basic
surface singularity models and their associated integral equations.
Surface vorticity modelling offers the additional advantage over
source panels that it actually represents a direct simulation of an
ideal fluid flow. In all real flows a boundary viscous shear layer
exists adjacent to the body surface. Inviscid potential flow is akin to
the case of the flow of a real fluid at infinite Reynolds number for
which the boundary layer is of infinitesimal thickness. In this
situation the boundary layer vorticity is squashed into an infinitely
thin vorticity sheet across which the velocity parallel to the surface
changes discontinuously from zero in contact with the wall to the
potential flow value just outside the vorticity sheet. Thus surface
vorticity modelling is the most natural of all boundary integral
techniques. Further discussion of its physical significance will be
given in Section 1.4. Part I of this book is concerned with such ideal
flows for a range of applications especially in the fields of
aerodynamics and rotodynamic machines including also some situa-
tions involving rotational main stream flow. In the early sections of
Part II further consideration will be given to the physical sig-
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Introduction

nificance of the surface vorticity model including its extension to the
simulation of real boundary layer flows and the establishment of
wake eddies behind bluff bodies.

Surface source modelling by contrast is capable of no direct
physical interpretation but is purely a vehicle, albeit a powerful one,
for analysing three-dimensional potential flows. Historically it
predated the surface vorticity method by half a decade or so as an
emerging practical tool for numerical analysis at a time of intense
pressure for the creation of flexible computational procedures for
design use in the aeronautical field. To some extent surface vorticity
methods were thus upstaged and have consequently received but a
small fraction of the attention paid to the surface source panel
technique. This book is aimed at redressing the balance. Although
most of the text will in consequence be concerned with surface
vorticity theory and applications, we will devote some of chapter 1
to consideration in parallei of both source and vorticity panel
methods. Following the introductory Sections 1.2 to 1.5 on fun-
damentals we will move on quickly to numerical models for plane
two-dimensional flows in Sections 1.6 and 1.7, leading to com-
parisons between the source and vorticity schemes for flow past a
circle and an ellipse. One or two other plane two-dimensional
problems will then be dealt with in Section 1.9 involving bodies with
sharp corners and simplifications for symmetrical bodies. The
chapter is concluded with a summary of the surface vorticity
equations expressed in curvilinear coordinates.

1.2 The source panel or Douglas—Neumann method

Many of today’s established numerical methods for engineering
design and analysis find their origins in classical mathematics
predating the age of the digital computer. Surface singularity
methods are no exception. For example in 1929 Kellogg wrote a
comprehensive book dealing with potential theory by the use of
integral equations, including the treatment of volume and surface
singularities. Such works tended to concentrate upon solutions to
incompressible inviscid flows, expressed for example by Laplace’s
equation for the velocity potential ¢
Fo o F¢_

Vip=—7+ + =0 1
¢ ax2 ay2 822 (1 )



The basis of surface singularity modelling

where (x, y, z) are Cartesian coordinates. A well known elementary
solution to this equation is given by ¢ = 1/r where r is the radial
distance between (x,, y,, z,) and some other point of fluid action
(Xmms Ym»> zm). The physical interpretation of this solution is that of
flow from a point source in three-dimensional space. Thus, the
velocity potential at m due to a point source of unit strength at n
(where point source strength is defined here as the volume of fluid
emitted in unit time) is given by

1
¢=- 4mr,,,, (1.2)
where
Toin = {(xm _xn)2+(ym _yn)2+(zm _zn)z}% (13)

As shown by Kellog (1929) and elaborated by A. M. O. Smith
(1962), the flow past a body immersed in a uniform stream W,, may
then be expressed by the following integral equation,

1 Jd /1
Lo, —— || = (=)o, dS, +i, - W, = 4
20m 4nf£ on (rm,,>a" n 0 (1.4)

where i, is a unit vector normal to the body surface S, and o, is the
source density per unit area. This equation represents the earliest
form of surface singularity model in which the body surface is
replaced by a surface source distribution o,, Fig. 1.1(a). Equation
(1.4) then states the Neumann boundary condition that for all
points m on the body the velocity normal to the surface is zero. If
this equation is satisfied then the body surface becomes a stream
surface of the flow. For computation we may complete the normal
derivative inside the Kernel resulting in

1o, +—ff ., i, dS, +i, (1.5)
st mn

This equation states that the sum of three velocity components
normal to the surface at point m, when combined, comes to zero.
The last term is the component of the uniform stream resolved
along the surface normal i,. The second term accounts for the
influence of all surface source elements o, dS,. Here we note that
the actual velocity at m due to one such element is given by

o, ds,
4nr,,,>

dv,, = (1.6)



The source panel or Douglas—Neumann method

and has the vector direction of r,,,,, which can be represented by the
unit vector r,,,,/r.... Since the integal is taken actually on the surface
S, we must introduce also the first term of (1.5), io,,, which
represents the velocity discontinuity stepping onto the outside of the
source sheet.

The numerical strategy of the panel method involves the repre-
sentation of the body surface by a finite distribution of source
panels defined geometrically by a suitable grid, Fig. 1.1(a). One
control point m is chosen for each source panel for application of
the Neumann boundary condition through (1.5). The surface
integral then becomes a summation for all panels, resulting in a set
of M linear equations for M unknown values of o,. Solution is
straightforward usually and yields the necessary surface source
strength to ensure that the flow remains parallel to the body
surface. Following on from this the local potential flow velocity
parallel to the surface can be evaluated directly by means of a
second integral equation of the form,

1 A
v, = imx{a f L %:,,,,,Xi,,, ds, + WmXi,,,} (1.7)

This has been expressed in vector form, reminding us that for
three-dimensional bodies the surface potential flow is of course
two-dimensional. Reduction to Cartesian or other coordinate sys-
tems is necessary for numerical computations but is soon accom-
plished. Later, in Section 1.7, we will illustrate this by a simple
numerical example, but for the present our aim is to draw out some
of the fundamental equations and models of surface singularity
methods. In the case of the source panel method, which is actually
not to be the main substance of this book, it remains only to point
out that two integral equations must be solved, one indirect and the
other direct, using the source ‘singularity’ distribution o,, as an
intermediate parameter for reaching the solution. Unlike the use of
surface vorticity, source panels provide no ready physical inter-
pretation or special advantage as a physical model except in very
special cases such as surface transpiration or change in fluid volume
due to evaporation or condensation at a surface. Nevertheless, as a
computational method for potential flows the source panel method
has been widely used with great success since about 1953, notably in
the field of acronautics. The literature is extensive and mention will
be made here only of representative early work by A. M. O. Smith
(1962), A. M. O. Smith & Hess (1966), A. M. O. Smith & Pierce

7



The basis of surface singularity modelling

(1958) and Hess (1962) covering basic theory with a range of
applications. A more recent survey of models and formulations was
also given by Hunt (1978). Discussions of the relationships between
volume surface and line distributions of vorticity, sources and
doublets have been given by Semple (1977), Hunt (1978) and R.
Rohatynski (1986).

1.3 The surface vorticity or Martensen method

Although no doubt early theorems related to surface vorticity
distributions, such as those of Kellogg previously referred to, could
be located in older texts, the seed corn publication in this field was
undoubtedly that of Martensen (1959). Martensen not only laid out
the basis of a powerful new computational technique, but he also
extended his new boundary integral theory to deal with turbo-
machine cascades, a subject which we will deal with in some detail
in Chapters 2 and 3. However, Jacob & Riegels (1963) would seem
to have been the first contributors of a practical working scheme
designed for digital computers, taking 15 minutes to execute on a
IBM 650 computer for analysis of an aerofoil with 36 surface
vorticity elements; no mean achievement at that time. Numerical
modelling often offers great scope for ingenuity and inventiveness
and several good ideas put forward by Jacob and Riegels have stood
the test of time. However there were many problems to be
identified and solved before the method could progress to accept-
ability as a reliable engineering predictive tool. D. H. Wilkinson
pioneered many of these problems of modelling and practical
methodology, publishing a most significant paper in 1967 which
formed an important foundation stone for computer applications.
He also extended his work to mixed-flow cascades, Wilkinson
(1969), another very important and far reaching contribution. In
parallel with this Nyiri (1964), (1970) independently produced an
extension of Martensen’s method to mixed-flow pump cascades,
later updated as a practical numerical scheme, Nyiri & Baranyi
(1983). There are of course many other important publications
covering a range of applications. These will not be reviewed here
but referred to in relevant parts of the text.

The surface vorticity model is illustrated in Fig. 1.1(b) for a
three-dimensional body. In this scheme the body surface is covered
with a finite number of surface vorticity panels initially of unknown

8



The surface voticity or Martensen method

strength, Following a similar procedure to the source panel method,
one control point m is chosen for each panel for application of the
surface flow boundary condition, taking account of the influence of
all other surface vorticity panels and of the mainstream flow. In this
case on the other hand, it is appropriate to adopt the boundary
condition of zero velocity on, and parallel to the body surfacet, (we
shall consider why in more detail later in Section 1.4). The actual
velocity induced at m by a small line vortex element at n of strength
I, per unit length® and of length di, is given by the Biot—Savart
law, namely, with reference to Fig. 1.2,

_I,d,Xr,,

dv,,, 3 (1.8)

4xr,,,

By taking the cross product of dv,,, with the unit vector i,, normal
to the surface at m twice, we obtain the velocity parallel to the
surface at m induced by the line vortex element. Thus

dvsmn = imX(dvmnXim)

_ i X (X r,..,,)3X i) di, (1.9)

4mar,,,

In reality the surface is to be covered not with concentrated line
vortices but with an area density of distributed sheet vorticity which

Fig. 1.2. Velocity induced by a line vortex element.

t Since we are addressing the Dirichlet problem for q this will be termed the
Dirichlet boundary condition throughout this book.

* Throughout this book vortex strength is defined as positive according to the right
hand corkscrew rule.

9



The basis of surface singularity modelling

we will denote here by the symbol y,,. Making use of (1.9) the
Dirichlet boundary condition of zero velocity on (and parallel to)
the body surface at m may then be expressed

Ly + f f i X (Y2 XTn) X)) AS
4 J Js

—3¥m 4 +i, X(W.Xi,)=0 (1.10)

rmn

The last term is the component of the mainstream velocity W,
resolved parallel to the body surface. The first term is the velocity
discontinuity experienced if we move from the centre of the
vorticity sheet onto the body surface beneath.

As it stands this integral equation, like that for the source panel
method (1.5), is of little practical use and is recorded here only in
view of its importance as a general statement of the problem. We
will later on in Section 1.10 express it in curvlinear coordinates
which are of much more value for setting up computational schemes
in various coordinate systems. At this point however it will be much
more helpful to move on to a simple physical interpretation of the
surface vorticity method followed by practical application to a
numerical scheme for solving a simple problem.

1.4 Physical significance of the surface vorticity
model

In all real fiows a boundary shear layer develops adjacent to the
surface of a body, Fig. 1.3(a). Sufficient vorticity is present in this
layer to reduce the fluid velocity from v, just outside the shear layer
to a value of zero on the body surface. The action of viscosity is to
cause the vorticity in this shear layer to diffuse normal to the
surface, resulting in the familiar viscous boundary layer. The
vorticity itself however is the product of the dynamic behaviour of
the outer flow and we will show later that the rate of vorticity
production adjacent to the surface is directly related to the pressure
gradient. Traditionally a real flow is usually regarded as comprising
a largely irrotational inviscid outer flow in the bulk of the domain,
separated from the body surface by a thin but highly active viscous
shear layer. These regimes are of course frequently treated separ-
ately for analytical expediency, with suitable matching conditions at
the outer edge a—b of the boundary layer. In reality, as we have just
pointed out, vorticity creation is largely attributable to the outer
flow, a fact which is underlined if we consider in particular the
special case of infinite Reynolds number, or inviscid potential flow.

10



Physical significance of the surface vorticity model

Vorticity
element v(s)ds
(a) Boundary layer (b) Surface vorticity equivalent

Fluid

v = v(s)

O O OO O Q O — » Convection velocity

y(s)/2

Body surface
(¢) Self convection of a surface vorticity sheet

Fig. 1.3. Boundary layer and surface vorticity equivalent in potential flow.

Suppose that we were able gradually to reduce the fluid viscosity
to zero in a real fluid flow. In the limit, due to progressive reduction
of viscous diffusion, the boundary layer would approach in-
finitesimal thickness. As the viscosity approached zero and the
Reynolds number approached infinity, the body surface would be
covered with an infinitely thin vorticity sheet y(s), Fig. 1.3(d),
across which the fluid velocity would change discontinuously from
zero beneath the sheet on the body surface to v, parallel to the
surface just above the sheet. In the case of a real flow with
extremely high Reynolds number, we are aware that the boundary
layer may separate spontaneously with rising static pressure in the
direction of the mainstream flow. Furthermore the boundary layer
will normally become turbulent at very high Reynolds numbers.
Both phenomena are connected with the interrelationship between
the viscous diffusion and convection processes in the boundary layer
which the Reynolds number symbolises. Leaving aside these addi-
tional features of a real flow connected with instabilities of the shear
layer itself, we see that inviscid potential flows can be thought of as
a special type of infinite Reynolds number flow. An irrotational
potential flow thus comprises a surface vorticity sheet covering the
body surface, separating the irrotational flow of the outer domain
from a motionless flow in the inner domain. In this sense the surface
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The basis of surface singularity modelling

vorticity model is precisely true to the physical reality of a real
infinite Reynolds number (but fully attached) flow and is therefore
the most natural of all numerical methods for potential fiow
analysis. Furthermore, as we shall see in Chapters 9-11, it is also
possible to introduce models to simulate viscous diffusion, so that
we may relax the present constraint of infinite Reynolds number.
The surface vorticity method, unlike the source panel method, thus
offers special attractions as a route towards the simulation of real
fluid flows because the model truly reflects the physical reality,
Lewis & Porthouse (1983a).

To decide upon an appropriate boundary condition (which we
have already asserted to be the Dirichlet condition) let us consider
the flow induced by such a surface vorticity sheet in closer detail,
Fig. 1.3. First let us define the contour abcd surrounding a small
vorticity element y(s)ds where ab and dc are parallel to the
streamlines, while da and cb are normal to them. Now y(s) is
defined as the vorticity strength per unit length at point s. The
circulation around abcd, defined clockwise—positive, may be
equated to the total amount of vorticity enclosed by the contour,
that is

(vso - vsi) ds = ')/(S) ds

where v, and v,; are the fluid velocities just outside and inside the
sheet, which must be parallel to the surface. Our boundary
condition of zero velocity on the body surface is thus satisfied if we

specify

vi=0 (1.11)
whereupon
Vio = Vs = ¥(5) (1.12)

The neatness of Martensen’s method lies in these two equations.
Equation (1.11) is the basis of Martensen’s boundary integral
equation as summarised previously by (1.10). The solution of this
equation yields the surface vorticity distribution of the potential
flow. The second equation (1.12) then tells us that the potential flow
velocity close to the body surface v, is now immediately known,
being exactly equal to the surface vorticity y(s). The surface
vorticity method, in addition to its direct simulation of physical
reality, thus offers the additional attraction compared with the
source panel method that no second integral equation is required to
derive v; from the surface singularity distribution.
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Physical significance of the surface vorticity model

b

Fig. 1.4. Check for leakage flow with the Dirichlet boundary condition in
Martensen’s method.

The reader may feel that the Dirichlet boundary condition stated
might be insufficient to ensure flow parallel to the body surface and
that the Neumann boundary condition should be imposed either
in addition or instead. To counter this view let us first assume
that Dirichlet is inadequate and that consequently there is a
leakage velocity v, normal to the body at a, Fig. 1.4. However
if there are no sources present inside the body contour the
only possibility is that the streamline 1w, will cross the body a
second time at point b. If we now apply the circulation theorem
around the contour abc just inside the surface vorticity sheet,
then

b a
§ v-ds=fvnds+fvsids=0
abc a b

A B

assuming also that there is no vorticity contained within the
body profile. Since zero v,; has been enforced by the Dirichlet
boundary condition, term B and therefore term A are inde-
pendently zero. Since v, is undirectional along the supposed
streamline 1,, the only possibility is that it must also be zero
throughout. The Dirichlet condition is thus totally adequate pro-
vided there are no vortex or source distributions within the body
profile. The reader is referred to Martensen (1959) for a rigorous
proof.
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The basis of surface singularity modelling

1.5 Vorticity convection and production in a shear
layer

Most surface vorticity applications in the past have dealt with steady
flows, for which the local surface vorticity y(s) is constant with
respect to time and is often regarded as bound to the surface. Thus
in a two-dimensional steady flow situation the total bound circula-
tion would be directly calculable through the contour integral

= § y(s) ds (1.13)

In reality however we know that the actual boundary layer
vorticity is continuously being convected downstream, Fig. 1.3(c).
Let us now consider the case of a vortex sheet of strength y(s)
coincident with the x axis and stretching between x = +o. Applying
the circulation theorem again to an element y(s) ds and taking into
consideration symmetry about the x axis, Fig. 1.5(a), we see that
the velocity above and below the sheet are given respectively by
+3y(s). If we now superimpose a uniform stream of strength 3y(s)
over the whole (x, y) plane we have a correct surface vorticity
model for flow past a plane wall, Fig. 1.5(b). From this simple study
we observe that for such a flow the vortex sheet, like the boundary
layer which it represents, is also convected downstream, in this case
with a velocity exactly equal to half of its strength, 3y(s).

The foregoing argument was based upon the special case of flow
past a plane wall, for which the surface vorticity is identical for all
points on the wall. In fact the same principle applies to potential
flow past bodies of arbitrary shape. Locally at point s the velocity
changes from zero on the surface just beneath the vortex sheet, to
the sheet convection velocity v,=3y(s) at the centre of the
vorticity sheet, to v, = y(s) just outside the sheet. In this case of
course y(s) varies in magnitude along the wall, a fact which at first
sight seems to be at odds with Kelvin’s theorem of the constancy of
circulation. Thus if the vorticity at s, has been convected from s,
somewhere upstream, how is it possible that y(s,) does not equal
y(s,) bearing in mind Kelvin’s theorem? The simple answer to this
seeming dilemma is that vorticity is continually being created or
destroyed at a body surface in an inviscid flow whether the motion
is steady or unsteady. Thus if we define dy(s) as the net vorticity
per unit length generated at point s in time dr, Fig. 1.3(b), then the
net vorticity flux leaving the control volume abcd can be related to
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Vorticity convection and production in a shear layer

A

Fy(s)

Vorticity sheet of Strength y(s)

—5y(s)
(a) Vorticity sheet alone

[ v, = ()

y(s)
NN N N N N N NN NN N <

(b) Vorticity sheet y(s) with uniform stream §y(s)

vy = 7(8)/2

Fig. 1.5. Surface vorticity model of a uniform stream past a plane wall.

dy(s) through
Vorticity created _ Net vorticity flux,

in time At crossing abcd

that is
dy(s) - ds = {3(v, + dvy)(v(s) + dy(s)) — 3v.¥(s)} dt

Neglecting second-order products of infinitesimal quantities and
introducing (1.12) we have finally

gL(s_)=g<V3>=_19£ (1.14)

dt  ds\2 p ds

This equation reveals the influence of the surface pressure
gradient upon vorticity production in a potential flow. Surface
vorticity is spontaneously generated if the pressure falls and is
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