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Introduction: body size and its estimation

JOHN DAMUTH AND BRUCE J. MACFADDEN

Body size in biology and paleobiology

In recent years there has been growing interest in the biological impli-
cations of body size in animals. Body mass is correlated with a host of
metabolic and physiological variables; with ecologically relevant char-
acteristics such as life history traits, diet, population density, population
growth rate, home range size, and behavioral adaptations; and with
larger-scale patterns in community structure and biogeography (Brown
& Maurer 1989; Calder 1984; Damuth 1981, 1987; Eisenberg 1981, this
volume; Emmons, Gautier-Hion, & Dubost 1983; Fleming 1973; Jarman
1974; McMahon & Bonner 1983; McNab, this volume; Peters 1983;
Schmidt-Nielsen 1984).

At the same time, there has been increasing use of body size in a
wide range of applications in vertebrate paleobiology. Studies of func-
tional morphology often employ measurements that must be related to
body size before functional interpretations can be applied to fossil spe-
cies (e.g., Emerson 1985; Gantt 1986; Kay 1975; Thomason 1985). In-
ferences concerning the metabolism and energetics of fossil vertebrates
often depend critically on body mass estimates of fossil species, and
body size has figured prominently in evolutionary explanations of the
evolution of vertebrate metabolic physiology (McNab 1987; Thomas &
Olson 1980; Tracy, Turner, & Huey 1986; Turner & Tracy 1986). The
evolution of body proportions and scaling relationships themselves, and
the resulting functional implications, form an important area of paleo-
biological research (Fortelius 1985, this volume; Gingerich & Smith
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2 John Damuth and Bruce J. MacFadden

1985; Gould 1974, 1975; Jerison 1973; Kay 1975; Martin & Harvey 1985;
Radinsky 1978; Scott 1985).

Body size plays a major role in studies of mammalian paleoecology.
In fact, based upon modern knowledge, a mammal’s body size may be
the most useful single predictor of that species’ adaptations. In addition
to allowing reconstruction of trophic role and habitat preference, re-
lationships between body size and ecological factors help us to make
inferences about many more complex ecological characters of fossil
mammals. For example, interpretations of life history characters and
social behavior have played a part in explanations of the evolution of
horns in ungulates (Janis 1982) and explanations of megafaunal suscep-
tibility to extinction (Kiltie 1984; McDonald 1984). Faunal and com-
munity structure can be characterized in part by body size range and
distribution, and has been used in studies of community evolution and
energetics, and in the interpretation of climate and ancient vegetation
(Andrews & Nesbit Evans 1979; Andrews, Lord, & Nesbit-Evans 1979;
Collinson & Hooker 1987; Farlow 1976, 1987; Fleagle 1978; Janis 1982,
1984; Legendre 1986; Van Couvering 1980; Van Valkenburgh 1985,
1988).

The mammalian fossil record shows many examples of body size
change within lineages, including the sometimes spectacular cases of
gigantism and dwarfism on islands. Explanation of the island trends is
still a challenge (Geist 1987; Hooijer 1967; Marshall & Corruccini 1979;
Maiorana, this volume; Martin, this volume; Roth, this volume; Sondaar
1977, 1987; Thaler 1973).

Because body size is a character exhibited by every species, it poten-
tially has an important role to play in studies of the tempo and mode
of evolution (e.g., Gingerich 1976; Gould & Eldredge 1977; MacFadden
1987). Cope’s rule — that size tends to increase within lineages or taxa
— is one of the most widely discussed general macroevolutionary patterns
(though until recently there were few studies that used actual body-mass
estimates in quantitative studies of the phenomenon) (Gould 1988;
MacFadden 1987; Newell, 1949; Rensch, 1959; Stanley 1973). At least
the Pleistocene and Cretaceous mass extinction events have been notably
size-selective among terrestrial vertebrates, affecting the larger species
more strongly (Martin & Klein 1984; Padian & Clemens 1985). It has
been suggested that frequent “‘megafaunal” extinctions or periods of
size reduction may be characteristic of fossil vertebrate faunas, and may
happen more locally and on a different time scale than the extinctions
of the proposed long-term (i.e., 26 million years [myr]) global cycle
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(Bakker 1977; Prothero 1985; Raup & Sepkoski 1984; Webb 1984). The
presumed different extinction probabilities (and other ecological differ-
ences) exhibited by large and small vertebrates have implications for
explaining the sorting of species in mammalian clades, but as yet this
has not received much attention (but see Martin, this volume; Stanley
1973).

Finally, it is clear that many taphonomic processes operate upon ver-
tebrate remains in a size-selective or size-dependent way (Behrensmeyer
& Hill 1980; Behrensmeyer, Western & Dechant Boaz 1979; Voorhies
1969). Knowledge of body size can thus be a useful tool in the inter-
pretation of mammalian fossil assemblages (Badgley 1986; Damuth
1982; Wolfe 1975).

Rationale and organization of this book

It may seem from the preceding sketch that body mass, having already
been so widely used, must not be a problematic character to infer for
fossil species. Certainly, size would appear to be one of the most straight-
forward characters that a fossil could exhibit. But the picture of satisfying
accuracy and general compatibility that this widespread use suggests is
misleading. We cannot measure body mass directly for fossil species,
and must derive estimates from skeletal remains that are usually frag-
mentary and incomplete. Some taxa are represented by better fossil
material than are others, and some have no living representatives. Some
groups, such as the primates, have received far more detailed attention
and have been analyzed by more sophisticated techniques than have
others (e.g., Jungers 1985, this volume; Ruff, this volume). Estimates
for species of different taxa typically derive from different regressions
or other estimator techniques, and are based on different body parts.
Studies vary considerably in the degree of precision they demand of
body mass estimates. Some require only that relative masses be correct,
some require only species averages, and some require accurate estimates
for particular fossil specimens.

Workers have tended to develop and employ estimation techniques
suited primarily to the study at hand, and intended to yield the level of
accuracy that a particular study requires. Often, a skeletal element well
represented among the fossil species is measured in a group of extant
relatives and regressed upon body mass; a high correlation coefficient
is taken as a sign of success and the regression equation is used to
estimate fossil body masses. Too little attention has been paid in the
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past to the choice of the reference sample of modern species, and to
the range of probable error in the resulting estimates. As is shown by
some of the contributions in this volume, regressions involving char-
acters commonly used to estimate body masses of fossil species do not
always produce what would be satisfactory results, even when reapplied
to the extant species upon which the regression is based.

We sought several different kinds of chapters for this book. Some
contributors work primarily with the modern fauna, investigating the
significance of size. Others are here primarily concerned with the tech-
niques of estimating mass in fossil mammals accurately. We decided to
include this range of topics, so that there would be in one volume a
compendium of techniques and basic practical information, and a source
of ideas (including caveats) and signposts to the literature about the
various applications of body size in paleobiological studies. The tables
of Chapter 16 (Appendix) combine in one place, for the reader’s con-
venience, the regression equations discussed in the preceding chapters.
We have also included here additional regression equations provided
by some authors, which are based on characters that may not be as
reliable as those that the authors have judged to yield the “best” esti-
mates of body mass for a particular group. Nevertheless, they may be
of some value in cases where the “best” characters are not preserved
for the fossils in question. We warn the reader not to use the equations
of Chapter 16 uncritically, and also not to bypass the reading of the
relevant chapter.

General conclusions

The general theme that emerged at the Gainesville workshop, and that
runs through book, is that body mass estimation and functional mor-
phological interpretation are not separable. The reason is that, in using
data from modern species to derive estimation equations or other means
of estimation, one must choose a set of modern species that exhibit a
similar relationship between body parts and body mass. This requires
identification of broad functional/morphological groupings, which may
or (at least as often) may not fall within traditional taxonomic lines
(Damuth; Fortelius; Janis; Van Valkenburgh, this volume). As Grand
(this volume) reminds us, “body mass” is a composite character, whose
components differ in animals pursuing different modes of life. The dif-
ferent ways the same anatomical element may be related to overall mass
in different species can to some extent be predicted from functional
considerations.
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An analogous statement can be made for interpretations: Dividing
the modern fauna into functional groups improves predictive power of
body mass for both physiological and ecological variables (Eisenberg;
McNab, this volume). In particular, diet is related to much of the varia-
tion found in both kinds of variables.

Practical conclusions and caveats

A number of general practical conclusions, recommendations, and cau-
tions concerning body mass estimation in fossil mammals can be ab-
stracted from the conference proceedings and the papers published here:

1.

Estimates based upon certain limb measurements, if available,
appear to be substantially more reliable than those based on
cranial or dental measurements. However, much more com-
parative work needs to be done on the scaling of postcranial
elements in modern forms before we can use limb measurements
for most groups. Proximal limb elements are more reliable cor-
relates of body mass than are distal elements in ungulates and
primates (Ruff; Scott, this volume). The problem with using
fossil limb elements, however, is that they first must be tax-
onomically assignable.

Because of their identifiability and preservability, teeth will con-
tinue to be of importance in body mass estimation. However,
dental measures alone, even when restricted to functionally sim-
ilar groups, may not be accurate enough for all purposes. Per-
cent standard errors below 30 are rare in the dental regressions
reported here.

In dealing with taxa with high ontogenetic dental variation (e.g.,
high-crowned horses), the worker must carefully consider which
wear stage(s) should be used to predict body mass. Such vari-
ation differs among taxa and among different dental measures
and among different teeth within the same species.

For ungulates, tooth length measurements are generally better
predictors than widths or areas, as the latter vary more with
diet.

Techniques using more than one morphological variable (e.g.,
multiple regression) can increase accuracy of predictions when
feasible and appropriate. Particularly, combinations of dental
and postcranial measures, including body length, can result in
relatively accurate estimates for well-represented species (per-
cent standard error < 30).
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6. As in any other statistical prediction procedure, it is unwise to
extrapolate regression predictions beyond the range of the avail-
able data for modern forms. There is no guarantee that rela-
tionships holding within this range will be applicable to smaller
or larger forms (e.g., MacFadden & Hulbert, this volume). In
such cases use of a more general regression (such as “all un-
gulate” or “all mammal” regressions), with the resulting loss of
precision, may be preferable. This consideration adds particular
uncertainty to our estimates of the very largest fossil species,
which may lie beyond the size range of any living mammal; our
sample of living megafauna is also highly restricted and com-
posed of species exhibiting only a few body forms.

7. The use of general regression equations, even those with small
standard errors, does not guarantee accuracy for every species.
In particular, care should be taken to recognize fossil species
that may be aberrant in one or more characters that for most
species might yield good estimates (e.g., the enlarged third mo-
lars of suids, or the enlarged second molars of amynodonts).

8. Estimates remain only estimates. There are certainly numerous
unrecognized sources of error for fossil species. The statistical
errors reported here for regressions on living forms are under-
estimates of the actual inaccuracy in estimates for extinct spe-
cies. To the extent that fossil species deviate from the average
of the modern population used, inaccuracy will increase.

Future research directions

Some directions for future research in mammalian body-mass estimation
are also evident. The need for broader investigation of the scaling of
postcrania has already been mentioned. Craniodental and postcranial
scaling relationships analogous to those presented here are unknown
for many extant mammalian groups. These include most rodent taxa,
insectivores, small marsupials, and various “‘oddball” groups such as the
edentates. We need further refinement of functional groups among all
of the mammals, as this could dramatically increase the accuracy of our
predictions. Finally, there are extinct groups, such as the North Amer-
ican Merycoidodontidae (oreodonts), that exhibit what appear to be
unique body proportions and craniodental relationships, but for which
we have complete material for some members. Using the well-
represented species, reliable body-mass estimates may be obtainable,
and from these species correction factors could be derived for use on
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the more fragmentary material representing the other members of the
group.

In summary, we are just beginning to develop the empirical base and
the analytical tools necessary for reliable reconstruction of the body
masses of fossil species. Further refinement of body mass estimation
techniques will make possible the reconstruction of a wide range of
biological aspects of fossil species and faunas, and an exciting new di-
mension of time can be added to ecological and evolutionary studies
that heretofore have had to rely primarily on patterns observed in the
extant biota.
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