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Chapter 1

Survey and History of LCF

Cambridge LCF is an interactive theorem prover for reasoning about computable
functions. The terms of its logic, PPA, constitute a tiny functional programming
language. Cambridge LCF can be used for experimenting with first order proof;
studying abstract constructions in domain theory; comparing the denotational
semantics of programming languages; and verifying functional programs. It can
reason about both strict and lazy evaluation.

There are many theorem provers in the LCF family. Each is descended from
Edinburgh LCF and retains its fundamental ideas:

o The user interacts with the prover through a programmable meta language,
ML.

e Logical formulae, theorems, rules, and proof strategies are ML data.

e The prover guarantees soundness: it checks each inference and records each
assumption.

Edinburgh LCF was developed in order to experiment with Scott’s Logic of
Computable Functions [41}]. It performed many proofs involving denotational se-
mantics and functional programming.

Cambridge LCF extended the logic of Edinburgh LCF with V, 3, <, and
predicates, improved the efficiency, and added several inference mechanisms. It
has been used in proofs about functional programming and several other theorem
provers have been built from it.

LCF_LSM was developed for reasoning about digital circuits in a formalism
related to CCS [32]. It verified some realistic devices [39], but is now obsolete.

HOL supports Church’s Higher Order Logic [37], a general mathematical for-
malism. It is mainly used to prove digital circuits correct.

Another system supports a higher order Caleulus of Constructions that can
represent many other calculi. Coquand and Huet’s examples include definitions of
logical connectives and data types [27]. Proofs include Tarski’s fixed point theorem
and Newman’s lemma about confluence of Noetherian relations.
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The Gothenburg Type Theory system [81] supports Martin-Lof’s Constructive
Type Theory [65,74], a logic and specification language for computation.

Nuprl supports a similar constructive type theory [26]. It is the most sophis-
ticated of all these systems. Proofs are edited using windows and mouse. From a
proof of “for all z there exists some y’ it can extract a program to compute this
function.

1.1 The structure of LCF

A typical version of LCF includes the meta language ML, a logic such as PP,
subgoaling functions (tactics and tacticals), a simplifier, and commands for main-
taining logical theories.

1.1.1 The meta language ML

LCF has a programmable meta language, ML. Every command is an ML function.
Writing ML code adds commands and functions to LCF. ML and a few critical
functions are implemented in Lisp. The standard rules and tactics consist of 5000
lines of ML.

ML is an important spin-off from LCF. Designed specifically for theorem prov-
ing, it applies to the whole area of symbolic computation. Its data structures allow
tree and list processing rather like Lisp. ML supports functional programming; it
includes higher order functions. ML supports imperative programming; it includes
references and assignments. Exceptions (or failures) can be raised and handled.
Exceptions allow a function to signal that it cannot compute a result, so that an
alternative function can be tried.

ML was the first language to use Milner’s polymorphic type system [67]. It
prevents run-time type errors while retaining much of the flexibility of untyped
languages. The programmer may state type restrictions or omit them. A poly-
morphic type contains type variables; a value of that type has also every instance
of that type, obtained by substituting types for type variables. For instance, the
function length, for taking the length of a list, has type (alist) — int. This
function can be applied to a list of elements of any type, and returns the type nt.

After many dialects started to appear, Milner convened the ML community to
develop a Standard [45]. Standard ML is larger and more powerful than its prede-
cessor. The main extensions are recursive data structures, function definitions by
patterns, exceptions of arbitrary type, reference types, and modules. Cambridge
LCF was converted to Standard ML in 1987. Although all interaction with LCF
takes place via ML, only advanced users need to write serious programs.
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1.1.2 Inference in the logic, PP\

Most LCF proofs are conducted in PP), a first order logic for domain theory.
Theorems are proved with respect to assumptions, the natural deduction formal-
ization. If A;,..., A,, B are formulae, then 4,,..., A, - B means B is true if the
assumptions Ay, .-, A, are all true.

The logic is embedded in ML as an ML data type form of formulae, with axioms
and rules for proving theorems. Logical formulae are ML values: functions can
take them apart and put them together. Theorems are values of the abstract data
type thm. Type-checking guarantees that a theorem is constructed by axioms and
inference rules, not by manipulation of its representation. Axioms are predeclared
ML identifiers; rules are functions from theorems to theorems.

1.1.3 Tactics and tacticals

Applying inference rules to theorems produces other theorems. This is forwards
proof. Most people work in the backwards direction. Start with a goal, the the-
orem to be proved. Reduce goals to simpler subgoals until all have been solved.
Functions called tactics reduce goals to subgoals. A complete tactical proof may
be imagined as a tree whose nodes are goals and whose leaves are known theorems.

The tactic CONJ_TAC reduces any goal of the form A4;,..., 4, - A A B to the
two goals Ay,...,A, - Aand Ay,..., A, | B. It fails (raises an exception) if the
goal is not a conjunction.

The tactic DISCH.TAC reduces the goal 4,,...,4, A => B to the subgoal
Ai,...,An, A |- B, which is the goal of proving B assuming A plus the previous
assumptions.

The tactic ACCEPT.ASM_TAC reduces the goal A;,...,A, A to an empty
subgoal list if A is A; for some 7, and otherwise fails. A goal is solved when it is
reduced to an empty subgoal list.

These three tactics can prove any goal of the form - A = (B = A A B).
Calling DISCH_.TAC gives the goal A |- B = A A B. Calling DISCH.TAC again
gives A, B |- A A B. Calling CONJ.TAC gives the two goals A,B |- A and A,B |-
B. Both are solved by ACCEPT_ASM_TAC.

Operators called tacticals combine tactics into larger ones. THEN combines two
tactics sequentially; ORELSE combines two elternative tactics; REPEAT makes a
tactic repetitive. Tacticals can express the above proof in many ways. A literal
rendering of the four steps is

DISCH_.TAC THEN DISCH.TAC THEN CONJ_.TAC THEN ACCEPT ASM.TAC
A tactic that can perform many similar proofs is

REPEAT(DISCH_.TAC ORELSE CONJ.TAC ORELSE ACCEPT-ASM_TAC)
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Tactics and tacticals form a level of abstraction, in ML, above theorems and
rules. A tactic that reduces the goal - A to the subgoals |- By, -, By also
returns a function that takes the list of theorems - By,- -, B, to the theorem
I A. Once every subgoal has been solved, these functions are put together to
produce the desired theorem as value of type thm. Tacticals and interactive proof
commands do this bookkeeping.

1.1.4 Theories

An LCF theory contains a signature: the names of constants, types, and predicates.
It also contains a set of axioms. A logical theory contains all consequences of its
axioms; an LCF theory contains a finite number of theorems, proved and stored
by user command. An LCF theory is stored on a theory file, which can be loaded
in a later session for proving additional theorems.

A new theory can be built above other theories, its parents. It can itself become
the parent of later ones, forming a hierarchy of theories. Consider a theory nat of
the natural numbers, and a theory list of lists. A theory defining the length of a
list would have parents nat and list. A long proof involves months of interactive
sessions and dozens of theories.

1.1.5 Rewriting

Most proofs rely heavily on the simplifier, which applies rewrite rules and elimi-
nates tautologies in terms, formulae, or theorems. It is most commonly used, via
a standard tactic, to simplify goals.

A theorem like!

F f(z,y) = g(z, h(y))

is a rewrite rule. The simplifier instantiates the variables z and y by pattern match-
ing. Searching in the goal, it replaces every occurrence of f(t,u) by g(¢, h(u)). A
theorem like

- P(z,y) = f(A(z),y) = h(y)

is an implicative rewrite rule. The simplifier replaces f(h(t),u) by hyu) whenever
it can prove P(t,u) by recursively invoking simplification.

The simplifier makes use of local assumptions. When simplifying a formula
like f(z,y) = g(z,h(y)) = B, the simplifier assumes the rewrite rule f(z,y) =
g(z, h(y)) while simplifying B.

Simplification is not arbitrary symbol crunching. Every step is justified by a
theorem.

n LCF, f(z,y) = g(z, h(y)) means f(z,y) equals g(z, h(y)) for all z and y.
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1.2 A brief history

In 1969 Dana Scott developed a Logic for Computable Functions, formalizing a new
mathematical model of computability. Through its careful treatment of nonter-
mination the model could handle not only numbers and lists, but also unbounded
lists and similar infinite structures. Functions were also data: a function could
operate on other functions.

Robin Milner, to perform proofs in this logic, developed the theorem prover
Stanford LCF [66]. Stanford LCF performed interesting proofs but required tedious
repetition of commands. Milner decided to provide a meta language in which a
theorem prover could be programmed; the result was Edinburgh LCF. Edinburgh
LCF performed many proofs and was adopted as the basis of several other theorem
provers. Many of these take radical new directions; Cambridge LCF closely follows
Edinburgh LCF. :

The following history is incomplete. It concentrates on proofs performed by
my colleagues at Edinburgh and Cambridge. Much other work is in progress, and
I apologize to everyone whose work is neglected.

1.2.1 Proofs involving denotational semantics

For her dissertation [20], A. J. Cohn verified three program schemes for recur-
sion removal; a compiler from an if-while language into a goto language; and a
compiler for an abstract language with recursive procedures.

The compiler proofs involve denotational definitions of direct and continuation
semantics, and also operational definitions. The second compiler involves four
semantic definitions, descending from an abstract to a machine orientation. For the
source language Cohn gives a standard denotational semantics, a closure semantics,
and a stack semantics. The target machine has an operational semantics. The
equivalence between the highest and the lowest level is proved as three equivalences
between adjacent levels. Due to the proof’s size and complexity, Cohn performed
it only on paper. She later proved in LCF that the standard and closure semantics
are equivalent [22].

Sokotowski has studied a simple programming language, expressing the while
command as an infinite nest of if commands. He proves the equivalence of a
denotational semantics and a Hoare-style axiomatic semantics [95]. The proof
that a Hoare rule is sound requires routine but tedious processing: expanding
definitions and following chains of implications. Sokolowski gives a search tactic
that verifies every rule except the while rule, which requires fixed point induction.

Mulmuley has developed theories and tactics for proving the existence of in-
clusive (recursively defined) predicates [72]. These occur in compiler proofs as
the simulation relation © ~ y between the denotational semantics of the source
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language and the operational semantics of the target machine. Although domain
theory handles recursively defined functions, recursive predicates may cause incon-
sistency. Justifying an inclusive predicate involves a morass of technical detail.

Inclusive predicates were a major concern in Cohn’s compiler proof. Her simple
language and machine, and intermediate semantic levels, allow simulation relations
of the form & ~ y if and only if f(z) = ¢g(y), for functions f and g. Such relations
need no justification but are rarely useful. Mulmuley’s techniques pave the way
for more ambitious compiler proofs.

Mulmuley has LCF theories of the universal domain U and the domain V of
finitary projections of U. The correspondence between domains and elements of
V gives quantification over domains in PPA. Asked to prove the existence of a
predicate, Mulmuley’s system generates goals and submits them to appropriate
tactics, based on rewriting and resolution. The system, which totals sixty pages
of ML, handles several predicates in the literature. It verifies Stoy’s predicate
automatically [96]; in another example, only one goal out of sixteen requires human
assistance. Mulmuley relies on a machine-verified predicate in his construction of
fully abstract models of the lambda-calculus [73)].

1.2.2 Verification of functional programs

Leszczylowski verified the ‘algebraic laws’ of Backus’s functional language FP by
defining the FP operations [60]. He also proved [59] the termination of the func-
tion NORM, which puts conditional expressions into normal form by repeatedly
replacing

IF(IF(u,v,w),y, 2) by IF(u,IF(v,y, 2), IF(w, y,2)) .

That NORM always terminates is far from obvious. Leszczylowski proved by struc-
tural induction on z that NORM(IF(z, y, z)) terminates for all z,y, z such that z is
defined and NORM(y) and NORM(z) both terminate. The termination of NORM(z)
for all defined z follows by induction.

Boyer and Moore devised this termination example [12]. Their theorem-prover
only accepts recursive functions that it can prove total.? They prove that NORM
is total by considering two numerical measures on conditional expressions. I have
found a proof, with the same structure as the LCF one, in a logic of total functions.
Termination is expressed via well-founded relations instead of partial functions.
My paper includes a termination proof in Cambridge LCF [79].

Cohn and Milner proved the correctness of a parser for expressions composed
of atoms, unary operators, and binary operators within parentheses [25,68]. The
proof is by structural induction on expressions, followed by rewriting and simple

2The function f is total if f(z) is defined for all values of z; otherwise f is partial. A nonter-
minating program gives rise to a partial function.
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resolution. A more interesting parser uses information about operator precedence
(21]. Both parsers are verified against a function for printing an expression. Cor-
rectness is stated thus: printing an expression then parsing it yields the original
expression. Chisholm has derived a similar parsing algorithm with the help of the
Gothenburg Type Theory system [18].

S. Holmstrom verified several sorting algorithms in Edinburgh LCF. His paper
compares LCF with the Boyer/Moore and Affirm theorem provers [49].

I recently verified a function for unification [76]. As an example, the paper
presents the proof of a theorem about substitution, describing the workings of
Cambridge LCF in detail. Manna and Waldinger developed a theory of unifica-
tion in order to study the synthesis of a unification algorithm [63]. The theory
concerns lists, finite sets, expressions, substitutions, and unifiers, comprising two
dozen propositions. Its translation into PP) is straightforward: quantifiers must be
restricted to defined values, and every function proved total. The LCF proof con-
tains nearly three hundred stored theorems, mostly trivial termination proofs and
basic properties of lists, sets, truth values, and numbers. Manna and Waldinger
prove the final theorem by well-founded induction. PP) does not provide this
general induction principle; correctness is proved by structural induction on the
natural numbers followed by structural induction on expressions.

The termination of the unification function relies on the correctness of the re-
sults of the nested recursive calls it makes, so termination and correctness must
be proved simultaneously [79]. PP has the flexibility required for difficult termi-
nation proofs. The price is that termination must be explicitly considered at all
times.

My first experiments with the unification proof used Edinburgh LCF. That
experience influenced the design of Cambridge LCF.

1.2.3 Verification of digital circuits

M. J. C. Gordon’s LCF_LSM is a theorem prover, built from Cambridge LCF, for
verifying hardware [32]. His Logic for Sequential Machines includes terms that de-
note synchronous devices, with a binding mechanism to indicate their connections.
The next state of a device depends on its current state and inputs. Gordon used
LCF_LSM to verify a simple sixteen-bit computer [33]. Its eight instructions were
implemented using an ALU, memory, various registers, a thirty-bit microcode con-
troller, and ROM holding twenty-six microinstructions. Gordon defined bit vector
operations such as field extraction and addition. Concise axioms specified each
component and the circuitry implementing the computer (host machine), and also
the intended behavior of the computer (target machine).

J. M. J. Herbert used LCF_LSM to verify an ECL chip designed for the Cam-
bridge Fast Ring [39]. The chip, an interface between the Ring and the slower
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logic, consisted of NOR gates, inverters, and flipflops, equivalent to about 360
gates. It was developed using the Cambridge Design Automation system for gate
arrays, which Herbert modified to produce a file of LCF_LSM axioms describing the
chip. Herbert verified the chip with respect to its functional specification. Error
messages from LCF_LSM helped to locate flaws in the specification and wiring.

Verification does not guarantee perfection. When fabricated and put into ser-
vice, the ECL chip displayed minor problems! The error was traced to a discrep-
ancy between the specification of the chip and the way it was actually used. A
system is never correct: at best, it is consistent with its specification.

Melham verified an associative memory unit in LCF_LSM, uncovering errors in
the gating and microcode {7]. The unit was not designed as a verification example
but for an application: to store message identifiers in a network interface device.
It contains an AM2910 microprogram controller, memories, counters, busses, and
drivers: a total of 37 TTL chips. Correctness of the initialized device was proved;
correctness of the initialization sequence was not attempted. The proof, developed
over thirty months of part time effort, comprises 4800 lines of ML and requires ten
and a half hours of computer time.

As a successor to LCF_LSM, Gordon has implemented a higher order logic
(HOL) on top of Cambridge LCF [34,35,37,38]. He uses it to represent hardware:
each device is a predicate, time is an integer, and each wire is a function over time.
A circuit is a conjunction of the predicates representing its component devices; the
arguments of a predicate represent the wires connected to the device. To illustrate
the power of higher order logic, Gordon specifies devices from a CMOS inverter to
a sequential multiplier [36]. Herbert compares LCF_LSM with HOL in specifying
the Cambridge Fast Ring chip [46]. Another example is the counter verification
by Cohn and Gordon [24].

Recent work includes Cohn'’s verification of the Viper microprocessor [23]. This
microprocessor, designed at the Royal Signals and Radar Establishment (RSRE)
for safety-critical applications, may become the first real computer to be formally
verified. In the notation of LCF_LSM, RSRE staff wrote Viper’s functional spec-
ification and informally proved the correctness of its implementation in a state-
transition machine. Cohn formalized this work in HOL, uncovering minor errors
that fortunately were not reflected in the hardware. Typical of hardwa:e veri-
fication are gigantic formulae and proofs: the Viper proof involves more than a
million primitive inferences. The next stage of Cohn’s work will be to verify the
implementation at a level closer to that of circuits.

1.3 Further reading

Other books describing particular theorem provers include Boyer and Moore [12]
and Constable et al. [26]. Bledsoe and Loveland’s survey [9] is interesting but
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hardly mentions LCF or other European work.

Several new theorem provers borrow ideas from LCF. Hanna and Daeche’s
Veritas (43] uses a purely functional meta language, Miranda.> My Isabelle uses
Standard ML, represents a rule as a construction instead of a function, and em-
phasizes unification during inference [80].

You will not get far in this book unless you know Standard ML. The defini-
tion [45] is not easy to read; Harper [44] and Wikstrom [100] have written gentle
introductions.

Milner gives a readable introduction to rules, tactics, and induction in Edin-
burgh LCF [68]. Gordon demonstrates how to implement a simple logic in ML [31].
The Nuprl book by Constable et al. gives a sometimes different interpretation of
these ideas [26].

Of the proofs mentioned above, several are described in easily available papers.
These include Cohn’s proof of semantic equivalence [22], my proof of a unification
algorithm [76], and Melham’s hardware proof [7]. The earlier theorem provers
are still of historical interest. Milner and Weyhrauch describe a simple compiler
correctness proof in Stanford LCF [70]. Gordon and Herbert’s article [39] includes
a readable introduction to LCF_LSM.

3‘Miranda’ is a trademark of Research Software Ltd.



