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CHAPTER ONE: INTRODUCTION

1 VALUATIONS
These are generalizations of the ordinary absolute value on
the field € of complex numbers, A valuation is a real valued function
on a field k satisfying certain axioms. We leave formal definitioms to
the next Chapter, but here give more examples of valuations to illustrate
some salient features.

(a) k=€. For a=u+ iv with u, v € R, the ordinary

absolute value is |a| = V(u? + v2). Then
(i) |a] > 0, with =0 only for a = 0. (1.1d)»
(ii) |ab| = |a||b]. (1.1¢ii))
(iii) |a + b| < |a] + |b]. (1.1(iii))

The inequality (iii) is usually called the triangle inequality.
(b) k= ko(T), where ko is any field and T is

transcendental over ko. We first define || on the ring of polynomials

ko[T]. Let ¢ > 1 be fixed arbitrarily. If

= = n
£ = £(T) fo + f1 T+ ... + fn T (fj € ko, fn #0),
we put

[£] = <%, o] = o.

Any element h of ko(T) is of the form £(T)/g(T) with
£(T), g(T) € k [T] and g(T) # 0. We put



[n] = 1£]/]g

Then for f£f,g € ko(T) we have
(i) |f] > 0, with =0 only for £ =0
(i)  |fg]| = [£]]g]
(1ii)*  |f + g| < max{|£],[g|},

as is easily verified (do it first for f,g € ko[T]).

We call (iii)* the ultrametric inequality. It is clearly

stronger than the triangle inequality (iii).

(¢) k=@. Let p be a (positive) prime and let y € R,

0 <y <1. Any nonzero r € @ can be written

r = pPulv,
where p, u, v€ Z and p 4 u, p+v. By unique factorization in Z,
the number p depends only on r. We put

P
= (o] = 0.

el =+ lol,
Then

(i) ]rlp 2 0 with equality only for r =0 (1.2(i))

@ esl = fel, lsl (1.215)

Gid)* |r + s|p < max{|r[P, ls|p}. (1.2(iii))

Here (i), (ii) are trivial. To check (iii)* we may suppose

that r # 0, s # 0 and without loss of generality that Ir]p 2 [slp.
Then

r = ppu/v, 8 = pox/y

for p, 0, u, v, x, y € Z with



p 1 uvxy,

and

c=p+t1 with ¢ 3 O.
Now

r + s = pPU/V,
where

V=vye€Z, U=uy+pvxezZ.

Clearly p + V. It is, however, quite possible that p|U (at least when
1=0), say U= pAW, A 20, p+W. Then
= JPTA P
r+s| = = max{|r s{_}.
l o =v"" sy {rl,slsl,}
Note. It is usual to take vy = p-l, when we have the p-adic valuation
of Q.

d k= ko(T), as in (b). Let p(T) be an irreducible
element of ko[T] and, as before, let 0 < y < 1. Every h(T) € ko(T)

can be written
h(T) = {p(D}P £(T)/g(T),

where f£(T), g(T) € ko[T] are not divisible by p(T) and where p € Z

depends only on h (and, of course, p). We put

and the reader will readily check that (i), (ii) and (iii)* hold.

The examples (b), (d) are closely related. Indeed on
replacing T by T ' in (b) we obtain (d) for the special polynomial
p(T) = T.

We note also that except for (a) we always have the



ultrametric inequality (iii)*, not just the triangle inequality (iii).
We shall see in Chapter 3 that (a) is indeed essentially the only

valuation for which the ultrametric inequality fails,
2 REMARKS
Working with general valuations may require psychological
adjustment. Consider first some consequences of the ultrametric
inequality

la + b| < max(lal, [b]). (2.1)

It implies by an obvious induction that

la + ...+ a | ¢ max|a,]| (2.2)
1 n -
J
and so (replacing aj by aj+1 - aj) that
]an - ali < ma}xlaj+1 - aj]. (2.3)

Let now b be a point of the "disc"
D={x: |x-al <1}
of "centre" a. Then by (2.3)
Ix - b| < max{|x - al, |b - a]} <1,
for every x € D. Conversely [x - b[ < 1 implies that x € D. Hence
D={x: |x -b] <1}.

Every point of the disc has an equal right to be regarded as a centre!

Again, consider the sequence (Conway and Sloane)

of integers. Then with respect to the 5-adic valuation we have



=50 (m >n).

!am - anls
In particular, the sequence {an} has the properties of what in

ordinary real or complex analysis we call a fundamental sequence

(Cauchy sequence). In this case we have

3a, =12, 3a, =102, 3a,=1002, ..., 3a_ = 10...02,....,

and so

-n
]3an - 2|5 =5

Hence {an} tends to the limit 2/3 in a 5-adic sense. (We shall be
defining these notions formally in the next Chapter).

On the other hand, fundamental sequences occur very
naturally which do not have a rational limit. For example, one can find

(in many ways) a sequence {an} of integers such that

a?+1:=0 (5™ (2.4)
a,, =a ™ (2.5)

for all n > 1. We take a, = 2, If a has already been chosen, we

have to find an integer b such that

satisfies (2.4), that is
(a + bsM2+1=z0 ("N,
This is easily seen to be equivalent to

c * 2anb =0, (5 (2.6)

where ag +1=5" e Since a, is clearly not divisible by 5, we can

satisfy (2.6). Hence we have an a, and the inductive process

+1’
continues.



By (2.2) we have

{am - anls £5%, (m>n)

so again {an} is a fundamental sequence. Suppose that it has a limit
e €@O. By (2.4) we have

|a: + 1lS s5®

from which it easily follows that

Ie2 + 1|5 = 0.

Hence
e“+1=0 2.7

by (1.2(i)). But there is no e € @ satisfying (2.7).

In the next chapter we shall show that any field may be
"completed" with respect to a valuation on it in the same way as the real
numbers are constructed from the rationals by completing with respect to
the ordinary absolute value. The completion of @ with respect to a
p-adic valuation | |p is the field Qp of p-adic numbers. The

argument above will then show that @, contains a solution e of 2.7).

3 AN APPLICATION
Here we show that the bare definition of the p-adic
valuation provides a natural proof of an interesting result. Nothing in
this section is used later, so it can be omitted if desired. In
Chapter 12 we shall, however, indicate that it is not an isolated result
but, rather, has been the starting point of much recent work.

We recall that the Bernoulli numbers Bk are given by the

formal power-series expansion

X [ 1 X
<= T ot et

e (3.1)

g
+

Hence



B =1, B.=~1/2 .

Further,

B =0 (k odd, > 1), (3.1 bis)

since

X

Lxoxet e ot
K-1 2 2(eix - e_ix)
is unchanged by the substitution X » - X.

Clearly the Bk are rational. The first few values are:

B, =1/6 B,, = - 691/2730
B, =-1/30 B, =17/6

B, = 1/42 B, = - 3617/510
B, =-1/30 B, = 43867/798
B,, = 5/66 B,, = - 174611/330

We shall present Witt's proof of

THEOREM 3.1 (von Staudt-Clausen). Let k be even. Then

B+ [ d'ez. (3.2)
q prime
(o-1) [k

For example, the only primes q such that q - 1 divides 2
are ¢ = 2, 3. In accordance with the Theorem B, + — + — = 1. Again,
2 2 3

when k = 20 the relevant primes are q = 2,3,5,11 and one checks that

+l+l+i=-528.
3 S 11

+
BZO

[ Y

Put



k k

s =15+ 2%+ .+ (@- k. (3.3)

On comparing coefficients on both sides of

nX
X (n-1)X _e -1 X
1+e + ... +te = X X

e -1

using (3.1), we rapidly obtain the once well-known formula

k B
_ k x k+i-r
5, (n) = rzo (r) = ° . (3.4)

expressing Sk(n) as a polynomial in n. Here (t) is the binomial
coefficient,

It follows that

B, - lin nt 5, (). (3.5)
n’ro

With the ordinary definition of limit n > O for positive integers n,
this is a nonsense. If, however, we choose a prime p and work with the
p-adic valuation | Ip’ then it makes perfectly good sense; for example

n can run through the sequence

m
Py P2y Py wees Py ovv (3.6)

-m—1 (pm+ l)

We therefore compare p Sk and pmm Sk(pm).

Every integer j in
0gj<pi’

is uniquely of the form

j=up +v (0Ogu<p, Osgvc< pm).

Hence



Sk(pm+1) =} jk

k

"

Y (up™ + v)
v

P z vk + kpm Zu
v u v

k-1
v

ut

™
on expanding by the binomial theorem. Here § W = Sk(pm). Further,
v
2ju=pp~1) =0 (p).

Hence

™

m

P, (P, (3.7

where for p = 2 we have used the hypothesis that k is even.
On dividing by pm+1, we can write (3.7) as
-m-1

m+1 -m m
Ip s, ) -p Sk )Ip < 1.

By the consequence (2.3) of the ultrametric inequality (1.2(iii)), it
follows that

lp-z Sk(pl) - p_m Sk(pm)lp <1 (3.8)

for any positive integers g,m. Put m =1 and let ¢ tend to infinity

. . L . .
in the conventional sense, so p~ =+ O in the p-adic sense. Then

s, - pt s,@ | <1 (3.9)
by (3.5).
Now
p-1
S () = ¥ J'k
[o]

-1 if (p-D|k (p)

(3.10)
0 otherwise.
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Hence and by (3.9),

I3, + p—llp <1 if (p-D]k
(3.1D)
]Bk]p <1 otherwise
Put
wo=B + ] 47 (3.12)
q prime
(q~1) [k
If p is any prime, we have
V=@ +p D+ Lql (3.13(i))
q#p
or
Wo=B +ldq" (3.13(ii))

q

according as p is, or is not, a q. In both cases (3.11) implies
lwk[p <1, (all primes p) (3.14)

on using the consequence (2.2) of the ultrametric inequality. But (3.14)

implies that the rational number ¥

" has no primes in its denominator,

i.e. Wk € Z, as asserted.

§3 Theorem 3.1 was announced briefly by Clausen (1840). This
prompted the paper of von Staudt (1840), who said he had known the result
for some time. Witt's proof seems to have entered the folklore without

being published by him. See also Chapter 12, §5.

Exercises

1. Let p be a prime and s a positive integer. Show that

sl > 87,



for the p-adic valuation, with equality precisely when s is a power of

P.

2., Let k >4 be even and p # 2,3. Show that

lP_m Sk(Pm) _ Bklp < p-2m+€

for all m 21, where €e=1 if (p-1)|(k~-2) and =0
otherwise.

{Note. A numerical example is p=5, k=4, m=1, so0
€ = 0. Then §,(5) = 354, and

-1
571 5,(5) - B, = 425/6.

Hint. By (3.4)

[ -m my _ P k-1 Br m(r-k)
PoS ) - Bl smax gy @
P r=o P

Now estimate the IBr[ by (3.1 bis) and Theorem 3.1, and use
P

Exercise 1.]

3. For positive integer m let N_ be the integral part of

2m+1 -m-1

a+ "3 . Show that [N | =2 .
m'2
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