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1

Divisibility

1 Foundations

Theset 1,2, 3,... of all natural numbers will be denoted
by N. There is no need to enter here into philosophical questions
concerning the existence of N. It will suffice to assume that it is
a given set for which the Peano axioms are satisfied. They imply
that addition and multiplication can be defined on N such that
the commutative, associative and distributive laws are valid.
Further, an ordering on N can be introduced so that either m <n
or n<m for any distinct elements m, n in N. Furthermore,
it is evident from the axioms that the principle of mathe-
matical induction holds and that every non-empty subset of N
has a least member. We shall frequently appeal to these
properties.

As customary, we shall denote by Z the set of integers
0,+1, 2, ..., and by Q the set of rationals, that is the numbers
p/q with p in Z and ¢ in N. The construction, commencing
with N, of Z, @ and then the real and complex numbers R and
C forms the basis of Mathematical Analysis and it is assumed
known.

2 Division algorithm

Suppose that a, b are elements of N. One says that b
divides a (written b|a) if there exists an element ¢ of N such
that a = be. In this case b is referred to as a divisor of g, and a
is called a multiple of b. The relation b|a is reflexive and transi-
tive but not symmetric; in fact if bja and alb then a = b. Clearly
also if b|a then b=<a and so a natural number has only finitely
many divisors. The concept of divisibility is readily extended



2 Divisibility

to Z; if a, b are elements of Z, with b =0, then b is said to divide
a if there exists ¢ in Z such that a = bc.

We shall frequently appeal to the division algorithm. This
asserts that for any a, b in Z, with b>0, there exist g, r in Z
such that @ = bq +r and 0= r < b. The proof is simple; indeed if
bq is the largest multiple of b that does not exceed a then the
integer r=a — bq is certainly non-negative and, since b(g+1)>
a, we have r < b. The result plainly remains valid for any integer
b # 0 provided that the bound r<b is replaced by r<|b|.

3 Greatest common divisor
By the greatest common divisor of natural numbers a,
b we mean an element d of N such that d|a, d|b and every
common divisor of @ and b also divides d. We proceed to prove
that a number d with these properties exists; plainly it will be
unique, for any other such number d’ would divide a, b and so
also d, and since similarly d|d’ we have d =d’.

Accordingly consider the set of all natural numbers of the
form ax+by with x, y in Z. The set is not empty since, for
instance, it contains a and b; hence there is a least member d,
say. Now d = ax + by for some integers x, y, whence every com-
mon divisor of a and b certainly divides d. Further, by the
division algorithm, we have a = dg+r for some g, r in Z with
0=r<d; this gives r=ax'+ by, where x'=1—gx and y' = —qv.
Thus, from the minimal property of d, it follows that r=0
whence d|a. Similarly we have d|b, as required.

It is customary to signify the greatest common divisor of a, b
by (a, b). Clearly, for any n in N, the equation ax+by=n is
soluble in integers x, y if and only if (a, b) divides n. In the case
(a, b)=1 we say that a and b are relatively prime or coprime
(or that a is prime to b). Then the equation ax + by = n is always
soluble.

Obviously one can extend these concepts to more than two
numbers. In fact one can show that any elements a,, ..., a,, of
N have a greatest common divisor d=(a,, ..., a,,) such that
d=a,x,+---+a,x, for some integers x,..., x,,. Further, if
d =1, we say that a,, ..., a,, are relatively prime and then the
equation a;x,+- - - +an,x,, =n is always soluble.
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4 Euclid’s algorithm
A method for finding the greatest common divisor d of
a, b was described by Euclid. It proceeds as follows.

By the division algorithm there exist integers g,, r; such that
a=>bqg,+r, and 0=r, <b. If r; #0 then there exist integers g,
ro such that b=r,g,+ 1, and 0=<r,<r;. If r,# 0 then there exist
integers gs, 73 such that r, = ryg3+ 5 and 0 < r;<r,. Continuing
thus, one obtains a decreasing sequence ry, 7o, . . . satisfying r;_o =
r;-1q;+r;. The sequence terminates when 7y, =0 for some k,
that is when ri_, = rgx.;. It is then readily verified that d = ..
Indeed it is evident from the equations that every common
divisor of a and b divides ry, o, . .., 7¢; and moreover, viewing
the equations in the reverse order, it is clear that r, divides each
r; and so also b and a.

Euclid’s algorithm furnishes another proof of the existence of
integers x, y satisfying d = ax + by, and furthermore it enables
these x, y to be explicitly calculated. For we have d =r, and
r;=r;_o— r;_1q; whence the required values can be obtained by
successive substitution. Let us take, for example, a =187 and
b =35. Then, following Euclid, we have

187=35-5+12, 35=12-2+11, 12=11-1+1.
Thus we see that (187, 35)=1 and moreover
1=12-11-1=12~-(35-12-2)=3(187-35-5)—35.
Hence a solution of the equation 187x+35y =1 in integers x, y
is given by x =3, y=-16.
There is a close connection between Euclid’s algorithm and

the theory of continued fractions; this will be discussed in
Chapter 6.

5 Fundamental theorem
A natural number, other than 1, is called a prime if it is
divisible only by itself and 1. The smallest primes are therefore
given by 2, 3, 5,7, 11, ....

Let n be any natural number other than 1. The least divisor
of n that exceeds 1 is plainly a prime, say p,. If n# p, then,
similarly, there is a prime p, dividing n/p;. If n# p; p, then
there is a prime p; dividing n/p, ps; and so on. After a finite
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number of steps we obtain n=p; - p,; and by grouping
together we get the standard factorization (or canonical
decomposition) n=p,” - - - p’x, where py,..., pr denote dis-
tinct primes and ji, ..., jx are elements of N.

The fundamental theorem of arithmetic asserts that the above
factorization is unique except for the order of the factors. To
prove the result, note first that if a prime p divides a product
mn of natural numbers then either p divides m or p divides n.
Indeed if p does not divide m then (p, m) =1 whence there exist
integers x, y such that px + my=1; thus we have pnx+ mny=n
and hence p divides n. More generally we cor.clude that if p
divides n;ny - - - n; then p divides n;, for some . Now suppose
that, apart from the factorization n = p,” - - - p* derived above,
there is another decomposition and that p’ is one of the primes
occurring therein. From the preceding conclusion we obtain
p' = p, for some l. Hence we deduce that, if the standard factoriz-
ation for n/p’ is unique, then so also is that for n. The funda-
mental theorem follows by induction.

It is simple to express the greatest common divisor (a, b) of
elements a, b of N in terms of the primes occurring in their

decompositions. In fact we can write a=p," - - - p* and b=
p® -+ pPx where pi, ..., px are distinct primes and the as
and Bs are non-negative integers; then (g, b)=p," - p*,

where y; = min (a;, 8;). With the same notation, the lowest com-
mon multiple of a, b is defined by {a, b}=p,% - - - p,°*, where
8; = max (a;, B;). The identity (a, b){a, b} = ab is readily verified.

6 Properties of the primes

There exist infinitely many primes, for if p,,..., p, is
any finite set of primes then p, - - - p, + 1 is divisible by a prime
different from p,,..., p,; the argument is due to Euclid. It
follows that, if p, is the nth prime in ascending order of magni-
tude, then p,, divides p, - - - p, +1 for some m = n +1; from this
we deduce by induction that p, <2%. In fact a much stronger
result is known; indeed p,~nlogn as n—->o.t The result is
equivalent to the assertion that the number 7 (x) of primes p=x
satisfies (x)~ x/log x as x » 0. This is called the prime-number

+ The notation f~ g means that f/g > 1; and one says that f is
asymptotic to g.
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theorem and it was proved by Hadamard and de la Vallée Poussin
independently in 1896. Their proofs were based on properties
of the Riemann zeta-function about which we shall speak in
Chapter 2. In 1737 Euler proved that the series Y, 1/p, diverges
and he noted that this gives another demonstration of the
existence of infinitely many primes. In fact it can be shown by
elementary arguments that, for some number ¢,

Y 1/p=loglog x +c+ O(1/log x).

pex

Fermat conjectured that the numbers 2" +1 (n=1,2,...) are
all primes; this is true for n =1, 2,3 and 4 but false for n =35, as
was proved by Euler. In fact 641 divides 2°2+ 1. Numbers of
the above form that are primes are called Fermat primes. They
are closely connected with the existence of a construction of a
regular plane polygon with ruler and compasses only. In fact
the regular plane polygon with p sides, where p is a prime, is
capable of construction if and only if p is a Fermat prime. It is
not known at present whether the number of Fermat primes is
finite or infinite.

Numbers of the form 2" — 1 that are primes are called Mersenne
primes. In this case n is a prime, for plainly 2™ ~1 divides 2" —1
if m divides n. Mersenne primes are of particular interest in
providing examples of large prime numbers; for instance it is
known that 24497 — 1 is the 27th Mersenne prime, a number with
13 395 digits.

It is easily seen that no polynomial f(n) with integer
coefficients can be prime for all n in N, or even for all sufficiently
large n, unless f is constant. Indeed by Taylor’s theorem,
f(mf(n)+n) is divisible by f(n) for all m in N. On the other
hand, the remarkable polynomial n*—n+41 is prime for n=
1,2,...,40. Furthermore one can write down a polynomial
f(ny, ..., n;) with the property that, as the n; run through the
elements of N, the set of positive values assumed by f is precisely
the sequence of primes. The latter result arises from studies in
logic relating to Hilbert’s tenth problem (see Chapter 8).

The primes are well distributed in the sense that, for every
n>1, there is always a prime between n and 2n. This result,
which is commonly referred to as Bertrand’s postulate, can be
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regarded as the forerunner of extensive researches on the differ-
ence p,.;— P, of consecutive primes. In fact estimates of the
form p,.;— p, = O(p,”) are known with values of « just a little
greater than 3; but, on the other hand, the difference is certainly
not bounded, since the consecutive integers n!+m with m =
2,3,...,n are all composite. A famous theorem of Dirichlet
asserts that any arithmetical progression a, a+gq, a+2g,...,
where (a, g) =1, contains infinitely many primes. Some special
cases, for instance the existence of infinitely many primes of the
form 4n+3, can be deduced simply by modifying Euclid’s
argument given at the beginning, but the general result lies quite
deep. Indeed Dirichlet’s proof involved, amongst other things,
the concepts of characters and L-functions, and of class numbers
of quadratic forms, and it has been of far-reaching significance
in the history of mathematics.

Two notorious unsolved problems in prime-number theory
are the Goldbach conjecture, mentioned in a letter to Euler of
1742, to the effect that every even integer (>2) is the sum of two
primes, and the twin-prime conjecture, to the effect that there
exist infinitely many pairs of primes, such as 3, 5 and 17, 19,
that differ by 2. By ingenious work on sieve methods, Chen
showed in 1974 that these conjectures are valid if one of the
primes is replaced by a number with at most two prime factors
(assuming, in the Goldbach case, that the even integer is
sufficiently large). The oldest known sieve, incidentally, is due
to Eratosthenes. He observed that if one deletes from the set of
integers 2, 3, ..., n, first all multiples of 2, then all multiples of
3, and so on up to the largest integer not exceeding vn, then
only primes remain. Studies on Goldbach’s conjecture gave rise
to the Hardy-~Littlewood circle method of analysis and, in par-
ticular, to the celebrated theorem of Vinogradov to the effect
that every sufficiently large odd integer is the sum of three primes.

7 Further reading
For a good account of the Peano axioms see E. Landau,
Foundations of analysis (Chelsea Publ. Co., New York, 1951).
The division algorithm, Euclid’s algorithm and the funda-
mental theorem of arithmetic are discussed in every elementary
text on number theory. The tracts are too numerous to list here
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but for many years the book by G. H. Hardy and E. M. Wright,
An introduction to the theory of numbers (Oxford U.P., 5th edn,
1979) has been regarded as a standard work in the field. The
books of similar title by T. Nagell (Wiley, New York, 1951) and
H. M. Stark (MIT Press, Cambridge, Mass., 1978) are also to be
recommended, as well as the volume by E. Landau, Elementary
number theory (Chelsea Publ. Co., New York, 1958).

For properties of the primes, see the book by Hardy and Wright
mentioned above and, for more advanced reading, see, for inst-
ance, H. Davenport, Multiplicative number theory (Springer-
Verlag, Berlin, 2nd ed, 1980) and H. Halberstam and H. E.
Richert, Sieve methods (Academic Press, London and New
York, 1974). The latter contains, in particular, a proof of Chen’s
theorem. The result referred to on a polynomial in several vari-
ables representing primes arose from work of Davis, Robinson,
Putnam and Matiyasevich on Hilbert’s tenth problem; see, for
instance, the article in American Math. Monthly 83 (1976),
449-64, where it is shown that 12 variables suffice.

8 Exercises
Find integers x, y such that 95x +432y=1.

)

(ii) Find integers x, y, z such that 35x +55y+77z=1.
) Prove that 1+3+---+1/n is not an integer for n>1.
)

{iv) Prove that
({a, b}, {b, c},{c, a})={(a, b), (b, ¢), (¢, a)}.
(v) Prove that if g, g, ... are integers >1 then every

natural number can be expressed uniquely in the form
ao+a,g,+asg,8:+" - -+arg, - - g, where the q; are
integers satisfying 0= a;<g;.,.

(vi) Show that there exist infinitely many primes of the
form 4n +3.

(vii) Show that, if 2" +1 is a prime then it is in fact a
Fermat prime.
(viii) Show that, if m > n, then 2*"+1 divides 2> —1 and so
(2% +1,2¥" +1)=1.
(ix) Deduce that p,,, =2%"+1, whence m(x)=log log x for
x=2.



