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Introduction

It often happens that the understanding of the mathematical nature
of an equation is impossible without a detailed understanding of
its solutions.

Freeman J. Dyson

Background: The discovery of solitary waves of translation goes back to Scott
Russell in 1834, and during the remaining part of the 19th century the true nature
of these waves remained controversial. It was only with the derivation by Korteweg
and de Vries in 1895 of what is now called the Korteweg–de Vries (KdV) equa-
tion, that the one-soliton solution and hence the concept of solitary waves was
put on a firm basis.1 An extraordinary series of events took place around 1965
when Kruskal and Zabusky, while analyzing the numerical results of Fermi, Pasta,
and Ulam on heat conductivity in solids, discovered that pulselike solitary wave
solutions of the KdV equation, for which the name “solitons” was coined, in-
teract elastically. This was followed by the 1967 discovery of Gardner, Greene,
Kruskal, and Miura that the inverse scattering method allows one to solve initial
value problems for the KdV equation with sufficiently fast-decaying initial data.
Soon thereafter, in 1968, Lax found a new explanation of the isospectral nature of
KdV solutions using the concept of Lax pairs and introduced a whole hierarchy
of KdV equations. Subsequently, in the early 1970s, Zakharov and Shabat (ZS),
and Ablowitz, Kaup, Newell, and Segur (AKNS) extended the inverse scattering
method to a wide class of nonlinear partial differential equations of relevance
in various scientific contexts ranging from nonlinear optics to condensed matter
physics and elementary particle physics. In particular, solitons found numerous
applications in classical and quantum field theory and in connection with optical
communication devices.

Another decisive step forward in the development of completely integrable
soliton equations was taken around 1974. Prior to that period, inverse spectral

1 With hindsight, though, it is now clear that other researchers, such as Boussinesq, derived the KdV
equation and its one-soliton solution prior to 1895, as described in the notes to Section 1.1.

1
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2 Introduction

methods in the context of nonlinear evolution equations had been restricted to
spatially decaying solutions. In 1974–75, the arsenal of inverse spectral meth-
ods was extended considerably in scope to include periodic and certain classes
of quasi-periodic and almost periodic KdV solutions. This new approach to con-
structing solutions of integrable nonlinear evolution equations, partly based on
inverse spectral theory and partly relying on algebro-geometric methods devel-
oped by pioneers such as Dubrovin, Flaschka, Its, Krichever, Lax, Marchenko,
Matveev, McKean, Novikov, van Moerbeke – to name just a few – was followed
by very rapid development in the field. Within a few years of intense activity
worldwide, the landscape of integrable systems was changed forever. By the early
1980s the theory was extended to a large class of nonlinear (including some
multi-dimensional) evolution equations beyond the KdV equation, and the explicit
theta function representations of quasi-periodic solutions of integrable equations
(including, e.g., soliton solutions as special limiting cases) had introduced new
algebro-geometric techniques into this area of nonlinear partial differential equa-
tions. Subsequently, this led to several new and deep results in nonlinear partial dif-
ferential equations as well as in algebraic geometry (such as a solution of Schottky’s
problem).

Our series of monographs is devoted to this area of algebro-geometric solutions
of hierarchies of soliton equations.

Scope: We aim for an elementary, yet self-contained and precise, presentation of
hierarchies of integrable soliton equations and their algebro-geometric solutions.
Our point of view is predominantly influenced by analytical methods, especially
by spectral theoretic techniques. We hope this will make the presentation acces-
sible and attractive to analysts working outside the traditional areas associated
with soliton equations. Central to our approach is a simultaneous construction of
all algebro-geometric solutions and their theta function representation of a given
hierarchy. In this volume we focus on some of the key hierarchies in (1 + 1)-
dimensions associated with continuous integrable models such as the Korteweg–de
Vries hierarchy (KdV), the combined sine–Gordon modified Korteweg–de Vries
hierarchy (sGmKdV), the Ablowitz–Kaup–Newell–Segur hierarchy1 (AKNS), the
classical massive Thirring system (Th), and the Camassa–Holm hierarchy (CH).
The key equations defining the corresponding hierarchies read

KdV: ut + 1
4 uxxx − 3

2 uux = 0,

sGmKdV: uxt − sin(u) = 0,

AKNS:

(
pt + i

2 pxx − i p2q

qt − i
2 qxx + i pq2

)
= 0, (0.1)

1 Using the gauge equivalence of the AKNS hierarchy and classical Boussinesq hierarchy, we also
treat the latter.



P1: GSB/SPH P2: GSB

CB506-01 CB506/Gesztesy-v7.cls November 29, 2002 18:8 Char Count=

Introduction 3

Th:


−iux + 2v + 2vv∗u

iu∗
x + 2v∗ + 2vv∗u∗

−ivt + 2u + 2uu∗v
iv∗

t + 2u∗ + 2uu∗v∗

 = 0,

CH: 4ut − uxxt − 2uuxxx − 4ux uxx + 24uux = 0.

Our principal goal in this monograph is the construction of algebro-geometric so-
lutions of the hierarchies associated with the equations listed in (0.1). Interest in
the class of algebro-geometric solutions can be motivated in a variety of ways:
It represents a natural extension of the classes of soliton and rational solutions,
and similar to these, its elements can still be regarded as explicit solutions of the
nonlinear integrable evolution equation in question (even though their complex-
ity considerably increases compared with soliton solutions due to the underlying
analysis on compact Riemann surfaces). Moreover, algebro-geometric solutions
can be used to approximate more general solutions (such as almost periodic ones),
although this is not a topic pursued in this monograph. Here we primarily focus on
the construction of explicit solutions in terms of certain algebro-geometric data on
a compact Riemann surface and their representation in terms of theta functions.
For instance, in KdV-type contexts, solitons arise as the special case of solutions
corresponding to an underlying singular hyperelliptic curve obtained by conflu-
ence of two or more branch points, and rational solutions correspond to a further
singularization of the original curve. In either case, the theta function associated
with the underlying algebraic curve degenerates into appropriate determinants with
exponential, respectively, rational entries.

We use basic techniques from the theory of differential equations, some spec-
tral analysis, and elements of algebraic geometry (most notably, the basic theory
of compact Riemann surfaces). In particular, we do not employ more advanced
tools such as loop groups, Grassmanians, Lie algebraic considerations, formal
pseudo-differential expressions, etc. However, occasionally we bridge the gap to
spectral theory and its vicinity and include some finer points of the basic formal-
ism often omitted in this context. Thus, this volume strays off the mainstream, but
we hope it appeals to spectral theorists and their kin and convinces them of the
beauty of the subject. In particular, we hope a reader interested in quickly pen-
etrating to the fundamentals of the algebro-geometric approach of constructing
solutions of hierarchies of completely integrable evolution equations will not be
disappointed.

Completely integrable systems, and especially nonlinear evolution equations of
soliton-type, are an integral part of modern mathematical and theoretical physics
with far-reaching implications from pure mathematics to the applied sciences.
We intend to contribute to the dissemination of some of the beautiful techniques
applied in this area.
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Contents: In the present volume we provide an effective approach to the con-
struction of algebro-geometric solutions of certain completely integrable nonlinear
evolution equations by developing a technique that simultaneously applies to all
equations of the hierarchy in question.

Starting with a specific integrable partial differential equation, one can build an
infinite sequence of higher-order partial differential equations, the so-called hierar-
chy of the original soliton equation, by developing an explicit recursive formalism
that reduces the construction of the entire hierarchy to elementary manipulations
with polynomials and defines the associated Lax pairs or zero-curvature equations.
Using this recursive polynomial formalism, we simultaneously construct algebro-
geometric solutions for the entire hierarchy of soliton equations at hand. On a more
technical level, our point of departure for the construction of algebro-geometric
solutions is not directly based on Baker–Akhiezer functions and axiomatizations
of algebro-geometric data but rather on Dubrovin-type equations, trace formulas,
and a canonical meromorphic function φ on the underlying hyperelliptic Riemann
surface Kn of genus n ∈ N. More precisely, this fundamental meromorphic func-
tion φ carries the spectral information of the underlying Lax operator (such as the
Schrödinger and Dirac operators in the KdV and AKNS contexts) and in many
instances represents a direct generalization of the Weyl–Titchmarsh m-function,
a fundamental device in the spectral theory of ordinary differential operators.
Riccati-type differential equations satisfied by φ separately in the space and time
variables then govern the time evolutions of all quantities of interest (such as that
of the associated Baker–Akhiezer vector). The basic meromorphic function φ on
Kn is then linked with solutions of equations of the underlying hierarchy via trace
formulas and Dubrovin-type equations for (projections of) the pole divisor of φ.
Subsequently, the Riemann theta function representation of φ is then obtained
more or less simultaneously with those of the Baker–Akhiezer vector and the
algebro-geometric solutions of the (stationary or time-dependent) equations of the
hierarchy of evolution equations. This concisely summarizes our approach to all
the (1 + 1)-dimensional, continuous integrable models discussed in this volume.

In the following we will detail this verbal description of our approach to algebro-
geometric solutions of integrable hierarchies with the help of the KdV hierarchy.
The latter consists of a sequence of nonlinear evolution equations for a function
u = u(x, t), the most prominent element of which, the KdV equation itself, is
given by

ut + 1
4 uxxx − 3

2 uux = 0. (0.2)

The KdV hierarchy is the simplest of all the hierarchies of nonlinear evolution
equations studied in this volume, but the same strategy, with modifications to be
discussed in the individual chapters, applies to all integrable systems treated in this
monograph and is in fact typical for all (1 + 1)-dimensional integrable hierarchies
of soliton equations.
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A discussion of the KdV case then proceeds as follows.1 In order to define
the Lax pairs and zero-curvature pairs for the KdV hierarchy, one assumes u to
be a smooth function on R (or meromorphic in C) in the stationary context or a
smooth function on R

2 in the time-dependent case, and one introduces the recursion
relation for some functions f� of u by

f0 = 1, f�,x = −(1/4) f�−1,xxx + u f�−1,x + (1/2)ux f�−1, � ∈ N. (0.3)

Given the recursively defined sequence { f�}�∈N0 (whose elements turn out to be dif-
ferential polynomials with respect to u defined up to certain integration constants)
one defines the Lax pair of the KdV hierarchy by

L = − d2

dx2
+ u, (0.4)

P2n+1 =
n∑

�=0

(
fn−�

d

dx
− 1

2
fn−�,x

)
L�. (0.5)

The commutator of P2n+1 and L then reads2

[P2n+1, L] = 2 fn+1,x , (0.6)

using the recursion (0.3). Introducing a deformation (time) parameter3 tn ∈ R,
n ∈ N0 into u, the KdV hierarchy of nonlinear evolution equations is then defined
by imposing the Lax commutator relations

d

dtn
L − [P2n+1, L] = 0, (0.7)

for each n ∈ N0. By (0.6), the latter are equivalent to the collection of evolution
equations4

KdVn(u) = utn − 2 fn+1,x (u) = 0, n ∈ N0. (0.8)

Explicitly,

KdV0(u) = ut0 − ux = 0,

KdV1(u) = ut1 + 1
4 uxxx − 3

2 uux − c1ux = 0,

KdV2(u) = ut2 − 1
16 uxxxxx + 5

8 uuxxx + 5
4 ux uxx − 15

8 u2ux

+ c1
(

1
4 uxxx − 3

2 uux
) − c2ux = 0, etc.,

1 All details of the following construction are to be found in Chapter 1.
2 The quantities P2n+1 and { f�}�=0,...,n are constructed in such a manner that all differential operators

in the commutator (0.6) vanish.
3 Here we follow Hirota’s notation and introduce a separate time variable tn for the nth level in the

KdV hierarchy.
4 In a slight abuse of notation, we will occasionally stress the functional dependence of f� on u, writing

f�(u).
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represent the first few equations of the time-dependent KdV hierarchy. For n = 1
and c1 = 0, we obtain the KdV equation (0.2). Introducing the polynomials
(z ∈ C),

Fn(z) =
n∑

�=0

fn−�z�, (0.9)

Gn−1(z) = −Fn,x (z)/2, (0.10)

Hn+1(z) = (z − u)Fn(z) + (1/2)Fn,xx (z), (0.11)

one can alternatively introduce the KdV hierarchy as follows. One defines a pair
of 2 × 2 matrices (U (z), Vn+1(z)) depending polynomially on z by

U (z) =
(

0 1
−z + u 0

)
, (0.12)

Vn+1(z) =
(

Gn−1(z) Fn(z)

−Hn+1(z) −Gn−1(z)

)
, (0.13)

and then postulates the zero-curvature equation1

Utn − Vn+1,x + [U, Vn+1] = 0. (0.14)

One easily verifies that both the Lax approach (0.8) as well as the zero-curvature
approach (0.14) reduce to the basic equation

utn + (1/2)Fn,xxx − 2(u − z)Fn,x − ux Fn = 0. (0.15)

Each one of (0.8), (0.14), and (0.15) defines the KdV hierarchy by varying n ∈ N0.
The strategy is as follows: We temporarily assume existence of a solution u

and derive several of its properties. In particular, we show that u satisfies a trace
formula (cf. (0.37) in the stationary case and (0.54) in the time-dependent case)
expressed in terms of certain Dirichlet data that satisfy the so-called Dubrovin
equations (cf. (0.38) in the stationary case and (0.55) in the time-dependent case),
a first-order system of ordinary differential equations that can be shown at least
locally to possess solutions. Furthermore, we deduce explicit formulas for the
solution u, the so-called Its–Matveev formulas (cf. (0.40) in the stationary case
and (0.57) in the time-dependent case).

The Lax and zero-curvature equations (0.7) and (0.14) imply a most remarkable
isospectral deformation of L , as will be discussed later in this introduction. At this

1 Equations �x = U�, �tn = Vn+1� and their compatibility condition (0.14), Utn − Vn+1,x +
[U, Vn+1] = 0 permit a geometrical interpretation as follows: U and Vn+1 may be considered local
connection coefficients in the trivial vector bundle R2 × C2 with space-time R2 the base and � taking
values in the fiber C2. The compatibility equation (0.14) then shows that the (U, Vn+1)-connection
has zero-curvature, and hence (0.14) is called a zero-curvature representation of a nonlinear evolution
equation.
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point, however, we interrupt our time-dependent KdV considerations for a while
and take a closer look at the special stationary KdV equations defined by

utn = 0, n ∈ N0. (0.16)

By (0.6)–(0.8) and (0.14), (0.15), the condition (0.16) is then equivalent to each
one of the following collection of equations, with n ranging in N0, which then
defines the stationary KdV hierarchy,

[P2n+1, L] = 0, (0.17)

fn+1,x = 0, (0.18)

−Vn+1,x + [U, Vn+1] = 0, (0.19)

(1/2)Fn,xxx − 2(u − z)Fn,x − ux Fn = 0. (0.20)

To set the stationary KdV hierarchy apart from the general time-dependent one,
we will denote it by

s-KdVn(u) = −2 fn+1,x (u) = 0, n ∈ N0.

Explicitly, the first few equations of the stationary KdV hierarchy then read as
follows

s-KdV0(u) = −ux = 0,

s-KdV1(u) = 1
4 uxxx − 3

2 uux − c1ux = 0,

s-KdV2(u) = − 1
16 uxxxxx + 5

8 uuxxx + 5
4 ux uxx − 15

8 u2ux

+ c1
(

1
4 uxxx − 3

2 uux
) − c2ux = 0, etc.

The class of algebro-geometric KdV potentials, by definition, equals the set of
solutions u of the stationary KdV hierarchy. In the following analysis we fix the
value of n in (0.17)–(0.20), and hence we now turn to the investigation of algebro-
geometric solutions u of the nth equation within the stationary KdV hierarchy.
Equation (0.17) is of special interest because, by a 1923 result of Burchnall and
Chaundy, commuting differential expressions (due to a common eigenfunction to
be discussed below, cf. (0.33), (0.34)) give rise to an algebraic relationship between
the two differential expressions. Similarly, (0.19) permits the important conclusion
that

∂x det(y I2 − iVn+1(z, x)) = 0 (0.21)

and hence

det(y I2 − iVn+1(z, x)) = y2 − det(Vn+1(z, x))

= y2 + Gn−1(z, x)2 − Fn(z, x)Hn+1(z, x) = y2 − R2n+1(z) (0.22)
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for some x-independent monic polynomial R2n+1, which we write as

R2n+1(z) =
2n∏

m=0

(z − Em) for some {Em}m=0,...,2n ⊂ C.

In particular, the combination

Fn(z, x)Hn+1(z, x) − Gn−1(z, x)2 = R2n+1(z) (0.23)

is x-independent. Moreover, (0.20) can easily be integrated to yield

(1/2)Fn,xx Fn − (1/4)F2
n,x − (u − z)F2

n = R2n+1 (0.24)

with precisely the same integration constant R2n+1(z) as in (0.22). In fact, by (0.10)
and (0.11), equations (0.23) and (0.24) are simply identical. Incidentally, the alge-
braic relationship between L and P2n+1 alluded to in connection with the vanishing
of their commutator in (0.17) can be made precise as follows: Restricting P2n+1 to
the (algebraic) kernel ker(L − z) of L − z, one computes, using (0.5) and (0.24),(

P2n+1

∣∣
ker(L−z)

)2 = −
(

1

2
Fn,xx Fn − 1

4
F2

n,x − (u − z)F2
n

) ∣∣∣∣
ker(L−z)

= −R2n+1(L)
∣∣
ker(L−z).

Thus, one concludes that P2
2n+1 and −R2n+1(L) coincide on ker(L − z), and since

z ∈ C is arbitrary, one infers that

P2
2n+1 + R2n+1(L) = 0 (0.25)

holds once again with the same polynomial R2n+1. The characteristic equation of
iVn+1 (cf. (0.22)) and (0.25) naturally lead one to the introduction of the hyperel-
liptic curve Kn of (arithmetic) genus n ∈ N0 (possibly with a singular affine part)
defined by

Kn : Fn(z, y) = y2 − R2n+1(z) = 0, R2n+1(z) =
2n∏

m=0

(z − Em). (0.26)

We compactify the curve by adding the point P∞ (still denoting it by Kn for sim-
plicity) and note that points P on the curve are denoted by P = (z, y) ∈ Kn \ {P∞},
where y( · ) is a meromorphic function on Kn satisfying1 y2 − R2n+1(z) = 0. For
simplicity, we will assume in the following that the (affine part of the) curve Kn

is nonsingular, that is, the zeros Em of R2n+1 are all simple. Remaining within
the stationary framework a bit longer, one can now introduce the fundamental
meromorphic function φ on Kn alluded to earlier as follows,

φ(P, x) = iy − Gn−1,x (z, x)

Fn(z, x)
(0.27)

= −Hn+1(z, x)

iy + Gn−1,x (z, x)
, P = (z, y) ∈ Kn. (0.28)

1 For more details, refer to Appendix B and Chapter 1.
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Equality of the two expressions (0.27) and (0.28) is an immediate consequence
of the identity (0.23) and the fact y2 = R2n+1(z). A comparison with (0.19) then
readily reveals that φ satisfies the Riccati-type equation

φx + φ2 = u − z. (0.29)

The next step is crucial. It concerns the zeros and poles of φ and hence involves
the zeros of Fn( · , x) and Hn+1( · , x). Isolating the latter by introducing the fac-
torizations

Fn(z, x) =
n∏

j=1

(z − µ j (x)), Hn+1(z, x) =
n∏

�=0

(z − ν�(x)),

one can use the zeros of Fn and Hn+1 to define the following points µ̂ j (x), ν̂�(x)
on Kn ,

µ̂ j (x) = (µ j (x), iGn−1,x (µ j (x), x)), j = 1, . . . , n, (0.30)

ν̂�(x) = (ν�(x), −iGn−1,x (ν�(x), x)), � = 0, . . . , n. (0.31)

The motivation for this choice stems from y2 = R2n+1(z) by (0.22), the identity
(0.23) (which combines to Fn Hn+1 − G2

n−1 = y2), and a comparison of (0.27) and
(0.28). Given (0.27)–(0.31), one obtains for the divisor (φ( · , x)) of the meromor-
phic function φ

(φ( · , x)) = Dν̂0(x)ν̂(x) − DP∞µ̂(x). (0.32)

Here we abbreviated µ̂ = {µ̂1, . . . , µ̂n}, ν̂ = {ν̂1, . . . , ν̂n} ∈ Symn(Kn), with
Symn(Kn) the nth symmetric product of Kn , and used our conventions1 (A.43),
(A.47), and (A.48) to denote positive divisors of degree n and n + 1 on Kn .
Given φ( · , x), one defines the stationary Baker–Akhiezer vector �( · , x, x0) on
Kn \ {P∞} by

� =
(

ψ1

ψ2

)
, ψ1(P, x, x0) = exp

( ∫ x

x0

dx ′ φ(P, x ′)
)

, ψ2 = ψ1,x .

In particular, this implies

φ = ψ2/ψ1

and the following normalization2 of ψ1, ψ1(P, x0, x0) = 1, P ∈ Kn \ {P∞}. The
Riccati-type equation (0.29) satisfied by φ then shows that the Baker–Akhiezer

1 DQ (P) = m if P occurs m times in {Q1, . . . , Qn} and zero otherwise, Q = {Q1, . . . , Qn} ∈
Symn(Kn). Similarly, DQ0 Q = DQ0 + DQ , DQ = DQ1 + · · · + DQn , Q0 ∈ Kn , and DQ (P) = 1
for P = Q and zero otherwise.

2 This normalization is less innocent than it might appear at first sight. It implies that Dµ̂(x) and Dµ̂(x0)
are the divisors of zeros and poles of ψ1( · , x, x0) on Kn \ {P∞}.
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function ψ1 is the common formal eigenfunction of the commuting pair of Lax
differential expressions L and P2n+1,

Lψ1(P) = zψ1(P), (0.33)

Pn+1ψ1(P) = iyψ1(P), P = (z, y), (0.34)

and at the same time the Baker–Akhiezer vector � satisfies the zero-curvature
equations,

�x (P) = U (z)�(P), (0.35)

iy�(P) = Vn+1(z)�(P), P = (z, y). (0.36)

Moreover, one easily verifies that away from the (finite) branch points (Em, 0),
m = 0, . . . , 2n, of the two-sheeted Riemann surface Kn , the two branches of
ψ1 constitute a fundamental system of solutions of (0.33) and similarly, the two
branches of � yield a fundamental system of solutions of (0.35). Since ψ1( · , x, x0)
vanishes at µ̂ j (x), j = 1, . . . , n and ψ2( · , x, x0) = ψ1,x ( · , x, x0) vanishes at
ν̂�(x), � = 0, . . . , n, we may call {µ̂ j (x)} j=1,...,n and {ν̂�(x)}�=0,...,n the Dirichlet
and Neumann data of L at the point x ∈ R, respectively.

Now the stationary formalism is almost complete; we only need to relate the
solution u of the nth stationary KdV equation and Kn-associated data. This can be
accomplished in several ways. We describe two of them next.

First we relate u and the zeros µ j of Fn . This is easily done by comparing the
coefficients of the power z2n in (0.24) and results in the trace formula,

u =
2n∑

m=0

Em − 2
n∑

j=1

µ j . (0.37)

Next we will indicate how to reconstruct (at least locally) u from Dirichlet data at
just one fixed point x0. Combining the definition (0.30) of µ̂ j and that of Gn−1 in
(0.10) yields, after a comparison with the x-derivative of Fn(z, x) = ∏n

k=1(z −
µk(x)),

y(µ̂ j (x)) = iGn−1(µ j (x), x) = −(i/2)Fn,x (µ j (x), x)

= (i/2)µ j,x (x)
n∏

k=1
k �= j

(µ j (x) − µk(x)), j = 1, . . . , n.

Hence, one arrives at the Dubrovin equations for µ̂ j , an autonomous first-order
system of differential equations on Kn ,

µ j,x = −2iy(µ̂ j )
n∏

k=1
k �= j

(
µ j − µk

)−1
, j = 1, . . . , n. (0.38)
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Augmenting (0.38) with appropriate initial data

{µ̂ j (x0)} j=1,...,n ⊂ Kn (0.39)

for some x0 ∈ R, with µ j (x0), j = 1, . . . , n assumed to be distinct, one can solve
the Dubrovin system (0.38) at least locally1 in a neighborhood of the point x0

and then reconstruct u in that neighborhood using the trace formula (0.37). In
other words, the Dirichlet data {µ̂ j (x0)} j=1,...,n in (0.39) at the point x0 can be
used to reconstruct u in a neighborhood of x0. Since u can be shown to be mero-
morphic, this uniquely determines u (even though it is not necessarily clear from
our discussion thus far how to reconstruct u globally). Furthermore, u satisfies
s-KdVn(u) = 0.

An alternative reconstruction of u, nicely complementing the one just discussed,
can be given with the help of the Riemann theta function2 associated with Kn and
an appropriate homology basis of cycles on it. The known zeros and poles of φ

(cf. (0.32)), and similarly, the set of zeros {µ̂ j (x)} j=1,...,n and poles {µ̂ j (x0)} j=1,...,n

of the Baker–Akhiezer function ψ1( · , x, x0) together with the characteristic essen-
tial singularity of ψ1 at P∞, then permit one to find theta function representations
for φ and ψ1 by alluding to Riemann’s vanishing theorem and the Riemann–
Roch theorem.3 The corresponding theta function representation of the algebro-
geometric solution u of the nth stationary KdV equation then can be obtained from
that of ψ1 by an asymptotic expansion with respect to the spectral parameter near
the point P∞. Alternatively, one can use the trace formula (0.37) and apply the
known theta function representations for symmetric functions of the projections
µ j (x) of the zeros µ̂ j (x) of ψ1 to the special case

∑n
j=1 µ j (x) at hand. Either way,

the resulting final expression for u, called the Its–Matveev formula, is of the type

u(x) = 
0 − 2∂2
x ln(θ (A + Bx)). (0.40)

Here the constants 
0 ∈ C and B ∈ C
n are uniquely determined by Kn (and its

homology basis), and the constant A ∈ C
n (related to the Abel map of the di-

visor Dµ̂(x0)) is in one-to-one correspondence with the Dirichlet data µ̂(x0) =
(µ̂1(x0), . . . , µ̂n(x0)) ∈ Symn(Kn) at the point x0 as long as the divisor Dµ̂(x0) is
assumed to be nonspecial.4 Moreover, the theta function representation (0.40)
remains valid as long as the divisor Dµ̂(x) stays nonspecial. We emphasize the re-
markable fact that the argument of the theta function in (0.40) is linear with respect
to x .

1 In some situations, such as the case of periodic u, it is possible to elevate this procedure to a global
reconstruction of u even in the presence of collisions of µ̂ j on Kn . But this requires an extensive
analysis we mention in the notes to Appendix F.

2 For details on the n-dimensional theta function θ (z), z ∈ Cn , we refer to Appendices A and B.
3 We defer the analogous discussion of ψ2 to Chapter 1 for simplicity.
4 IfD = n1DQ1 + · · · + nkDQk ∈ Symn(Kn) for some n� ∈ N, � = 1, . . . , k, with n1 + · · · + nk = n,

thenD is called nonspecial if there is no nonconstant meromorphic function onKn that is holomorphic
on Kn \ {Q1, . . . , Qk} with poles at most of order n� at Q�, � = 1, . . . , k.
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The current discussion assumed that one started with a solution u of the nth
stationary KdV equation and then either reconstructed it from the trace formula
(0.37), or represented the given u in terms of the theta function associated with
Kn , as in (0.40). In addition to this procedure we also solve the following inverse
problem: Given appropriate initial data (0.39) and solutions µ̂1(x), . . . , µ̂n(x) of
the first-order Dubrovin system (0.38) on an open interval � ⊆ R containing the
point x0, we will define u on � in terms of the trace formula (0.37) and then prove
that u so defined satisfies the nth stationary KdV equation on �.

This completes our somewhat lengthy excursion into the stationary KdV hierar-
chy. In the following we return to the time-dependent KdV hierarchy and describe
the analogous steps involved to construct solutions u = u(x, tr ) of the r th KdV
equation with initial values being algebro-geometric solutions of the nth station-
ary KdV equation. More precisely, we are seeking a solution u of the following
algebro-geometric initial value problem

K̃dVr (u) = utr − 2 f̃ r+1,x (u) = 0, u|tr =t0,r = u(0), (0.41)

s-KdVn
(
u(0)

) = −2 fn+1,x
(
u(0)

) = 0 (0.42)

for some t0,r ∈ R, n, r ∈ N0 and a fixed curve Kn associated with the stationary
solution u(0) in (0.42).

We pause for a moment to reflect on the pair of equations (0.41), (0.42): As
it turns out, they represent a dynamical system on the set of algebro-geometric
solutions isospectral to the initial value u(0). The term isospectral here alludes to
the fact that for any fixed tr , the solution u( · , tr ) of (0.41), (0.42) is a stationary
solution of (0.42),

s-KdVn(u( · , tr )) = −2 fn+1,x (u( · , tr )) = 0

associated with the fixed underlying algebraic curve Kn . Put differently, u( · , tr ) is
an isospectral deformation of u(0) with tr the corresponding deformation parameter.
In particular, u( · , tr ) traces out a curve in the set of algebro-geometric solutions
isospectral to u(0).

Since the integration constants in the functionals f� of u in the stationary and
time-dependent contexts are independent of each other, we indicate this by placing
a tilde over all the time-dependent quantities. Hence, we will employ the notation
P̃2r+1, Ṽr+1, F̃r , etc., to distinguish them from P2n+1, Vn+1, Fn , etc. Thus, P̃2r+1,
Ṽr+1, F̃r , H̃r+1, f̃s are constructed in the same way as P2n+1, Vn+1, Fn , Hn , f�
using the recursion (0.3) with the only difference being that the set of integration
constants c̃r in f̃s is independent of the set ck used in computing f�.

Our strategy will be the same as in the stationary case: Assuming existence of a
solution u, we will deduce many of its properties, which, in the end, will yield an
explicit expression for the solution. In fact, we will go a step further, postulating
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the equations

utr = −(1/2)F̃r,xxx + 2(u − z)F̃r,x + ux F̃r , (0.43)

(1/2)Fn,xx Fn − (1/4)F2
n,x − (u − z)F2

n = R2n+1, (0.44)

where u(0) = u(0)(x) in (0.42) has been replaced by u = u(x, tr ) in (0.44). Here,

Fn(z) =
n∑

�=0

fn−�z� =
n∏

j=1

(z − µ j ), F̃r (z) =
r∑

s=0

f̃ r−s zs

for fixed n, r ∈ N0. Introducing Gn−1, Hn+1, U , Vn+1 and G̃r−1, H̃r+1, Ṽr+1 (re-
placing Fn by F̃r ) as in (0.10)–(0.13), we observe that the basic equations (0.43),
(0.44) are equivalent to the Lax equations

d

dtr
L − [P̃2r+1, L] = 0,

[P2n+1, L] = 0,

and to the zero-curvature equations

Utr − Ṽr+1,x + [U, Ṽr+1] = 0, (0.45)

−Vn+1,x + [U, Vn+1] = 0. (0.46)

Moreover, one computes in analogy to (0.21) and (0.22) that

∂x det(y I2 − iVn+1(z, x, tr )) = 0,

∂tr det(y I2 − iVn+1(z, x, tr )) = 0,

and hence

det(y I2 − iVn+1(z, x, tr )) = y2 − det(Vn+1(z, x, tr ))

= y2 + Gn−1(z, x, tr )2 − Fn(z, x, tr )Hn+1(z, x, tr ) = y2 − R2n+1(z) (0.47)

is independent of (x, tr ). Thus,

Fn Hn+1 − G2
n−1 = R2n+1, (0.48)

(1/2)Fn,xx Fn − (1/4)F2
n,x − (u − z)F2

n = R2n+1 (0.49)

hold as in the stationary context. The independence of (0.47) of tr can be interpreted
as follows: The r th KdV flow represents an isospectral deformation of the curve
Kn defined in (0.26); in particular,1 the branch points of Kn remain invariant under

1 Property (0.50) is weaker than the usually stated isospectral deformation of the Lax operator L(tr ).
However, the latter is a more delicate functional analytic problem marred by possible singularities
of u and possible non-self-adjointness of L(tr ).
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these flows,

∂tr Em = 0, m = 0, . . . , 2n. (0.50)

As in the stationary case, one can now introduce the basic meromorphic function
φ on Kn by

φ(P, x, tr ) = iy − Gn−1(z, x, tr )

Fn(z, x, tr )

= −Hn+1(z, x, tr )

iy + Gn−1,x (z, x, tr )
, P = (z, y) ∈ Kn,

and a comparison with (0.45) and (0.46) then shows that φ satisfies the Riccati-type
equations

φx + φ2 = u − z, (0.51)

φtr = ∂x
(
F̃rφ + G̃r−1

) = −F̃rφ
2 − 2G̃r−1φ − H̃r . (0.52)

Next, factorizing Fn and Hn+1 as before,

Fn(z, x, tr ) =
n∏

j=1

(z − µ j (x, tr )), Hn+1(z, x, tr ) =
n∏

�=0

(z − ν�(x, tr )),

one introduces points µ̂ j (x, tr ), ν̂�(x, tr ) on Kn by

µ̂ j = (µ j , iGn−1,x (µ j )), j = 1, . . . , n,

ν̂� = (ν�, −iGn−1,x (ν�)), � = 0, . . . , n

and obtains for the divisor (φ( · , x, tr )) of the meromorphic function φ

(φ( · , x, tr )) = Dν̂0(x,tr )ν̂(x,tr ) − DP∞µ̂(x,tr ),

as in the stationary context. Given φ( · , x, tr ), one then defines the time-dependent
Baker–Akhiezer vector �( · , x, x0, tr , t0,r ) on Kn \ {P∞} by

� =
(

ψ1

ψ2

)
,

ψ1(P, x, x0, tr , t0,r ) = exp

( ∫ tr

t0,r

ds (F̃r (z, x0, s)φ(P, x0, s) + G̃r−1(z, x0, s))

+
∫ x

x0

dx ′ φ(P, x ′, tr )

)
,

ψ2 = ψ1,x .

The Riccati-type equations (0.51), (0.52) satisfied by φ then show that

−Vn+1,tr + [Ṽr+1, Vn+1] = 0 (0.53)

in addition to (0.45), (0.46). Moreover, they yield again that the Baker–Akhiezer
function ψ1 is the common formal eigenfunction of the commuting pair of Lax
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differential expressions L(tr ) and P2n+1(tr ),

Lψ1(P) = zψ1(P),

Pn+1ψ1(P) = iyψ1(P),

ψtr (P) = P̃2r+1ψ(P)

= F̃r (z)ψx (P) + G̃r−1(z)ψ(P), P = (z, y),

and at the same time the Baker–Akhiezer vector � satisfies the zero-curvature
equations

�x (P) = U (z)�(P),

iy�(P) = Vn+1(z)�(P),

�tr (P) = Ṽr+1(z)�(P), P = (z, y).

The remaining time-dependent constructions closely follow our stationary outline.
First one notes again the trace formula

u(x, tr ) =
2n∑

m=0

Em − 2
n∑

j=1

µ j (x, tr ) (0.54)

as a consequence of (0.49). Next, to reconstruct u (locally) from Dirichlet data at
just one fixed point (x0, t0,r ), one derives the Dubrovin equations1

µ j,x = −2iy(µ̂ j )
n∏

k=1
k �= j

(µ j − µk)−1,

µ j,tr = −2i F̃r (µ j )y(µ̂ j )
n∏

k=1
k �= j

(µ j − µk)−1,

(0.55)

using (0.44), and (0.53) for Fn,tr , as in the stationary case. Augmenting (0.55) with
appropriate initial data

{µ̂ j (x0, t0,r )} j=1,...,n ⊂ Kn (0.56)

for some (x0, t0,r ) ∈ R
2, with µ j (x0, t0,r ), j = 1, . . . , n assumed to be distinct,

one can again solve the Dubrovin system (0.55), at least locally in a neighborhood
of the point (x0, t0,r ), and then reconstruct u in that neighborhood using the trace
formula (0.54). In other words, the Dirichlet data {µ̂ j (x0, t0,r )} j=1,...,n in (0.56) at
the point (x0, t0,r ) reconstruct u in a neighborhood of (x0, t0,r ).

The corresponding representations of u, φ, and � in terms of the Riemann theta
function associated with Kn is then obtained in close analogy to the stationary
case. Particularly, in the case of u, one obtains the Its–Matveev formula

u(x, tr ) = 
0 − 2∂2
x ln(θ (A + Bx + C r tr )), (0.57)

1 To obtain a closed system of differential equations, one has to express F̃r (µ j ) solely in terms of
µ1, . . . , µn and E0, . . . , E2n+1; see (1.222) and (1.223).
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where the constants 
0 ∈ C and B, C r ∈ C
n are uniquely determined by Kn and

r , and the constant A ∈ C
n is in one-to-one correspondence with the Dirichlet

data µ̂(x0, t0,r ) = (µ̂1(x0, t0,r ), . . . , µ̂n(x0, t0,r )) ∈ Symn(Kn) at the point (x0, t0,r )
as long as the divisor Dµ̂(x0,t0,r ) is assumed to be nonspecial. Moreover, the theta
function representation (0.57) remains valid as long as the divisor Dµ̂(x,tr ) stays
nonspecial. Again one notes the remarkable fact that the argument of the theta
function in (0.57) is linear with respect to both x and tr .

Again, the current discussion assumed one started with a solution u of the
KdV initial value problem (0.41), (0.42) and then either reconstructed it from
the trace formula (0.54) or represented the given u in terms of the theta function
associated with Kn , as in (0.57). In addition to this procedure we also solve the
following inverse problem: Given appropriate initial data (0.56) and solutions
µ̂1(x, tr ), . . . , µ̂n(x, tr ) of the first-order Dubrovin system (0.55) on a connected
open set � ⊆ R

2 containing the point (x0, t0,r ), we will define u on � in terms of
the trace formula (0.54) and then prove that u so defined satisfies the KdV initial
value problem (0.41), (0.42) on �.

The reader will have noticed that we used terms such as integrability, soli-
ton equations, isospectral deformations, etc., without offering a precise definition
for them. Arguably, an integrable system in connection with nonlinear evolution
equations should possess several properties, including, for instance,

� infinitely many conservation laws
� isospectral deformations of a Lax operator
� action-angle variables, Hamiltonian formalism
� algebraic (spectral) curves
� infinitely many symmetries and transformation groups
� “explicit” solutions.

Although many of these properties apply to particular systems of interest, there
is simply no generally accepted definition to date of what constitutes an inte-
grable system.1 That explicit but meromorphic (i.e., singular) solutions of systems
such as the KdV hierarchy abound and local integrability of conserved densities
as well as the functional analytic meaning of the Lax operator and its isospec-
tral deformations in appropriate spaces are not obvious makes it plausible that
no universally accepted notion of integrability can be achieved. Thus, different
schools have necessarily introduced different shades of integrability (Liouville in-
tegrability, analytic integrability, algebraically complete integrability, etc.); in this
monograph we found it useful to focus on the existence of underlying algebraic
curves and explicit representations of solutions in terms of corresponding Riemann
theta functions and limiting situations thereof.

1 This has been eloquently discussed in Hitchin et al. (1999, p. 1ff). Most appropriate in this context
seems Cherednik’s statement, “All non-integrable equations are non-integrable the same way, all
integrable ones are integrable in their own way,” in the preface to Cherednik (1996).


