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Chapter 1

Graph Theory

1.1. The Adjacency Matrix and Its Spectrum

We shall be concerned with graphs X = (V, E), where V is the set of vertices
and E is the set of edges. As stated in the Overview, we always assume our
graphs to be undirected, and most often we will deal with finite graphs.

We let V = {v1, v2, . . .} be the set of vertices of X. Then the adjacency
matrixof the graph X is the matrix A indexed by pairs of vertices vi , v j ∈ V .
That is, A = (Ai j ), where

Ai j = number of edges joining vi to v j .

We say that X is simpleif there is at most one edge joining adjacent vertices;
hence, X is simple if and only if Ai j ∈ {0, 1} for every vi , v j ∈ V .

Note that A completely determines X and that A is symmetric because X
is undirected. Furthermore, X has no loops if and only if Aii = 0 for every
vi ∈ V .

1.1.1. Definition. Let k ≥ 2 be an integer. We say that the graph X is k-regular

if for every vi ∈ V :
∑

v j ∈V
Ai j = k.

If X has no loop, this amounts to saying that each vertex has exactly k
neighbors.

Assume that X is a finite graph on n vertices. Then A is an n-by-n sym-
metric matrix; hence, it has n real eigenvalues, counting multiplicities, that
we may list in decreasing order:

µ0 ≥ µ1 ≥ · · · ≥ µn−1.

The spectrumof X is the set of eigenvalues of A. Note that µ0 is a simple
eigenvalue, or has multiplicity 1, if and only if µ0 > µ1.

8
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1.1. The Adjacency Matrix and Its Spectrum 9

For an arbitrary graphX = (V, E), consider functionsf : V → C from
the set of vertices ofX to the complex numbers, and define

�2(V) = { f : V → C :
∑
v∈V

| f (v)|2 < +∞}.

The space�2(E) is defined analogously.
Clearly, if V is finite, say|V | = n, then every functionf : V → C is in

�2(V). We can think of each such function as a vector inC
n on which the

adjacency matrix acts in the usual way:

A f =


A11 A12 . . . A1n
...

...
...

Ai 1 Ai 2 . . . Ain
...

...
...

An1 An2 . . . Ann




f (v1)
f (v2)

...
f (vn)



=


A11 f (v1) + A12 f (v2) + · · · + A1n f (vn)

...
Ai 1 f (v1) + Ai 2 f (v2) + · · · + Ain f (vn)

...
An1 f (v1) + An2 f (v2) + · · · + Ann f (vn)

.

Hence, (A f )(vi ) =
n∑

j =1
Ai j f (v j ). It is very convenient, both notationally and

conceptually, to forget about the numbering of vertices and to index matrix
entries ofA directly by pairs of vertices. So we shall representA by a matrix
(Axy)x,y∈V , and the previous formula becomes (A f )(x) =∑

y∈V
Axy f (y), for

everyx ∈ V .

1.1.2. Proposition.Let X be afinitek-regular graph withn vertices. Then

(a) µ0 = k;
(b) |µi | ≤ k for 1 ≤ i ≤ n − 1;
(c) µ0 has multiplicity 1, if and only ifX is connected.

Proof. We prove (a) and (b) simultaneously by noticingfirst that the constant
function f ≡ 1 onV is an eigenfunction ofA associated with the eigenvalue
k. Next, we prove that, ifµ is any eigenvalue, then|µ| ≤ k. Indeed, letf be
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10 Graph Theory

a real-valued eigenfunction associated withµ. Let x ∈ V be such that

| f (x)| = max
y∈V

| f (y)|.

Replacingf by − f if necessary, we may assumef (x) > 0. Then

f (x) |µ| = | f (x) µ| =
∣∣∣∣∣∑
y∈V

Axy f (y)

∣∣∣∣∣ ≤
∑
y∈V

Axy | f (y)|

≤ f (x)
∑
y∈V

Axy = f (x) k.

Cancelling outf (x) gives the result.
To prove (c), assumefirst that X is connected. Letf be a real-valued

eigenfunction associated with the eigenvaluek. We have to prove thatf is
constant. As before, letx ∈ V be a vertex such that| f (x)| = max

y∈V
| f (y)|.

As f (x) = (A f )(x)
k = ∑

y∈V

Axy

k f (y), we see thatf (x) is a convex combination

of real numbers which are, in modulus, less than| f (x)|. This implies that
f (y) = f (x) for everyy ∈ V , such thatAxy �= 0, that is, for everyy adjacent
to x. Then, by a similar argument,f has the same valuef (x) on every vertex
adjacent to such ay, and so on. SinceX is connected,f must be constant.

We leave the proof of the converse as an exercise.�

Proposition 1.1.2(c) shows afirst connection between spectral properties
of the adjacency matrix and combinatorial properties of the graph. This is one
of the themes of this chapter.

1.1.3. Definition. A graph X = (V, E) is bipartite, or bicolorable, if there
exists a partition of the verticesV = V+ ∪ V−, such that, for any two vertices
x, y with Axy �= 0, if x ∈ V+ (resp.V−), theny ∈ V− (resp.V+).

In other words, it is possible to paint the vertices with two colors in such a
way that no two adjacent vertices have the same color. Bipartite graphs have
very nice spectral properties characterized by the following:

1.1.4. Proposition.Let X be a connected,k-regular graph onn vertices. The
following are equivalent:

(i) X is bipartite;
(ii) the spectrum ofX is symmetric about 0;

(iii) µn−1 = −k.
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1.1. The Adjacency Matrix and Its Spectrum 11

Proof.

(i) ⇒ (ii) Assume thatV = V+ ∪ V− is a bipartition of X. To show
symmetry of the spectrum, we assume thatf is an eigenfunction of
A with associated eigenvalueµ. Define

g(x) =
{

f (x) if x ∈ V+
− f (x) if x ∈ V−

.

It is then straightforward to show that (Ag)(x) = −µ g(x) for every
x ∈ V .

(ii) ⇒ (iii) This is clear from Proposition 1.1.2.
(iii) ⇒ (i) Let f be a real-valued eigenfunction ofA with eigenvalue−k.

Let x ∈ V be such that| f (x)| = max
y∈V

| f (y)|. Replacingf by− f if necessary,

we may assumef (x) > 0. Now

f (x) = − (A f )(x)

k
= −

∑
y∈V

Axy

k
f (y) =

∑
y∈V

Axy

k
(− f (y)).

So f (x) is a convex combination of the− f (y)’s which are, in modulus, less
than| f (x)|. Therefore,− f (y) = f (x) for everyy ∈ V , such thatAxy �= 0,
that is, for everyy adjacent tox. Similarly, if z is a vertex adjacent to
any suchy, then f (z) = − f (y) = f (x). Define V+ = {y ∈ V : f (y) > 0},
V− = {y ∈ V : f (y) < 0}; becauseX is connected, this defines a bipartition
of X. �

Thus, everyfinite, connected,k-regular graphX has largest positive eigen-
valueµ0 = k; if, in addition, X is bipartite, then the eigenvalueµn−1 = −k
also occurs (and only in this case). These eigenvaluesk and−k, if the sec-
ond occurs, are called thetrivial eigenvalues ofX. The differencek − µ1 =
µ0 − µ1 is thespectral gapof X.

Exercises on Section 1.1

1. For the complete graphKn and the cycleCn, write down the adjacency
matrix and compute the spectrum of the graph (with multiplicities). When
are these graphs bipartite?

2. Let Dn be the following graph on 2n vertices:V = Z/nZ × {0, 1}; E =
{{(i, j ), (i + 1, j ) : i ∈ Z/nZ, j ∈ {0, 1}} ∪ {{(i, 0), (i, 1)} : i ∈ Z/nZ}.
Make a drawing and repeat exercise 1 forDn.
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3. Show that a graph is bipartite if and only if it has no circuit with odd
length.

4. LetX be afinite,k-regular graph. Complete the proof of Proposition 1.1.2
by showing that the multiplicity of the eigenvaluek is equal to the number
of connected components ofX (Hint: look at the space of locally constant
functions onX.)

5. LetX be afinite, simple graph without loop. Assume that, for somer ≥ 2,
it is possible tofind a set ofr vertices all having the same neighbors. Show
that 0 is an eigenvalue ofA, with multiplicity at leastr − 1.

6. LetX be afinite, simple graph without loop, onn vertices, with eigenval-

uesµ0 ≥ µ1 ≥ · · · ≥ µn−1. Show that
n−1∑
i =0

µi = 0, that
n−1∑
i =0

µ2
i is twice

the number of edges inX, and that
n−1∑
i =0

µ3
i is six times the number of

triangles inX.

7. Let X = (V, E) be a graph, not necessarilyfinite. We say thatX has
bounded degree if there existsN ∈ N, such that, for everyx ∈ V , one
has

∑
y∈V

Axy ≤ N. Show that in this case, for anyf ∈ �2(V), one has

‖A f ‖2 =
(∑

x∈V

|(A f )(x)|2
)1/2

≤ N · ‖ f ‖2 = N ·
(∑

x∈V

| f (x)|2
)1/2

;

that is,A is a bounded linear operator on the Hilbert space�2(V) (Hint:
use the Cauchy–Schwarz inequality.)

1.2. Inequalities on the Spectral Gap

Let X = (V, E) be a graph. ForF ⊆ V , we define theboundary∂F of F
to be the set of edges with one extremity inF and the other inV − F .
In other words,∂F is the set of edges connectingF to V − F . Note that
∂F = ∂(V − F).

1.2.1. Definition. The isoperimetric constant, or expanding constantof the
graphX, is

h(X) = inf

{ |∂F |
min {|F |, |V − F |} : F ⊆ V, 0 < |F | < +∞

}
.

Note that, if X is finite on n vertices, this can be rephrased ash(X) =
min

{
|∂F |
|F | : F ⊆ V, 0 < |F | ≤ n

2

}
.
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1.2. Inequalities on the Spectral Gap 13

1.2.2. Definition. Let (Xm)m≥1 be a family offinite, connected,k-regular
graphs with|Vm| → +∞ asm → +∞. We say that (Xm)m≥1 is a family of
expandersif there existsε > 0, such thath(Xm) ≥ ε for everym ≥ 1.

1.2.3. Theorem.Let X = (V, E) be afinite, connected,k-regular graph with-
out loops. Letµ1 be thefirst nontrivial eigenvalue ofX (as in section 1.1).
Then

k − µ1

2
≤ h(X) ≤

√
2k (k − µ1).

Proof. (a) We begin with thefirst inequality. We endow the setE of edges
with an arbitrarily chosen orientation, allowing one to associate, to any edge
e ∈ E, its origine− and its extremitye+. This allows us to define thesimplicial
coboundary operator d: �2(V) → �2(E), where, for f ∈ �2(V) ande ∈ E,

d f (e) = f (e+) − f (e−).

Endow�2(V) with the hermitian scalar product

〈 f | g〉 =
∑
x∈V

f (x) g(x)

and�2(E) with the analogous one. So we may define the adjoint (or conjugate-
transpose) operatord∗ : �2(E) → �2(V), characterized by〈d f | g〉 =
〈 f | d∗g〉 for every f ∈ �2(V), g ∈ �2(E). Define a function δ : V×
E → {−1, 0, 1} by

δ(x, e) =


1 if x = e+

−1 if x = e−

0 otherwise.

Then one checks easily that, fore ∈ E and f ∈ �2(V),

d f (e) =
∑
x∈V

δ(x, e) f (x) ;

while, for v ∈ V andg ∈ �2(E),

d∗g(x) =
∑
e∈E

δ(x, e) g(e).

We then define thecombinatorial Laplace operator
 = d∗d : �2(V) →
�2(V). It is easy to check that


 = k · Id − A ;
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in particular,
 does not depend on the choice of the orientation. For an
orthonormal basis of eigenfunctions ofA, the operator
 takes the form


 =


0

k − µ1 ©
...

© k − µn−1

,

the eigenvalue 0 corresponding to the constant functions onV . Therefore, if
f is a function onV with

∑
x∈V

f (x) = 0 (i.e., f is orthogonal to the constant

functions in�2(V)), we have

‖d f ‖2
2 = 〈d f | d f 〉 = 〈
 f | f 〉 ≥ (k − µ1) ‖ f ‖2

2.

We apply this to a carefully chosen functionf . Fix a subsetF of V and set

f (x) =
{ |V − F | if x ∈ F

−|F | if x ∈ V − F.

Then
∑
x∈V

f (x) = 0 and ‖ f ‖2
2 = |F | |V − F |2 + |V − F | |F |2 = |F |

|V − F | |V |. Moreover,

d f (e) =
{

0 if e connects two vertices either inF or in V − F ;
± |V | if e connects a vertex inF with a vertex inV − F .

Hence,‖d f ‖2
2 = |V |2 |∂F |. So the previous inequality gives

|V |2 |∂F | ≥ (k − µ1) |F | |V − F | |V |.
Hence,

|∂F |
|F | ≥ (k − µ1)

|V − F |
|V | .

If we assume|F | ≤ |V |
2 , we get |∂F |

|F | ≥ k−µ1

2 ; hence, by definition, h(X) ≥
k−µ1

2 .

(b) We now turn to the second inequality, which is more involved. Fix a
nonnegative functionf on V , and set

Bf =
∑
e∈E

| f (e+)2 − f (e−)2|.

Denote byβr > βr −1 > · · · > β1 > β0 the values off , and set

Li = {x ∈ V : f (x) ≥ βi } (i = 0, 1, . . . , r ).
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1.2. Inequalities on the Spectral Gap 15

Note thatL0 = V . (Hence,∂L0 = ∅.) To have a better intuition of what is
happening, consider the following example onC8, the cycle graph with eight
vertices.

v1

v2

v3 v4

v5

v6

v7v8

with f (v1) = f (v5) = 4, f (v2) = f (v6) = f (v7) = 1, f (v3) = 2, f (v4) =
f (v8) = 3, so thatβ3 = 4 > β2 = 3 > β1 = 2 > β0 = 1. Then

L0 = {v1, v2, v3, v4, v5, v6, v7, v8};
L1 = {v1, v3, v4, v5, v8};
L2 = {v1, v4, v5, v8};
L3 = {v1, v5};
∂L0 = ∅;
∂L1 = {{v1, v2}, {v2, v3}, {v5, v6}, {v7, v8}} ; |∂L1| = 4;
∂L2 = {{v1, v2}, {v3, v4}, {v5, v6}, {v7, v8}} ; |∂L2| = 4;
∂L3 = {{v1, v2}, {v4, v5}, {v5, v6}, {v8, v1}} ; |∂L3| = 4.

v1

v2

v3

v4

v5

v6

v7

v8

L0 L1 L2 L3

Geometrically, one can envision the graph broken into level curves as follows:
L0 consists of all vertices on or inside the outer-level curve corresponding to
β0 = 1; L1 consists of all vertices on or inside the level curve corresponding
to β1 = 2; and so forth. Then any∂Li consists of those edges that reach
“downward” from insideLi to a vertex with a lower value. From the diagram
we see clearly that, for example,∂L2 = {{v1, v2}, {v3, v4}, {v5, v6}, {v7, v8}}.
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Coming back to the general case, we now prove the following result about
the numberBf .

First Step. Bf =
r∑

i =1
|∂Li | (β2

i − β2
i −1).

To see this, we denote byE f the set of edgese ∈ E, such thatf (e+) �=
f (e−). ClearlyBf = ∑

e∈E f

| f (e+)2 − f (e−)2|. Now, an edgee ∈ E f connects

some vertexx with f (x) = βi (e) to some vertexy with f (y) = β j (e). We index
these two index values so thati (e) > j (e). Therefore,

Bf =
∑
e∈E f

(β2
i (e) − β2

j (e))

=
∑
e∈E f

(β2
i (e) − β2

i (e)−1 + β2
i (e)−1 − · · · − β2

j (e)+1 + β2
j (e)+1 − β2

j (e))

=
∑
e∈E f

i (e)∑
�= j (e)+1

(β2
� − β2

�−1).

Referring to the diagram of level curves, we see that as a given edgeeconnects
a vertexx, with f (x) = βi (e), to a vertexy with f (y) = β j (e), it crosses every
level curveβ� between those two. In the expression forBf , this corresponds
to expanding the termβ2

i (e) − β2
j (e) by inserting the zero difference−β2

� + β2
�

for each level curveβ� crossed by the edgee. This means that, in the previous
summation forBf , the termβ2

� − β2
�−1 appears for every edgee connecting

some vertexx with f (x) = βi andi ≥ � to some vertexy with f (y) = β j and
j < �. In other words, it appears for every edgee ∈ ∂L�, which establishes
thefirst step.

Second Step.Bf ≤ √
2k ‖d f ‖2 ‖ f ‖2.

Indeed,

Bf =
∑
e∈E

| f (e+) + f (e−)| · | f (e+) − f (e−)|

≤
[∑

e∈E

( f (e+) + f (e−))2

]1/2 [∑
e∈E

( f (e+) − f (e−))2

]1/2

≤
√

2

[∑
e∈E

( f (e+)2 + f (e−)2)

]1/2

‖d f ‖2

=
√

2k

[∑
x∈V

f (x)2

]1/2

‖d f ‖2 =
√

2k ‖ f ‖2 ‖d f ‖2
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1.2. Inequalities on the Spectral Gap 17

by the Cauchy–Schwarz inequality and the elementary fact that (a + b)2 ≤
2(a2 + b2).

Third Step. Recall that thesupportof f is suppf = {x ∈ V : f (x) �= 0}.
Assume that|supp f | ≤ |V |

2 . Then,Bf ≥ h(X) ‖ f ‖2
2.

To see this, notice thatβ0 = 0 and that|Li | ≤ |V |
2 for i = 1, . . . , r , so

that|∂Li | ≥ h(X) |Li | by definition of h(X). So it follows from thefirst step
that

Bf ≥ h(X)
r∑

i =1

|Li | (β2
i − β2

i −1)

= h(X)
[|Lr | β2

r + (|Lr −1| − |Lr |) β2
r −1 + · · · + (|L1| − |L2|) β2

1

]
= h(X)

[
|Lr | β2

r +
r −1∑
i =1

|Li − Li +1| β2
i

]
;

however, sinceLi − Li +1 is exactly the level set wheref takes the valueβi ,
the term in brackets is exactly‖ f ‖2

2.

Coda. We now apply this to a carefully chosen functionf . Let g be a real-
valued eigenfunction for
, associated with the eigenvaluek − µ1. SetV+ =
{x ∈ V : g(x) > 0} and f = max{g, 0}. By replacingg by −g if necessary,
we may assume|V+| ≤ |V |

2 . (Note thatV+ �= ∅ because
∑
x∈V

g(x) = 0 and

g �= 0.) Forx ∈ V+, we have (sinceg ≤ 0 onV − V+)

(
 f )(x) = k f (x) −
∑
y∈V

Axy f (y) = kg(x) −
∑
y∈V+

Axy g(y)

≤ kg(x) −
∑
y∈V

Axy g(y) = (
g)(x) = (k − µ1) g(x).

Using this pointwise estimate, we get

‖d f ‖2
2 = 〈
 f | f 〉 =

∑
x∈V+

(
 f )(x) g(x) ≤ (k − µ1)
∑
x∈V+

g(x)2

≤ (k − µ1) ‖ f ‖2
2.

Combining the second and third steps, we get

h(X) ‖ f ‖2
2 ≤ Bf ≤

√
2k ‖d f ‖2 ‖ f ‖2 ≤

√
2k (k − µ1) ‖ f ‖2

2 ,

and the result follows by cancelling out.�
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From Definition 1.2.2 and Theorem 1.2.3, we immediately deduce the
following:

1.2.4. Corollary. Let (Xm)m≥1 be a family offinite, connected,k-regular
graphs without loops, such that|Vm| → +∞ as m → +∞. The family
(Xm)m≥1 is a family of expanders if and only if there existsε > 0, such
thatk − µ1 (Xm) ≥ ε for everym ≥ 1.

This is the spectral characterization of families of expanders: a family of
k-regular graphs is a family of expanders if and only if the spectral gap is
bounded away from zero. Moreover, it follows from Theorem 1.2.3 that, the
bigger the spectral gap, the better“the quality” of the expander.

Exercises on Section 1.2

1. How was the assumption“X has no loop” used in the proof of
Theorem 1.2.3?

2. Let X be afinite graph without loop. Choose an orientation on the edges;
let d, d∗ and
 = d∗d be the operators defined in this section. Check
that, for f ∈ �2(V), x ∈ V ,


 f (x) = deg(x) f (x) − (A f )(x),

where deg(x) is thedegreeof x, i.e., the number of neighboring vertices
of x.

3. Using the example given for a functionf on the cycle graphC8, verify
that Bf satisfies thefirst two steps in the proof of the second inequality
of Theorem 1.2.3.

4. Show that the multiplicity of the eigenvalueµ0 = K is the number of
connected components ofX.

1.3. Asymptotic Behavior of Eigenvalues in Families of Expanders

We have seen in Corollary 1.2.4 that the quality of a family of expanders can
be measured by a lower bound on the spectral gap. However, it turns out that,
asymptotically, the spectral gap cannot be too large. All the graphs in this
section are supposed to be without loops.

1.3.1. Theorem.Let (Xm)m≥1 be a family of connected,k-regular,finite
graphs, with|Vm| → +∞ asm → +∞. Then,

lim inf
m→+∞ µ1(Xm) ≥ 2

√
k − 1.
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A stronger result will actually be proved in section 1.4. There is an asymp-
totic threshold, analogous to Theorem 1.3.1, concerning the bottom of the
spectrum. Before stating it, we need an important definition.

1.3.2. Definition. Thegirth of a connected graphX, denoted byg(X), is the
length of the shortest circuit inX. We will say thatg(X) = +∞ if X has no
circuit, that is, ifX is a tree.

For afinite, connected,k-regular graph, letµ(X) be the smallest nontrivial
eigenvalue ofX.

1.3.3. Theorem.Let (Xm)m≥1 be a family of connected,k-regular,finite
graphs, withg(Xm) → +∞ asm → +∞. Then

lim sup
m→+∞

µ(Xm) ≤ −2
√

k − 1.

Theorems 1.3.1 and 1.3.3 single out an extremal condition onfinite
k-regular graphs, leading to the main definition.

1.3.4. Definition. A finite, connected,k-regular graphX is a Ramanujan
graph if, for every nontrivial eigenvalueµ of X, one has|µ| ≤ 2

√
k − 1.

Assume that (Xm)m≥1 is a family ofk-regular Ramanujan graphs without
loop, such that|Vm| → +∞ asm → +∞. Then theXm’s achieve the biggest
possible spectral gap, providing a family of expanders which is optimal from
the spectral point of view.

All known constructions of infinite families of Ramanujan graphs in-
volve deep results from number theory and/or algebraic geometry. As ex-
plained in the Overview, our purpose in this book is to give, for every odd
prime p, a construction of a family of (p + 1)-regular Ramanujan graphs.
The original proof that these graphs satisfy the relevant spectral estimates,
due to Lubotzky-Phillips, and Sarnak [42], appealed to Ramanujan’s con-
jecture on coefficients of modular forms with weight 2: this explains the
chosen terminology. Note that Ramanujan’s conjecture was established by
Eichler [23].

Exercises on Section 1.3

1. A tree is a connected graph without loops. Show that ak-regular treeTk

must be infinite and that it exists and is unique up to graph isomorphism.
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2. Let X be afinitek-regular graph. Fix a vertexx0 and, forr <
g(X)

2 , con-
sider the ball centered atx0 and of radiusr in X. Show that it is isometric
to any ball with the same radius in thek-regular treeTk. Compute the
cardinality of such a ball.

3. Deduce that, if (Xm)m≥1 is a family of connectedk-regular graphs, such
that|Vm| → +∞ asm → +∞, then

g(Xm) ≤ (2 + o(1)) logk−1 |Vm|,
whereo(1) is a quantity tending to 0 asm → +∞.

4. Show that, ifk ≥ 5, one has actually, in exercise 3,

g(Xm) ≤ 2 + 2 logk−1 |Vm|.

1.4. Proof of the Asymptotic Behavior

In this section we prove a stronger result than that stated in Theorem 1.3.1.
The source of the inequality in Theorem 1.3.1 is the fact that the number

of paths of lengthm from a vertexv to v, in ak-regular graph, is at least the
number of such paths fromv tov in ak-regular tree. To refine this observation,
we count paths without backtracking, and to do this we introduce certain
polynomials in the adjacency operator.

Let X = (V, E) be ak-regular, simple graph, with|V | possibly infinite.
Recall that we defined a path inX in the Overview. We refine that definition
now. A path of lengthr without backtrackingin X is a sequence

e = (x0, x1, . . . , xr )

of vertices in V such thatxi is adjacent toxi +1 (i = 0, . . . , r − 1) and
xi +1 �= xi −1 (i = 1, . . . , r − 1). The origin ofe is x0, the extremity ofe is
xr . We define, forr ∈ N, matricesAr indexed byV × V , which generalize
the adjacency matrix and which are polynomials inA:

(Ar )xy = number of paths of lengthr , without backtracking,
with origin x and extremityy.

Note thatA0 = Id and thatA1 = A, the adjacency matrix. The relationship
betweenAr andA is the following:

1.4.1. Lemma.

(a) A2
1 = A2 + k · Id.

(b) Forr ≥ 2, A1Ar = Ar A1 = Ar +1 + (k − 1) Ar −1.
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Proof.
(a) Forx, y ∈ V , the entry (A2

1)xy is the number of all paths of length 2
betweenx andy. If x �= y, such paths cannot have backtracking; hence,
(A2

1)xy = (A2)xy. If x = y, we count the number of paths of length 2
from x to x, and, sinceX is simple, (A2

1)xx = k.
(b) Let us prove thatAr A1 = Ar +1 + (k − 1) Ar −1 for r ≥ 2. Forx, y ∈

V , the entry (Ar A1)xy is the number of paths (x0 = x, x1, . . . , xr ,

xr +1 = y) of lengthr + 1 betweenx andy, without backtracking ex-
cept possibly on the last step (i.e., (x0, x1, . . . , xr ) has no backtracking).
We partition the set of such paths into two classes according to the value
of xr −1:
• if xr −1 �= y, then the path (x0, . . . , xr +1) has no backtracking, and

there are (Ar +1)xy such paths;
• if xr −1 = y, then there is backtracking at the last step, and there are

(k − 1)(Ar −1)xy such paths.

We leave the proof ofA1Ar = Ar +1 + (k − 1) Ar −1 as an exercise.�

From Lemma 1.4.1, we can compute thegenerating functionof the Ar ’s,
that is, the formal power series with coefficients Ar . It turns out to have a
particularly nice expression; namely, we have the following:

1.4.2. Lemma.
∞∑

r =0

Ar tr = 1 − t2

1 − At + (k − 1) t2
.

(This must be understood as follows: in the ring End�2(V)[[ t ]] of formal
power series over End�2(V), we have( ∞∑

r =0

Ar tr

)
(Id − At + (k − 1) t2 Id) = (1 − t2) Id.)

Proof. This is an easy check using Lemma 1.4.1.�

In order to eliminate the numerator 1− t2 in the right-hand side of 1.4.2,
we introduce polynomialsTm in A given by

Tm =
∑

0≤r ≤ m
2

Am−2r (m ∈ N).

The generating function of theTm’s is readily computed.
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1.4.3. Lemma.
∞∑

m=0

Tm tm = 1

1 − At + (k − 1) t2
.

Proof.

∞∑
m=0

Tm tm =
∞∑

m=0

∑
0≤r ≤ m

2

Am−2r tm =
∞∑

r =0

∑
m≥2r

Am−2r tm

=
∞∑

r =0

t2r
∑
m≥2r

Am−2r tm−2r =
( ∞∑

r =0

t2r

)( ∞∑
�=0

A� t�

)

= 1

1 − t2
· 1 − t2

1 − At + (k − 1) t2
= 1

1 − At + (k − 1) t2

by Lemma 1.4.2. �

1.4.4. Definition. TheChebyshev polynomials of the second kindare defined
by expressingsin(m+1)θ

sinθ
as a polynomial of degreem in cosθ :

Um(cosθ ) = sin(m + 1)θ

sinθ
(m ∈ N).

For example, U0(x) = 1, U1(x) = 2x, U2(x) = 4x2 − 1, . . . . Using
trigonometric identities, we see that these polynomials satisfy the following
recurrence relation:

Um+1(x) = 2x Um(x) − Um−1(x).

As in Lemma 1.4.2, from this recurrence relation, we compute the generating
function of theUm’s; namely,

∞∑
m=0

Um(x) tm = 1

1 − 2xt + t2
.

Performing a simple change of variables, we then compute the generating

function of the related family of polynomials (k − 1)
m
2 Um

(
x

2
√

k−1

)
:

∞∑
m=0

(k − 1)
m
2 Um

(
x

2
√

k − 1

)
tm = 1

1 − xt + (k − 1) t2
.

In comparison to Lemma 1.4.3, we immediately get the following expression
for the operatorsTm as polynomials of degreem in the adjacency matrix.
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1.4.5. Proposition.For m ∈ N: Tm = (k − 1)
m
2 Um

(
A

2
√

k−1

)
. �

Assume thatX = (V, E) is a finite, k-regular graph onn vertices, with
spectrum

µ0 = k ≥ µ1 ≥ · · · ≥ µn−1.

In Proposition 1.4.5, we are going to estimate the trace ofTm in two different
ways. This will lead to the trace formula forX.

First, working from a basis of eigenfunctions ofA, we have, from Propo-
sition 1.4.5,

Tr Tm = (k − 1)
m
2

n−1∑
j =0

Um

(
µ j

2
√

k − 1

)
.

On the other hand, by definition of Tm,

Tr Tm =
∑

0≤r ≤ m
2

Tr Am−2r =
∑
x∈V

∑
0≤r ≤ m

2

(Am−2r )xx.

For x ∈ V , denote by f�,x the number of paths of length� in X, without
backtracking, with origin and extremityx; in other words, f�,x = (A�)xx.
Then we get the trace formula:

1.4.6. Theorem.∑
x∈V

∑
0≤r ≤ m

2

fm−2r,x = (k − 1)
m
2

n−1∑
j =0

Um

(
µ j

2
√

k − 1

)
,

for everym ∈ N.

We say thatX is vertex-transitiveif the group AutX of automorphisms of
X acts transitively on the vertex-setV . Specifically, this means that for every
pair of verticesx andy, there existsα ∈ Aut X, such thatα(x) = y. Under
this assumption, the numberf�,x does not depend on the vertexx, and we
denote it simply byf�.

1.4.7. Corollary. Let X be a vertex-transitive,finite, k-regular graph onn
vertices. Then, for everym ∈ N,

n ·
∑

0≤r ≤ m
2

fm−2r = (k − 1)
m
2

n−1∑
j =0

Um

(
µ j

2
√

k − 1

)
. �
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The value of the trace formula 1.4.6 is the following: only looking at the

right-hand side (called the spectral side) (k − 1)
m
2

n−1∑
j =0

Um

(
µ j

2
√

k−1

)
, it is not

obvious that it defines a nonnegative integer. As we shall now explain, the
mere positivity of the spectral side has nontrivial consequences. Wefirst need
a somewhat technical result about the Chebyshev polynomials.

1.4.8. Proposition.Let L ≥ 2 andε > 0 be real numbers. There exists a
constantC = C(ε, L) > 0 with the following property: for any probability
measureν on [−L , L], such that

∫ L
−L Um

(
x
2

)
dν(x) ≥ 0 for everym ∈ N, we

have

ν [2 − ε, L] ≥ C.

(Thus,ν gives a measure at leastC to the interval [2− ε, L].)

Proof. It is convenient to introduce the polynomialsXm(x) = Um
(

x
2

)
;

they satisfyXm(2 cosθ ) = sin(m+1)θ
sinθ

and the recursion formulaXm+1(x) =
x Xm(x) − Xm−1(x). It is clear from thefirst relation that the roots ofXm

are 2 cos� π
m+1 (� = 1, . . . , m). In particular the largest root ofXm is αm =

2 cos π
m+1. The proof is then in several steps.

First Step. For k ≤ � : Xk X� =
k∑

m=0
Xk+�−2m.

We prove this by induction overk. SinceX0(x) = 1 andX1(x) = x, the
formula is obvious fork = 0, 1. (Fork = 1, this is nothing but the recursion
formula.) Then, fork ≥ 2, we have, by induction hypothesis,

Xk X� = (x Xk−1 − Xk−2) X�

= x (Xk+�−1 + Xk+�−3 + · · · + X�−k+3 + X�−k+1)

− (Xk+�−2 + Xk+�−4 + · · · + X�−k+4 + X�−k+2)

= (Xk+� + Xk+�−2) + (Xk+�−2 + Xk+�−4)

+ · · · + (X�−k+4 + X�−k+2) + (X�−k+2 + X�−k)

− (Xk+�−2 + Xk+�−4 + · · · + X�−k+4 + X�−k+2)

= Xk+� + Xk+�−2 + · · · + X�−k+2 + X�−k.
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Second Step.

Xm(x)

x − αm
=

m−1∑
i =0

Xm−1−i (αm) · Xi (x).

Indeed,

(x − αm)

(
m−1∑
i =0

Xm−1−i (αm) Xi (x)

)

= Xm−1(αm) X1(x) +
m−1∑
i =1

Xm−1−i (αm)(Xi +1(x) + Xi −1(x))

−
m−1∑
i =0

Xm−1−i (αm) αm Xi (x)

= (Xm−2(αm) − Xm−1(αm) αm) X0(x)

+
m−2∑
i =1

(Xm−i (αm) + Xm−i −2(αm) − αm Xm−1−i (αm)) Xi (x)

+ (X1(αm) − αm X0(αm)) Xm−1(x) + X0(αm) Xm(x).

Now X0(αm) = 1 andX1(αm) − αm X0(αm) = 0; in the summation
m−2∑
i =1

all

the coefficients are 0, by the recursion formula. Finally,Xm−2(αm) −
Xm−1(αm) αm = −Xm(αm) = 0, by definition of αm.

Third Step. SetYm(x) = Xm(x)2

x−αm
; thenYm =

2m−1∑
i =0

yi Xi , with yi ≥ 0.

Indeed, by the second step we haveYm =
m−1∑
i =0

Xm−1−i (αm) Xi Xm. Now

observe that the sequenceαm = 2 cos π
m+1 increases to 2. So forj < m :

X j (αm) > 0 (sinceαm > α j andα j is the largest root ofX j ). This means
that all coefficients are positive in the previous formula forYm. By thefirst
step, eachXi Xm is a linear combination, with nonnegative coefficients, of
X0, X1, . . . , X2m−1, so the result follows.

Fourth Step. Fix ε > 0, L ≥ 2. For every probability measureν on [−L , L]
such that

∫ L
−L Xm(x) dν(x) ≥ 0 for everym ∈ N, we haveν [2 − ε, L] > 0.

Indeed, assume by contradiction thatν [2 − ε, L] = 0; i.e. the support ofν
is contained in [−L , 2 − ε]. Takem large enough to haveαm > 2 − ε. Since
Ym(x) ≤ 0 for x ≤ αm, we then have

∫ L
−L Ym(x) dν(x) ≤ 0. On the other hand,
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by the third step and the assumption onν, we clearly have
∫ L

−L Ym(x) dν(x) ≥
0. So

∫ L
−L Ym(x) dν(x) = 0, which implies thatν is supported in thefinite set

Fm of zeroes ofYm; as before we haveFm = {2 cos � π
m+1 : 1 ≤ � ≤ m}. But

this holds for everym large enough. And clearly, sincem + 1 andm + 2 are
relatively prime, we haveFm ∩ Fm+1 = ∅, so that suppν is empty. But this
is absurd.

Coda. Fix ε > 0,L ≥ 2. Let f be the continuous function on [−L , L] defined
by

f (x) =


0 if x ≤ 2 − ε

1 if x ≥ 2 − ε
2

2
ε
(x − 2 + ε) if 2 − ε ≤ x ≤ 2 − ε

2.

On
[
2 − ε, 2 − ε

2

]
, the function f linearly interpolates between 0 and 1. For

every probability measureν on [−L , L], we then have

ν [2 − ε, L] ≥
∫ L

−L
f (x) dν(x) ≥ ν

[
2 − ε

2
, L

]
.

Let ℘ be the set of probability measuresν on [−L , L], such that
∫ L

−L Xm(x)

dν(x) ≥ 0 for everym ≥ 1. Forν ∈ ℘, we have by the fourth step
∫ L

−L f (x)
dν(x) > 0. But℘ is compact in the weak topology and, sincef is continuous,
the map

℘ → R
+ : ν �→

∫ L

−L
f (x) dν(x)

is weakly continuous. By compactness there existsC(ε, L) > 0, such that∫ L
−L f (x) dν(x) ≥ C(ε, L) for everyν ∈ ℘.A fortiori ν [2 − ε, L] ≥ C(ε, L),

and the proof is complete. (Note that, in thefinal step, the need for introducing
the function f comes from the fact that the map℘ → R

+ : ν �→ ν [2 − ε, L]
is, a priori, not weakly continuous; however, it is bounded below by a
continuous function, to which the compactness argument applies.)�

Coming back to the spectra offinite connected,k-regular graphs, we now
reach the promised improvement of Theorem 1.3.1: it shows not only that the
first nontrivial eigenvalue becomes asymptotically larger than 2

√
k − 1, but

also that a positive proportion of eigenvalues lies in any interval[
(2 − ε)

√
k − 1, k

]
.

1.4.9. Theorem.For everyε > 0, there exists a constantC = C(ε, k) > 0,
such that, for every connected,finite, k-regular graphX on n vertices, the
number of eigenvalues ofX in the interval

[
(2 − ε)

√
k − 1, k

]
is at leastC · n.
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Proof. TakeL = k√
k−1

≥ 2 andν = 1
n

n−1∑
j =0

δ µ j√
k−1

(whereδa is the Dirac mea-

sure ata ∈ [−L , L], that is, the probability measure on [−L , L] such that∫ L
−L f (x) d δa(x) = f (a), for every continuous functionf on [−L , L]). Then

ν is a probability measure on [−L , L], and
∫ L

−L Um
(

x
2

)
dν(x) =

1
n

n−1∑
j =0

Um
( µ j

2
√

k−1

)
is nonnegative, by the trace formula 1.4.6. So the assump-

tions of Proposition 1.4.8 are satisfied, and therefore there exists
C = C(ε, k) > 0 such thatν [2 − ε, L] ≥ C. But

ν [2 − ε, L] = 1

n
× (number of j ’s with 2− ε ≤ µ j√

k − 1
≤ L)

= 1

n
× (number of eigenvalues ofX in [(2 − ε)

√
k − 1 , k]).

�

Continuing this analysis we prove the following:

1.4.10. Theorem.Let (Xm)m≥1 be a sequence of connected,k-regular,finite
graphs for whichg(Xm) → ∞ asm → ∞. If νm = ν(Xm) is the measure on[
− k√

k−1
, k√

k−1

]
defined by

νm = 1

|Xm|
|Xm|−1∑

j =0

δµ j (Xm)√
k − 1

,

then, for every continuous functionf on
[
− k√

k−1
, k√

k−1

]
,

lim
m→∞

∫ k√
k−1

−k√
k−1

f (x) dνm(x) =
∫ 2

−2
f (x)

√
4 − x2

dx

2π
.

In other words, the sequence of measures (νm)m≥1 on
[
− k√

k−1
, k√

k−1

]
weakly

converges to the measureν supported on [−2, 2], given bydν(x) =
√

4−x2

2π
dx.

Proof. SetL = k√
k−1

. Recall thatf�,x denotes the number of paths of length
�, without backtracking, fromx to x in Xm. We have that forn ≥ 1,fixed and
m large enough (preciselyg(Xm) > n):

fn−2r,x = 0

for anyx ∈ Xm and 0≤ r ≤ n
2. Hence, form large enough the left-hand side

of the equation in Theorem 1.4.6 is zero. Thus, so is the right-hand side, and




