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Chapter 1
Graph Theory

1.1. The Adjacency Matrix and Its Spectrum

We shall be concerned with graphs X = (V, E), whereV isthe set of vertices
and E isthe set of edges. As stated in the Overview, we aways assume our
graphsto be undirected, and most often we will deal with finite graphs.

We let V = {vq, vo, ...} be the set of vertices of X. Then the adjacency
matrix of the graph X isthe matrix A indexed by pairs of verticesv;, v; € V.
That is, A = (Aij), where

Ajj = number of edgesjoining v; to v;.

We say that X issimpleif there is at most one edge joining adjacent vertices;
hence, X issimpleif and only if Ajj € {0, 1} for every vi, v; € V.

Note that A completely determines X and that A is symmetric because X
is undirected. Furthermore, X has no loops if and only if A;j = O for every
vV € V.

1.1.1. Definition. Letk > 2beaninteger. Wesay that thegraph X isk-regular
if foreveryvi e V:) Aj =k

vjeV

If X has no loop, this amounts to saying that each vertex has exactly k
neighbors.

Assume that X is afinite graph on n vertices. Then A is an n-by-n sym-
metric matrix; hence, it has n real eigenvalues, counting multiplicities, that
we may list in decreasing order:

Mo = M1 = -+ = MUnp-1.

The spectrumof X is the set of eigenvalues of A. Note that 1o isasmple
eigenvalue, or has multiplicity 1, if and only if o > 1.
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For an arbitrary grapX = (V, E), consider functiond : V — C from
the set of vertices oK to the complex numbers, andfade

CV)={f:V—>C:) [fv)P < +oo}.
veV

The space?(E) is ddined analogously.

Clearly, if V is finite, say|V| = n, then every functionf : V — Cis in
£2(V). We can think of each such function as a vectoffhon which the
adjacency matrix acts in the usual way:

A A ... A

:11 :12 :ln f(U]_)

N [ fe
Af=| A1 Az ... Aj :

P 5 (o)

A Az ... Am "

Ag1 f(v1) + Az F(v2) + -+ - + Arn T (vn)

| AT ) + A F(0)+ -+ A F(un)

Ang f(v1) + Anz F(v2) + - + Ann f(vn)

n
Hence, Af)(vi) =>_ Ajj f(vj). Itis very convenient, both notationally and
j=1
conceptually, to forget about the numbering of vertices and to index matrix
entries ofA directly by pairs of vertices. So we shall represArty a matrix

(Axy)x,yev, and the previous formula become&f((x) =) Ayy f(y), for
yeVv

everyx € V.

1.1.2. Proposition. Let X be afinite k-regular graph withm vertices. Then

(@) uo =k;
(b) il <kforl<i<n-—1;
(¢) o has multiplicity 1, if and only ifX is connected.

Proof. We prove (a) and (b) simultaneously by noticiingt that the constant
function f = 1 onV is an eigenfunction oA associated with the eigenvalue
k. Next, we prove that, if. is any eigenvalue, theiu| < k. Indeed, letf be
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a real-valued eigenfunction associated with_et x € V be such that

1601 = max | f ()l

Replacingf by — f if necessary, we may assunfi€x) > 0. Then

FO) [l = 1F ) ul =Y Ay T =D Ayl T )l
yeV yeV
< ()Y Ay =k

yeV

Cancelling outf (x) gives the result.

To prove (c), assumérst that X is connected. Letf be a real-valued
eigenfunction associated with the eigenvaku&Ve have to prove that is
constant. As before, let € V be a vertex such thatf (x)| = max| f(y)l.
As f(x) = (Af)(x) =Y A*y f(y), we see thaf (x) is a convex comblnatlon

yeV
of real numbers which are, in modulus, less th&(x)|. This implies that

f(y) = f(x)foreveryy e V, suchthatd, # 0, that is, for every adjacent

to x. Then, by a similar argument, has the same valuk(x) on every vertex

adjacent to such g, and so on. Sinc&X is connectedf must be constant.
We leave the proof of the converse as an exercige.

Proposition 1.1.2(c) showsfast connection between spectral properties
of the adjacency matrix and combinatorial properties of the graph. Thisis one
of the themes of this chapter.

1.1.3. Ddinition. A graph X = (V, E) is bipartite, or bicolorablg if there
exists a partition of the verticas = V, U V_, such that, for any two vertices
X,y with Ay # 0, if X € V, (resp.V_), theny e V_ (resp.V,).

In other words, it is possible to paint the vertices with two colors in such a
way that no two adjacent vertices have the same color. Bipartite graphs have
very nice spectral properties characterized by the following:

1.1.4. Proposition. Let X be a connected:regular graph on vertices. The
following are equivalent:

(i) X is bipartite;
(ii) the spectrum oX is symmetric about O;
(iii) pn-1=—k.
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Proof.

(i) = (ii) Assume thatV =V, U V_ is a bipartition of X. To show
symmetry of the spectrum, we assume thas an eigenfunction of
A with associated eigenvalye Define

f(x) if xeV
g(x):{—f(x) ifx e V.

It is then straightforward to show tha#@)(x) = —u g(x) for every
xeV.

(ii) = (iii) This is clear from Proposition 1.1.2.

(iii) = (i) Let f be areal-valued eigenfunction &fwith eigenvalue-k.

Letx € V be such thaitf (x)| = m%x| f(y)|. Replacingf by — f if necessary,
ye
we may assumé (x) > 0. Now

f X X
)=~ B 5 Aoy 5 By,

k yeV yeV

So f(x) is a convex combination of the f (y)’'s which are, in modulus, less
than| f (x)|. Therefore— f(y) = f(x) for everyy € V, such thatA,y # O,
that is, for everyy adjacent tox. Similarly, if z is a vertex adjacent to
any suchy, then f(z2) = — f(y) = f(x). DefineV, ={y e V : f(y) > 0},

={y e V: f(y) < 0}; becauseX is connected, this dimes a bipartition
of X. O

Thus, everyinite, connected-regular graptX has largest positive eigen-
value g = k; if, in addition, X is bipartite, then the eigenvalyg,_; = —k
also occurs (and only in this case). These eigenvadussd —Kk, if the sec-
ond occurs, are called thivial eigenvalues oK. The differenc&k — g =
o — M1 is thespectral gapof X.

Exercises on Section 1.1

1. For the complete grapk, and the cycleC,, write down the adjacency
matrix and compute the spectrum of the graph (with multiplicities). When
are these graphs bipartite?

2. LetD, be the following graph onrRverticesV = Z/nZ x {0, 1}; E =
{a,1),(+1,)):iez/nZ,je{0,1}}U{{@,0),(i,1)}:i € Z/nZ}.
Make a drawing and repeat exercise 1 Ey.
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3. Show that a graph is bipartite if and only if it has no circuit with odd
length.

4. LetX be dfinite,k-regular graph. Complete the proof of Proposition 1.1.2
by showing that the multiplicity of the eigenvalliés equal to the number
of connected components ¥f(Hint: look at the space of locally constant
functions onX.)

5. LetX be dfinite, simple graph without loop. Assume that, for same 2,
itis possible tdind a set of vertices all having the same neighbors. Show
that 0 is an eigenvalue &, with multiplicity at leastr — 1.

6. LetX be dfinite, simple graph without loop, anvertices, with eigenval-

n—1 n—1
Uesio > (1 > --- > pn_1. Show that}" u;i =0, that}_ n? is twice
i—0 i—o

n—1
the number of edges iX, and that)}" u? is six times the number of
i=0
triangles inX.
7. Let X =(V, E) be a graph, not necessariiyite. We say thaX has
bounded degree if there exidts € N, such that, for everx € V, one

has)" Axy, < N. Show that in this case, for anfy € ¢2(V), one has
yeV

1/2 1/2
nmm=<2mAmmﬁ 5N+Hh=N(Z]umﬁ :
xeV xeV

that is, A is a bounded linear operator on the Hilbert sp&®) (Hint:
use the CaucBchwarz inequality.)

1.2. Inequalities on the Spectral Gap

Let X = (V, E) be a graph. FoF C V, we ddine theboundarydF of F

to be the set of edges with one extremity fnand the other inv — F.

In other words,0F is the set of edges connectifgto V — F. Note that
aF =9(V — F).

1.2.1. Ddinition. Theisoperimetric constanbr expanding constarnif the
graphX, is
|oF]|

h(X) = inf :FCcV,0 F .
) m{WMWHV—H} < “'<+w}

Note that, if X is finite onn vertices, this can be rephrased [EX) =

min{%:FgV,0<|F|§g}.
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1.2.2. Ddinition. Let (Xm)m=1 be a family offinite, connectedk-regular
graphs with|Vy| — 400 asm — +oo. We say that Xm)ms1 is afamily of
expandersf there exists > 0, such thah(Xy,) > ¢ for everym > 1.

1.2.3. Theorem.Let X = (V, E) be &finite, connected-regular graph with-
out loops. Letu; be thefirst nontrivial eigenvalue oK (as in section 1.1).
Then

K S < h(x) = KK ).

Proof. (a) We begin with thdirst inequality. We endow the sé& of edges

with an arbitrarily chosen orientation, allowing one to associate, to any edge
e € E,itsorigine™ and its extremity™. This allows us to digne thesimplicial
coboundary operator d ¢?(V) — ¢%(E), where, forf € ¢2(V) ande € E,

df(e) = f(et) — f(e).
Endow/¢?(V) with the hermitian scalar product
(flog =Y T ax)

xeV

and¢?(E) with the analogous one. So we mayide the adjoint (or conjugate-
transpose) operatod* : ¢2(E) — ¢?(V), characterized by(df | g) =
(f | d*g) for every f e ¢?(V), ge (*(E). Define a functions : V x
E — {—1,0,1} by
1 if x=et"
3(x,e) =1 -1 ifx=e"
0 otherwise.

Then one checks easily that, fee E and f e £2(V),
df(e) =) s(x.€) f(x);

xeV
while, forv € V andg e ¢?(E),
d*g(x) = Y 8(x. ) g(e).
ecE
We then déne thecombinatorial Laplace operaton = d*d : £2(V) —
£2(V). Itis easy to check that

A=k -ld—A;
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in particular, A does not depend on the choice of the orientation. For an
orthonormal basis of eigenfunctions Af the operaton takes the form

0
K— 1 O

O K— in-1
the eigenvalue 0 corresponding to the constant functions.drherefore, if

f is afunction onV with >~ f(x) =0 (i.e., f is orthogonal to the constant
xeV

functions in¢?(V)), we have
A1 = (df [df) = (AF | f) = (k—pa) | FI5.
We apply this to a carefully chosen functidn Fix a subsef of V and set
_[IV-F| ifxeF
f(X)_{—|F| if x eV — F.
Then Y f(x)=0 and [[f|3=|F||V—F?+ |V —F||F?=|F|
xeV

|V — F||V]. Moreover,

df(e) = 0 if e connects two vertices either orinV — F,;
| £|V]if econnects a vertex i with a vertex inV — F.
Hence,|df||3 = |V |?|3F|. So the previous inequality gives
IVI?18F| = (k — u1) IFI [V = F[ V.

Hence,

[0F| IV — F|
—>k—-—pn .
HAN

i}
2

, we get% > "‘2’*1; hence, by dinition, h(X) >

If we assumdF| <

k—p11
>t

(b) We now turn to the second inequality, which is more involved. Fix a
nonnegative functiorf onV, and set

Bi=)_ If(e)’~ f(e ).

ecE

Denote byg; > B_1 > --- > B1 > Bo the values off , and set

Li={xeV:fXx=>45] i=01,...,r).
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Note thatLy = V. (Hence,dLo = #.) To have a better intuition of what is
happening, consider the following example@g the cycle graph with eight
vertices.

Vg Vg

with f(v1) = f(vs) =4, f(v2) = f(ve) = f(v7) =1, f(v3) =2, f(va) =
f(vg) =3,s0thatBs =4 > B, =3 > B1=2> Bp=1. Then

Lo = {v1,v2, v3, va, vs, vg, V7, Ug};

L1 = {v1,v3, v4,vs, vg};

Lo = {v1, vs,vs, v8};

Ls = {v1,vs}

dLo = @

oLy = {{v1, v2}, {v2, v3}, {vs, ve}, {v7, v8}}; [OL1] = 4,
Lz = {{v1, v2}, {vs, va}, {vs, ve}, {v7, v}}; [OL2| = 4;
oLz = {{v1, v2}, {va, vs}, {vs, ve}, {vs, v1}}; [dL3| = 4.

Geometrically, one can envision the graph broken into level curves as follows:
Lo consists of all vertices on or inside the outer-level curve corresponding to
Bo = 1; L1 consists of all vertices on or inside the level curve corresponding
to 81 = 2; and so forth. Then an§L; consists of those edges that reach
“downward from insideL; to a vertex with a lower value. From the diagram
we see clearly that, for exampl#,. , = {{v1, vo}, {vs, v}, {vs, ve}, {v7, vs}}.
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Coming back to the general case, we now prove the following result about
the numbeB;s.

r
First Step. By =" [aLil (87 — BZ.1)-
i=1

To see this, we denote ¢ the set of edges € E, such thatf (e™) #

f(e"). ClearlyBs = Y |f(e")? — f(e")?|. Now, an edge € E¢ connects
ecE¢
some vertex with f(x) = Bi( to some vertey with f(y) = Bj. We index

these two index values so thge) > j(e). Therefore,

Br = ) (Blg — Ble)

ecE¢
= D _(Blo — Blo-1t Bla-1— = Blaw + Blor — Fle)
ecE¢
i(e)
=> > (BB
ecEs ¢=j(e)+1
Referring to the diagram of level curves, we see that as a give resdgmects
avertexx, with f(x) = Bi(), to a vertexy with f(y) = Bj), it crosses every
level curvegs, between those two. In the expression Byr, this corresponds
to expanding the terif, — 7 by inserting the zero differences? + A7
for each level curvg, crossed by the edge This means that, in the previous
summation forBy, the termg? — p2_, appears for every edgeconnecting
some vertex with f(x) = g; andi > ¢ to some vertey with f(y) = g; and
j < £. In other words, it appears for every edge dL,, which establishes
thefirst step.

Second Step.Bs < v2k [[df |2 || fl2.

Indeed,
Br =) If(e")+ f(e)l-1f(e") - f(e)l
. 1/2 1/2
< [XE:(f(e+)+ f(e_))z} [XE:(f@) - f(e_))z}

1/2
<V2 [Z(f(e*)2 + f(e—)z)] Idf 2

ecE

1/2
= VK [Z f(x)z} ldfllz = vk [ T2 1df ]2

xXeV
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by the CauchySchwarz inequality and the elementary fact theat-(b)> <
2(a? + b?).

Third Step. Recall that thesupportof f is suppf = {x e V : f(x) # 0}.
Assume thatsuppf| < .. Then,B; > h(X) || f |12.

To see this, notice tha#, = 0 and that|L;| < le fori=1,...,r, so
that|aL;i| > h(X) |L;| by ddinition of h(X). So it follows from thefirst step
that

Bi > h(X) ) ILil (87 — BZ.)
i=1
= h(X) [ILrl B2+ (ILr-a] — ILe ) B2 4 + - + (ILa] — |L2]) 7]

r—1
= h(X) |:||—r|,3r2+ Z L — Li+1|ﬂi2:|;
i=1

however, sincéd; — L1 is exactly the level set whert takes the valug;,
the term in brackets is exactyf ||§.

Coda. We now apply this to a carefully chosen functiénLet g be a real-
valued eigenfunction foA, associated with the eigenvalke- ;. SetV* =
{x € V:g(x) > 0} and f = max{g, 0}. By replacingg by —g if necessary,

we may assumgv | < % (Note thatV+* # ¢ because) g(x) =0 and
xeV

g # 0.) Forx € V*, we have (sincg < 0onV — V™)
(AD)) =KFO) =Y Ay F(Y) =ka() — D Ay a(y)

yeV yeV+
< kg(¥) — Y Ay 9y) = (Ag)(X) = (k — 111) 9(X).
yeV

Using this pointwise estimate, we get

IdfI3 = (af | =3 (AH X < k- pu1) Y gx)?

xeV+ xeV+
< (k= pn2) I 13
Combining the second and third steps, we get

h(X) 1 113 < Br < vV2k|[dfll2 ] fll2 < v2k(k — 1) | 113,

and the result follows by cancelling out]
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From Ddinition 1.2.2 and Theorem 1.2.3, we immediately deduce the
following:

1.2.4. Corollary. Let (Xn)m=1 be a family offinite, connectedk-regular
graphs without loops, such th@¥,| — +o00 asm — +oo. The family
(Xm)m=1 is a family of expanders if and only if there exisis> 0, such
thatk — 1 (Xm) > ¢ for everym > 1.

This is the spectral characterization of families of expanders: a family of
k-regular graphs is a family of expanders if and only if the spectral gap is
bounded away from zero. Moreover, it follows from Theorem 1.2.3 that, the
bigger the spectral gap, the betténe quality of the expander.

Exercises on Section 1.2

1. How was the assumptiohX has no loop used in the proof of
Theorem 1.2.3?

2. LetX be afinite graph without loop. Choose an orientation on the edges;
let d, d* and A = d*d be the operators fi@ed in this section. Check
that, for f € ¢2(V),x e V,

Af(x) = degk) f(x) — (Af)(x),
where degX) is thedegreeof x, i.e., the number of neighboring vertices
of x.

3. Using the example given for a functidnon the cycle grapiCg, verify
that B satidies thefirst two steps in the proof of the second inequality
of Theorem 1.2.3.

4. Show that the multiplicity of the eigenvalye = K is the number of
connected components ¥f

1.3. Asymptotic Behavior of Eigenvalues in Families of Expanders

We have seen in Corollary 1.2.4 that the quality of a family of expanders can
be measured by a lower bound on the spectral gap. However, it turns out that,
asymptotically, the spectral gap cannot be too large. All the graphs in this
section are supposed to be without loops.

1.3.1. Theorem.Let (Xm)m=1 be a family of connectedk-regular, finite
graphs, withVy| — 400 asm — +oc0. Then,

Iimjrnf ni(Xm) = 2vk = 1.
m——+00
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A stronger result will actually be proved in section 1.4. There is an asymp-
totic threshold, analogous to Theorem 1.3.1, concerning the bottom of the
spectrum. Before stating it, we need an importaffitrdgigon.

1.3.2. Déinition. Thegirth of a connected grapX, denoted byg(X), is the
length of the shortest circuit iX. We will say thatg(X) = +occ if X has no
circuit, that is, if X is a tree.

For afinite, connected-regular graph, let(X) be the smallest nontrivial
eigenvalue ofX.

1.3.3. Theorem.Let (Xn)m=1 be a family of connectedk-regular,finite
graphs, withg(Xmy) — +00 asm — +oo. Then

limsup u(Xm) < —2+vk—1.
m— 400
Theorems 1.3.1 and 1.3.3 single out an extremal conditiorfirute
k-regular graphs, leading to the mairfieition.

1.3.4. Ddinition. A finite, connectedk-regular graphX is a Ramanujan
graphif, for every nontrivial eigenvalug of X, one hasu| < 2k — 1.

Assume that Xm)m=1 is a family ofk-regular Ramanujan graphs without
loop, such thafVy,| — +o00asm — +o0. Then theX,’s achieve the biggest
possible spectral gap, providing a family of expanders which is optimal from
the spectral point of view.

All known constructions of ifinite families of Ramanujan graphs in-
volve deep results from number theory and/or algebraic geometry. As ex-
plained in the Overview, our purpose in this book is to give, for every odd
prime p, a construction of a family offf + 1)-regular Ramanujan graphs.
The original proof that these graphs satisfy the relevant spectral estimates,
due to Lubotzky-Phillips, and Sarnak [42], appealed to Ramataijeon-
jecture on codfcients of modular forms with weight 2: this explains the
chosen terminology. Note that Ramanufoonjecture was established by
Eichler [23].

Exercises on Section 1.3

1. Atreeis aconnected graph without loops. Show tHategular treery
must be ifinite and that it exists and is unique up to graph isomorphism.
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2. LetX be afinite k-regular graph. Fix a vertex and, forr < @, con-
sider the ball centered &§ and of radius in X. Show that it is isometric
to any ball with the same radius in tkeregular treeT,. Compute the
cardinality of such a ball.

3. Deduce that, if Xm)m=1 is a family of connecte&-regular graphs, such
that|Vyy| — 400 asm — +o0, then

9(Xm) < (24 0(1)) log,_4 [Vml,

whereo(1) is a quantity tending to 0 as — +oo.
4. Show that, ik > 5, one has actually, in exercise 3,

9(Xm) < 2+ 2 10g_1 |Vml-

1.4. Proof of the Asymptotic Behavior

In this section we prove a stronger result than that stated in Theorem 1.3.1.
The source of the inequality in Theorem 1.3.1 is the fact that the number
of paths of lengthm from a vertexw to v, in ak-regular graph, is at least the
number of such paths fromto v in ak-regular tree. To figne this observation,
we count paths without backtracking, and to do this we introduce certain
polynomials in the adjacency operator.
Let X = (V, E) be ak-regular, simple graph, withv/| possibly irfinite.
Recall that we digned a path inX in the Overview. We rigne that dénition
now. A path of lengthr without backtrackingn X is a sequence

gz(x()’Xls'"aXr)

of vertices inV such thatx; is adjacent toxj;1 (i =0,...,r —1) and

Xi+1# Xi—1 (i =1,...,r —1). The origin ofe is xq, the extremity ofe is

Xr. We ddine, forr € N, matricesA; indexed byV x V, which generalize
the adjacency matrix and which are polynomial\in

(Ar)xy = number of paths of length, without backtracking,
with origin x and extremityy.

Note thatAy = Id and thatA; = A, the adjacency matrix. The relationship
betweenA, andA is the following:

1.4.1. Lemma.

(@) A2 = Ay k- 1d.
(b) Forr = 2, AAA = AAL=A 1+ (K-1)A_1.
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Proof.

(@) Forx, y € V, the entry @2),, is the number of all paths of length 2
betweerx andy. If x # y, such paths cannot have backtracking; hence,
(A2),, = (A2)xy- If X =y, we count the number of paths of length 2
from x to x, and, sinceX is simple, (2)y = k.

(b) Let us prove thatAs Ay = Ary1 +(K—1) A1 forr > 2. Forx,y €
V, the entry @ Ai)xy is the number of pathsx§ = X, X1, ..., X,
Xr+1 = Y) of lengthr + 1 betweerx andy, without backtracking ex-

ceptpossibly onthe laststep (i.e (X1, . . ., X-) has no backtracking).
We partition the set of such paths into two classes according to the value
of Xr_1:

o if X,_1 # Yy, then the pathx, ..., X41) has no backtracking, and
there are A +1)xy Such paths;

o if X, _1 =y, then there is backtracking at the last step, and there are
(k — 1)(Ar—1)xy such paths.

We leave the proof oA Ar = Ary1 + (k — 1) A _1 as an exercise.[]
From Lemma 1.4.1, we can compute thenerating functiorof the A;’s,
that is, the formal power series with cliefents A;. It turns out to have a

particularly nice expression; namely, we have the following:

1.4.2. Lemma.

o 1-—1t2
t" = )
;A’ 1— At + (k —1)t2

(This must be understood as follows: in the ring BAQ/)[[t]] of formal
power series over Enid(V), we have

(i A t') (Id — At + (k — 1)t?1d) = (1 — t?) 1d.)
r=0

Proof. This is an easy check using Lemma 1.4.01

In order to eliminate the numerator-1t2 in the right-hand side of 1.4.2,
we introduce polynomial3y, in A given by

Tm = Z Am_2r (meN).

m
0<r<7

The generating function of thg,’s is readily computed.
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1.4.3. Lemma.

oo
mzzo 1- At+ (k—1)t2

Proof.

oo o0 o

ZTmtm = Z Z Am—2r tM = Z Z Am—2r tm

m=0 m=0 0<r<% r=0 m>2r
_ < 2r m-2r __ < 2r < 14
_Zt ZAm_Zrt - Zt ZAgt

r=0 m=>2r r=0 =0
1 1-1t? 1

1—t2 1—At+(Kk—1)t2  1— At+ (k— 1)t2
by Lemma 1.4.2. O

1.4.4. Ddinition. TheChebyshev polynomials of the second ldéreldéined
. 1 1 0 . . .

by expressing"™+1e as a polynomial of degrew in coss:

sin(m+1)6

sing (m e ).

Um(cosp) =

For example, Ug(x) =1, Ui(X) =2x, Uy(x) =4x?>—1,.... Using
trigonometric identities, we see that these polynomials satisfy the following
recurrence relation:

Umt1(X) = 2X Um(X) — Um-1(X).

AsinLemma 1.4.2, from this recurrence relation, we compute the generating
function of theU,,’s; namely,

o 1
Un(Ot" = —
r;) 1—2xt +t2

Performing a simple change of variables, we then compute the generating
function of the related family of polynomial& (- 1)z U, (%ﬂ)

> m X 1
k—1)? — 2 )t"= .
,;)( )* Um <2~/_|<—1>t 1—xt+ (k—1)t2

In comparison to Lemma 1.4.3, we immediately get the following expression
for the operatord;, as polynomials of degrem in the adjacency matrix.
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1.4.5. Proposition. Form € N: Tp, = (k — 1)2 Up, ( |

=)

Assume thatX = (V, E) is afinite, k-regular graph om vertices, with
spectrum
mo=K=>p1 >+ > pn_1.

In Proposition 1.4.5, we are going to estimate the track.dh two different
ways. This will lead to the trace formula fi%.

First, working from a basis of eigenfunctions Af we have, from Propo-
sition 1.4.5,

n-1
m i
TrTn=(k-1% Y U <7>
" —~ "\2vk-1

On the other hand, by flaition of Ty,

M= Y Thrs =Y Y (huode

O<r<% xeV 0<r<2

For x € V, denote byf, x the number of paths of lengthin X, without
backtracking, with origin and extremity; in other words, f; x = (A¢)xx-
Then we get the trace formula:

1.4.6. Theorem.

Y Y fras= k- D) Z o505 )

xeV 0<r<7 m

for everym € N.

We say thaiX is vertex-transitivef the group AutX of automorphisms of
X acts transitively on the vertex-sét Speciically, this means that for every
pair of verticesx andy, there existsr € Aut X, such thaix(x) = y. Under
this assumption, the numbédy , does not depend on the vertexand we
denote it simply byf,.

1.4.7. Corollary. Let X be a vertex-transitivejnite, k-regular graph om
vertices. Then, for everyn € N,

N > fma=(K-1)2 Zum(zm)

O<r<m
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The value of the trace formula 1.4.6 is the following: only looking at the
n-1
right-hand side (called the spectral side){1)z 3" Up, (2“—Jklfl) it is not
j=0

obvious that it dBnes a nonnegative integer. As we shall now explain, the
mere positivity of the spectral side has nontrivial consequencefirsaeed
a somewhat technical result about the Chebyshev polynomials.

1.4.8. Proposition.Let L > 2 ande > 0 be real numbers. There exists a
constantC = C(e, L) > 0 with the following property: for any probability
measure on [-L, L], such thatf_LL Um (3) dv(x) > O for everym € N, we
have

v[2—e¢, L] =C.

(Thus,v gives a measure at ledStto the interval [2— ¢, L].)

Proof. It is convenient to introduce the polynomial&,(x) :Um(g);

they satisfyXm(2 cosg) = MDY and the recursion formulXm.1(x) =

X Xm(X) — Xm_1(X). It is clear from thefirst relation that the roots ok,

are Zco%ﬁT”l (¢ =1,...,m). In particular the largest root ok, is am =
2 cos; . The proof is then in several steps.

k
First Step. Fork < £: X Xg =Y Xiie—2m-

m=0

We prove this by induction ovek. Since Xg(X) = 1 and X1(X) = X, the
formula is obvious fok = 0, 1. (Fork = 1, this is nothing but the recursion
formula.) Then, fok > 2, we have, by induction hypothesis,

Xk Xe = (X X1 — Xk—2) X¢
= X (Xke-1+ Xipe—z + - + Xokr3 + Xe—ks1)
— (Kkae—2 + Xkag—a+ -+ Xe—kra + Xo—ka2)
= (Xite + Xire—2) + (Kire—2 + Xre—a)
-+ (Kekra + Xeokr2) + (Ke—kr2 + Xe—k)
— (Xkte=2 + Xo—a + -+ -+ Xp—ka + Xo—k+2)
= Xiye + Xege—2 + -+ -+ Xe—k2 + Xo—k.
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Second Step.
Xm(X)

X — 0m

m-1

=Y Xanailem) - Xi(X).
i=0

Indeed,

m—1
(X — arm) (Z Xm-1-i (otm) X (X))
i=0

m—1

= Xmn-1(em) Xa(¥) + D Xin-1-i (@m)(Xi 42(X) + Xi—1(x))
=1

m—1
— > Xin-1-i (otm) am Xi (X)
i=0

= (Xm-2(etm) — Xm-1(am) am) Xo(X)
m—2

+ Z(Xm—i (orm) + Xm—i—2(am) — otm Xm—1-i (@m)) Xi(X)
i=1

+ (X1(am) — am Xo(orm)) Xm—1(X) + Xo(am) Xm(X).

m—2
Now Xo(am) = 1 and Xy(am) — am Xo(am) = O; in the summatlonz all

the coeficients are 0, by the recursion formula. FinalDfm,_ z(am)—
Xm—1(om) om = — Xm(am) = 0, by ddinition of ap,.

2m-1

Third Step. SetYp(x) = Mﬁl :thenYy, = Z yi Xi, with y; > 0.

Indeed, by the second step we haxg= Z Xm—1-i (&m) Xi Xm. Now

observe that the sequenag = 2 cos=- T mcreases to 2. So fof < m:
Xj(am) > O (sinceam > «j ande; is the largest root oK;). This means
that all coeficients are positive in the previous formula f“mq. By thefirst
step, eachX; X, is a linear combination, with nonnegative dogents, of
Xo, X1, ..., Xom_1, SO the result follows.

Fourth Step. Fixe > 0,L > 2. For every probability measureon [-L, L]
such thatf_LL Xm(X) dv(x) > 0 for everym € N, we havev [2 — ¢, L] > O.

Indeed, assume by contradiction thg2 — ¢, L] = 0; i.e. the support of
is contained inf L, 2 — ¢]. Takem large enough to have,, > 2 — ¢. Since
Ym(X) < O0forx < am, wethen havgf_L,_ Ym(x) dv(x) < 0.0Onthe other hand,
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by the third step and the assumptiomgrve clearly havq”_LL Ym(x) dv(x) >
0. Sof_LL Ym(X) dv(x) = 0, which implies that is supported in thénite set
Fn of zeroes ofY;,; as before we have,, = {2 cosrf—fl :1<¢<m} But
this holds for everyn large enough. And clearly, since+ 1 andm + 2 are
relatively prime, we havé, N Fn1 = @, so that supp is empty. But this
is absurd.

Coda. Fixe > 0,L > 2.Letf bethe continuous function orL, L]defined

by
0 fx<2—¢
f(x)=11 ifx>2—5%
2(x—2+¢) f2-—e<x<2-%.

On [2 —£,2— %] the functionf linearly interpolates between 0 and 1. For
every probability measureon [-L, L], we then have

vp—&Lpaﬁﬁ@mwmsz—g¢}

Let g be the set of probability measure®n [-L, L], such thatffL Xm(X)

dv(x) > 0 for everym > 1. Forv € g, we have by the fourth steﬁfL f(x)
dv(x) > 0. Butg is compact in the weak topology and, sinices continuous,
the map

p—> R v /L f(x) dv(x)
-L

is weakly continuous. By compactness there ex@&s, L) > 0, such that
f_LL f(x)dv(x) > C(e, L) foreveryv € p.Afortiori v[2 — ¢, L] > C(e, L),
and the proofis complete. (Note that, in firal step, the need for introducing
the functionf comes from the fact that the mgp— R* : v > v[2 — ¢, L]

is, a priori, not weakly continuous; however, it is bounded below by a
continuous function, to which the compactness argument applies.)

Coming back to the spectra fihite connectedk-regular graphs, we now
reach the promised improvement of Theorem 1.3.1: it shows not only that the
first nontrivial eigenvalue becomes asymptotically larger thafk2- 1, but
also that a positive proportion of eigenvalues lies in any interval

[2—¢) VK—1K].

1.4.9. Theorem.For everye > 0, there exists a consta@t= C(e, k) > 0,
such that, for every connectefihite, k-regular graphX on n vertices, the
number of eigenvalues ofin the interva[ (2 — &) vk — 1, k] is atleasC - n.
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Proof. TakeL = ﬁ >2andv = ]Zo 8;,71 (whered, is the Dirac mea-

sure ata € [—L, L], that is, the probability measure orL, L] such that
f_LL f(x)dda(x) = f(a), for every continuous functiofi on [—L, L]). Then

v is a probability measure on-L,L], and f Un (3) dv(x) =

n_
% 12_30 (2J_1) is nonnegative, by the trace formula 1.4.6. So the assump-

tions of Proposition 1.4.8 are sdied, and therefore there exists
C =C(e,k) > Osuchthav[2 — ¢, L] > C. But

lad

1
v[2 — ¢, L] = = x (number ofj’swith 2— ¢ < <L)

= % x (number of eigenvalues of in [(2 — &) vk — 1, K]).

O
Continuing this analysis we prove the following:

1.4.10. Theorem.Let (Xn)m=1 be a sequence of connect&etegular finite
graphs for whiclg(Xm) — oo asm — oo. If vy, = v(Xp,) is the measure on

[—L, J%] defined by

=1
'xilaﬂ,(xm)
T el &
then, for every continuous functiohon [—\/% \/%]
K 2
. = dx
lim /mf(x)dvm(x):/ FX) V4 —x2 2.
m—oo | —k _2 2
Vk—1

In other words, the sequence of measurgd (-1 on [ ] weakly

J_ J_1
converges to the measursupported onf 2, 2], given bydv(x) = ¥ ‘; dx.

Proof. SetL = ﬁ Recall thatf, x denotes the number of paths of length
¢, without backtracking, fronx to x in X,. We have that fon > 1, fixed and
m large enough (precisey(Xm) > n):

fn—2r,x =0

foranyx € Xy and O<r < 3. Hence, form large enough the left-hand side
of the equation in Theorem 1.4.6 is zero. Thus, so is the right-hand side, and





