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1

Review of basic magnetostatics

“Mention magnetics and an image arises of musty physics labs peopled
by old codgers withiron filings under their fingernails.”

John Simonds,Physics Today(April), 1995.

Before we can begin our discussion of magnetic materials we need to understand
some of the basic concepts of magnetism, such as what causes magnetic fields,
and what effects magnetic fields have on their surroundings. These fundamental
issues are the subject of this first chapter. Unfortunately, we are going to immedi-
ately run into a complication. There are two complementary ways of developing
the theory and definitions of magnetism. The ‘physicist’s way’ is in terms of cir-
culating currents, and the ‘engineer’s way’ is in terms of magnetic poles (such as
we find at the ends of a bar magnet). The two developments lead to different views
of which interactions are more fundamental, to slightly different-looking equa-
tions, and (to really confuse things) to two different sets of units. Most books that
you’ll read choose one convention or the other and stick with it. Instead, through-
out this book we are going to follow what happens in ‘real life’ (or at least at
scientific conferences on magnetism) and use whichever convention is most appro-
priate to the particular problem. We’ll see that it makes most sense to use Syst`eme
International d’Unités (SI) units when we talk in terms of circulating currents, and
centimeter–gram–second (cgs) units for describing interactions between magnetic
poles.
To avoid total confusion later, we will give our definitions in this chapter and the

next frombothviewpoints, and provide a conversion chart for units and equations
at the end of Chapter 2. Reference 1 provides an excellent light-hearted discussion
of the unit systems used in describing magnetism.

1



2 1 Review of basic magnetostatics

1.1 Magnetic field

1.1.1 Magnetic poles

So let’s begin by defining the magnetic field,H, in terms of magnetic poles. This
is the order in which things happened historically – the law of interaction between
magnetic poles was discovered by Michell in England in 1750, and by Coulomb
in France in 1785, a few decades before magnetism was linked to the flow of
electric current. These gentlemen found empirically that the force between two
magnetic poles is proportional to the product of their pole strengths,p, and inversely
proportional to the square of the distance between them,

F ∝ p1p2
r 2

. (1.1)

This is analogous to Coulomb’s law for electric charges, with one important differ-
ence – scientists believe that single magnetic poles (magnetic monopoles) do not
exist. They can however be approximated by one end of a very long bar magnet,
which is how the experiments were carried out. By convention, the end of a freely
suspended bar magnet which points towards magnetic north is called the north
pole, and the opposite end is called the south pole.† In cgs units, the constant of
proportionality is unity, so

F = p1p2
r 2

(cgs), (1.2)

wherer is in centimeters andF is in dynes. Turning Eqn 1.2 around gives us the
definition of pole strength:

A pole of unit strength is one which exerts a force of one dyne on another unit
pole located at a distance of one centimeter.

The unit of pole strength does not have a name in the cgs system.
In SI units, the constant of proportionality in Eqn 1.1 is 1/4πµ0, so

F = 1

4πµ0

p1p2
r 2

(SI), (1.3)

whereµ0 is called the permeability of free space, and has the value 4π × 10−7

weber/ampere meter (Wb/Am). The SI unit of force is the newton (N), and 1
newton= 105 dyne (dyn).
To understand what causes the force, we can think of the first pole generating a

magnetic field,H, which in turn exerts a force on the second pole. So

F =
( p1
r 2

)
p2 = H p2 (1.4)

† Note however that if we think of the earth’s magnetic field as originating from a bar magnet, then thesouthpole
of the earth’s ‘bar magnet’ is actually at the magnetic north pole!
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Figure 1.1 Field lines around a bar magnet. By convention, the lines originate at the north
pole and end at the south pole.

giving, by definition,

H = p1
r 2

. (1.5)

So:

A field of unit strength is one which exerts a force of one dyne on a unit pole.

By convention, the north pole is thesourceof the magnetic field, and the south pole
is thesink, so we can sketch the magnetic field lines around a bar magnet as shown
in Fig. 1.1.
Theunits ofmagnetic field are oersteds (Oe) in cgs units, so a field of unit strength

has an intensity of one oersted. In the SI system, the field from a pole is

H = p

4πµ0r 2
(1.6)

and the units are amperes per meter (A/m); 1 Oe= (1000/4π ) A/m.
The earth’s magnetic field has an intensity of around one-tenth of an oersted, and

the field at the end of a typical kindergarten toy bar magnet is around 5000 Oe.

1.1.2 Magnetic flux

It’s appropriate next to introduce another rather abstract concept, that ofmagnetic
flux, �. The idea behind the term ‘flux’ is that the field of a magnetic pole is
conveyed to a distant place by something which we call a flux. Rigorously the flux
is defined as the surface integral of the normal component of the magnetic field.
This means that the amount of flux passing through unit area perpendicular to the
field is equal to the field strength. So the field strength is equal to the amount of
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flux per unit area, and the flux is the field strengthtimesthe area,

� = HA. (1.7)

The unit of flux in cgs units, the oersted cm2, is called the maxwell (Mx). In SI
units the expression for flux is

� = µ0HA (1.8)

and the unit of flux is called the weber.
Magnetic flux is important because achangingflux generates an electric current

in any circuit which it intersects. In fact we define an ‘electromotive force’,ε, equal
to the rate of change of the flux linked with the circuit:

ε = −d�

dt
. (1.9)

Equation 1.9 is Faraday’s lawof electromagnetic induction. Theelectromotive force
provides the potential difference which drives electric current around the circuit.
The minus sign in Eqn 1.9 shows us that the current sets up a magnetic field which
acts in the opposite direction to the magnetic flux. (This is known as Lenz’s law).†

The phenomenon of electromagnetic induction leads us to an alternative defini-
tion of flux, which is (in SI units):

A flux of one weber, when reduced to zero in one second, produces an electro-
motive force of one volt in a one-turn coil through which it passes.

1.1.3 Circulating currents

The next development in the history of magnetism took place in Denmark in 1820
when Oersted discovered that a magnetic compass needle is deflected in the neigh-
borhood of an electric current. This was really a huge breakthrough because it uni-
fied two sciences. The new science of electromagnetism, which dealt with forces
between moving charges and magnets, encompassed both electricity, which de-
scribed the forces between charges, and magnetism, which described the forces
between magnets.
ThenAmpère discovered (again experimentally) that themagnetic field of a small

current loop is identical to that of a small magnet. (By small we mean small with
respect to the distance at which the magnetic field is observed). The north pole of
a bar magnet corresponds to current circulating in a counter-clockwise direction,
whereas clockwise current is equivalent to the south pole, as shown in Fig. 1.2.
In addition, Ampère hypothesized thatallmagnetic effects are due to current loops,
and that the magnetic effects in magnetic materials such as iron are due to so-called

† We won’t cover electromagnetic induction in much detail in this book. A good introductory text is Ref. 2.
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Figure 1.2 Relationship between direction of current flow and magnetic pole type.

‘molecular currents’. This was remarkably insightful considering that the electron
would not be discovered for another 100 years! Today it’s believed that magnetic
effects are caused by the orbital and spin angular momenta of electrons.
This leads us to an alternative definition of the magnetic field, in terms of current

flow:

A current of one ampere passing through an infinitely long straight wire gen-
erates a field of strength 1/2π amperes per meter at a radial distance of one
meter.

Of course the next obvious question to ask iswhat happens if thewire isnotstraight?
What magnetic field does ageneralcircuit produce? Amp`ere solved this one too.

1.1.4 Ampère’s circuital law

Ampère observed that the magnetic field generated by an electrical circuit depends
on both theshapeof the circuitandon the amount of current being carried. In fact
the total current,I, is equal to the line integral of the magnetic field around a closed
path containing the current. In SI units

∮
H ·dl = I . (1.10)

This expression is called Amp`ere’s circuital law, and it can be used to calculate the
field produced by a current-carrying conductor. We will look at some examples
later.

1.1.5 Biot–Savart law

An equivalent statement to Amp`ere’s circuital law (which is sometimes easier to
use for particular symmetries) is given by the Biot–Savart law. The Biot–Savart
law gives the field contribution,δH, generated by a current flowing in an elemental
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a

I

Figure 1.3 Calculation of the field from a current flowing in a long straight wire, using
Ampère’s circuital law.

length,δl of a conductor:

δH = 1

4πr 2
I δ l× û (1.11)

wherer is the radial distance from the conductor, andû is a unit vector along the
radial direction.

1.1.6 Field from a straight wire

To show that these laws are equivalent, let’s use them both to calculate themagnetic
field generated by a current flowing in a straight wire.
First using Ampère’s law. The geometry of the problem is shown in Fig. 1.3. If

we assume that the field lines go around the wire in closed circles (by symmetry
this is a fairly safe assumption) then the field,H, has the same value at all points
on a circle concentric with the wire. This makes the line integral of Eqn 1.10
straightforward. It’s just∮

H ·dl = 2πaH = I by Ampère’s law, (1.12)

and so the field,H, at a distancea from the wire is

H = I

2πa
. (1.13)

For this particular problem, theBiot–Savart law is somewhat less straightforward
to apply. The geometry for calculating the field at a point P at a distancea from the
wire is shown in Fig. 1.4. Now

δH = 1

4πr 2
I δ l× û

= 1

4πr 2
I |δl||û| sinθ (1.14)

whereθ is the angle betweenδl andû, which is equal to (90+ α). So

δH = I

4πr 2
δl sin(90+ α)

= I

4πr 2
r δα

cosα
sin(90+ α) (1.15)
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Figure 1.4 Calculation of the field from a current flowing in a long straight wire, using the
Biot–Savart law.

sinceδl = r δα/cosα.
But sin(90+ α) = cosα, andr = a/cosα. So

δH = I

4π

cos2α

a2
aδα

cos2α
cosα

= I cosα δα

4πa
(1.16)

and

H = I

4πa

∫ π/2

−π/2
cosα dα

= I

4πa
[sinα]π/2

−π/2

= I

2πa
. (1.17)

The same result as that obtained using Amp`ere’s law! Clearly Amp`ere’s law was a
better choice for this particular problem.
Unfortunately, analytic expressions for the field produced by a current can only

be obtained for conductors with rather simple geometries. For more complicated
shapes the field must be calculated numerically. Numerical calculation of magnetic
fields is an active research area, and is tremendously important in the design of
electromagnetic devices. A review is given in Ref. 3.

1.2 Magnetic moment

Next we need to introduce the concept of magnetic moment, which is the moment
of the couple exerted on either a bar magnet or a current loop when it is in an
applied field. Again we can define the magnetic moment either in terms of poles,
or in terms of currents.
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  =pH

  =pH

H

l/2

θ +p

−p

F

F

Figure 1.5 Calculation of the moment exerted on a bar magnet in a magnetic field. From
Introduction to magnetic materialsby Cullity, c© Reprinted by permission of Pearson
Education, Inc., UpperSaddle River, NJ.

Imagine a bar magnet is at an angleθ to a magnetic field,H, as shown in
Fig. 1.5. We showed in Section 1.1.1 that the force on each pole,F = pH. So the
moment acting on the magnet, which is just the force times the perpendicular
distance from the center of mass, is

pH sinθ
l

2
+ pH sinθ

l

2
= pHl sinθ = mH sinθ (1.18)

wherem= pl, the product of the pole strength and the length of the magnet, is the
magnetic moment. (Our notation here is to represent vector quantities by bold italic
type, and their magnitudes by regular italic type). This gives a definition:

The magnetic moment is the moment of the couple exerted on a magnet when
it is perpendicular to a uniform field of 1 oersted.

Alternatively, if a current loop has areaA and carries a currentI , then its magnetic
moment is defined as

m= I A. (1.19)

The cgs unit of magnetic moment is the emu. In SI units, magnetic moment is
measured in A m2.

1.2.1 Magnetic dipole

A magnetic dipole is defined as either the magnetic moment,m, of a bar magnet in
the limit of smalllengthbut finite moment, or the magnetic momentm of a current
loop in the limit of smallareabut finite moment. The field lines around a magnetic
dipole are shown in Fig. 1.6. The energy of a magnetic dipole is defined to be zero
when the dipole is perpendicular to a magnetic field. So the work done (in ergs) in
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Figure 1.6 Field lines around a magnetic dipole.

turning through an angledθ against the field is

dE = 2(pH sinθ)
l

2
dθ

= mH sinθ dθ (1.20)

and the energy of a dipole at an angleθ to a magnetic field is

E =
∫ θ

π/2
mH sinθ dθ

= −mH cosθ

= −m · H. (1.21)

This expression for the energy of a magnetic dipole in a magnetic field is in cgs
units. In SI units the energy isE = −µ0m · H. We will be using the concept of
magnetic dipole, and this expression for its energy in a magnetic field, extensively
throughout this book.

1.3 Definitions

Finally for this chapter, let’s review the definitions which we’ve introduced so far.
Here we give all the definitions in cgs units.

1. Magnetic pole, p. A pole of unit strength is one which exerts a force of one dyne on
another unit pole located at a distance of one centimeter.

2. Magnetic field,H. A field of unit strength is one which exerts a force of one dyne on a
unit pole.

3. Magnetic flux, �. The amount of magnetic flux passing through an areaA is equal to
the product of the magnetic field strength and the area;� = HA.

4. Magnetic moment,m. The magnetic moment of a magnet is the moment of the couple
exerted on the magnet when it is perpendicular to a uniform field of one oersted. For a
bar magnet,m= pl, wherep is the pole strength, andl is the length of the magnet.

5. Magnetic dipole. The energy of a magnetic dipole in a magnetic field is the dot product
of the magnetic moment and the magnetic field;E = −m · H.
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Homework

Exercises

1.1 Using either theBiot–Savart laworAmp`ere’s circuital law, derive a general expression
for the magnetic field produced by a current flowing in a circular coil, at the center of the
coil.

1.2a Derive an expression for the field produced by a current flowing in a circular coil, at
a general point on theaxisof the coil.

1.2b Couldwederiveacorrespondinganalytic expression for the fieldat ageneral, off-axis
point? If not, howmightwegoabout calculatingmagnetic fields for generalizedgeometries?

1.3a Calculate the field generated by anelectron moving in a circular orbit of radius 1Å
(1 Å = 10−10 m) with angular momentum ¯h J s, at a distance of 3 Å from the center of the
orbit, and along its axis.

1.3b Calculate the magnetic dipole moment of the electron in 1.3a. Give your answer in
SI and cgs units.

1.3c Calculate the magnetic dipolar energy of the circulating electron in 1.3a, when it is
in the field generated by a second identical circulating electron at a distance of 3 Å away
along its axis. Assume that the magnetic moment of the first electron is aligned parallel to
the field from the second electron.

1.4 Derive an expression for the fieldH produced by ‘Helmholtz coils’, that is, two co-
axial coils each of radiusa, and separated by a distancea, at a point on the axisx between
the coils:

(a) with current flowing in the same sense in each coil, and

(b) with current flowing in the opposite sense in each coil. In this case, derive the ex-
pression fordH/dx also.

For a = 1 m, and for both current orientations, calculate the value of the field halfway
between the coils, and at14 and

3
4 along the axis. What qualitative feature of the field is

significant in each case? Suggest a use for each pair of Helmholtz coils.

Further reading

D. Jiles,Introduction to magnetism and magnetic materials. Chapman & Hall, 1996,
Chapter 1.

B.D. Cullity, Introduction to magnetic materials. Addison-Wesley, 1972, Chapter 1.




