MAGNETIC MATERIALS
Fundamentals and device applications

NICOLA A. SPALDIN

CAMBRIDGE UNIVERSITY PRESS
Contents

Acknowledgements ix

1 Review of basic magnetostatics 1
 1.1 Magnetic field 2
 1.1.1 Magnetic poles 2
 1.1.2 Magnetic flux 3
 1.1.3 Circulating currents 4
 1.1.4 Ampère’s circuital law 5
 1.1.5 Biot–Savart law 5
 1.1.6 Field from a straight wire 6
 1.2 Magnetic moment 7
 1.2.1 Magnetic dipole 8
 1.3 Definitions 9
Homework 10

2 Magnetization and magnetic materials 11
 2.1 Magnetic induction and magnetization 11
 2.2 Flux density 12
 2.3 Susceptibility and permeability 12
 2.4 Hysteresis loops 15
 2.5 Definitions 16
 2.6 Units and conversions 16
Homework 17

3 Atomic origins of magnetism 18
 3.1 Solution of the Schrödinger equation for a free atom 18
 3.1.1 What do the quantum numbers represent? 21
 3.2 Extension to many-electron atoms 23
 3.3 The normal Zeeman effect 24
 3.4 Electron spin 25
 3.4.1 Pauli exclusion principle 27
Contents

3.5 Spin–orbit coupling
 3.5.1 Russell–Saunders coupling 28
 3.5.2 Hund’s rules 30
 3.5.3 jj coupling 31
 3.5.4 The anomalous Zeeman effect 31
 Homework 32

4 Diamagnetism
 4.1 Observing the diamagnetic effect 34
 4.2 Diamagnetic susceptibility 35
 4.3 Diamagnetic substances 37
 4.4 Uses of diamagnetic materials 38
 4.5 Superconductivity 38
 4.5.1 The Meissner effect 38
 4.5.2 Critical field 39
 4.5.3 Classification of superconductors 40
 4.5.4 Applications for superconductors 41
 Homework 41

5 Paramagnetism
 5.1 Langevin theory of paramagnetism 43
 5.2 The Curie–Weiss law 46
 5.3 Quenching of orbital angular momentum 48
 5.4 Pauli paramagnetism 49
 5.4.1 Energy bands in solids 50
 5.4.2 Free electron theory of metals 52
 5.4.3 Susceptibility of Pauli paramagnets 54
 5.5 Paramagnetic oxygen 56
 5.6 Uses of paramagnets 57
 Homework 57

6 Interactions in ferromagnetic materials
 6.1 Weiss molecular field theory 60
 6.1.1 Spontaneous magnetization 60
 6.1.2 Effect of temperature on magnetization 60
 6.2 Origin of the Weiss molecular field 63
 6.2.1 Quantum mechanics of the He atom 64
 6.3 Collective-electron theory of ferromagnetism 66
 6.3.1 The Slater–Pauling curve 69
 6.4 Summary 69
 Homework 71

7 Ferromagnetic domains
 7.1 Observing domains 73
Contents

7.2 Why domains occur
7.2.1 Magnetostatic energy
7.2.2 Magnetocrystalline energy
7.2.3 Magnetostrictive energy
7.3 Domain walls
7.4 Magnetization and hysteresis
Homework

8 Antiferromagnetism
8.1 Neutron diffraction
8.2 Weiss theory of antiferromagnetism
8.2.1 Susceptibility above T_N
8.2.2 Weiss theory at T_N
8.2.3 Spontaneous magnetization below T_N
8.2.4 Susceptibility below T_N
8.3 What causes the negative molecular field?
8.4 Uses of antiferromagnets
Homework

9 Ferrimagnetism
9.1 Weiss theory of ferrimagnetism
9.1.1 Weiss theory above T_C
9.1.2 Weiss theory below T_C
9.2 Ferrites
9.2.1 The cubic ferrites
9.2.2 The hexagonal ferrites
9.3 The garnets
9.4 Half-metallic antiferromagnets
Homework

10 Anisotropy
10.1 Magnetocrystalline anisotropy
10.1.1 Origin of magnetocrystalline anisotropy
10.1.2 Symmetry of magnetocrystalline anisotropy
10.2 Shape anisotropy
10.2.1 Demagnetizing field
10.3 Induced magnetic anisotropy
10.3.1 Magnetic annealing
10.3.2 Roll anisotropy
10.3.3 Explanation for induced magnetic anisotropy
10.3.4 Other ways of inducing magnetic anisotropy
Homework
Contents

11 Magnetic data storage 132
 11.1 Introduction 132
 11.2 Magnetic media 135
 11.2.1 Magnetic properties of small particles 136
 11.2.2 Materials used in magnetic media 139
 11.2.3 Disadvantages of small particles in media applications 140
 11.2.4 The other components of magnetic hard disks 144
 11.3 Write heads 144
 11.4 Read heads 145
 11.4.1 Magnetoresistance – general 146
 11.4.2 Magnetoresistance in normal metals 146
 11.4.3 Magnetoresistance in ferromagnetic metals 147
 11.4.4 Colossal magnetoresistance 153
 11.5 Future of magnetic data storage 156
Homework 157

12 Magneto-optics and magneto-optic recording 159
 12.1 Magneto-optics basics 159
 12.1.1 Kerr effect 159
 12.1.2 Faraday effect 161
 12.1.3 Physical origin of magneto-optic effects 161
 12.2 Magneto-optic recording 162
 12.2.1 Other types of optical storage, and the future of
 magneto-optic recording 165

13 Magnetic semiconductors 167
 13.1 II–VI diluted magnetic semiconductors – (Zn,Mn)Se 168
 13.1.1 Enhanced Zeeman splitting 168
 13.1.2 Persistent spin coherence 169
 13.1.3 Spin-polarized transport 169
 13.1.4 Other architectures 170
 13.2 III–V diluted magnetic semiconductors – (Ga,Mn)As 171
 13.3 Rare earth–group V compounds – ErAs 173
 13.4 Summary 175
Epilogue 177
Solutions to exercises 178
References 206
Index 210
1

Review of basic magnetostatics

“Mention magnetics and an image arises of musty physics labs peopled by old codgers with iron filings under their fingernails.”

Before we can begin our discussion of magnetic materials we need to understand some of the basic concepts of magnetism, such as what causes magnetic fields, and what effects magnetic fields have on their surroundings. These fundamental issues are the subject of this first chapter. Unfortunately, we are going to immediately run into a complication. There are two complementary ways of developing the theory and definitions of magnetism. The ‘physicist’s way’ is in terms of circulating currents, and the ‘engineer’s way’ is in terms of magnetic poles (such as we find at the ends of a bar magnet). The two developments lead to different views of which interactions are more fundamental, to slightly different-looking equations, and (to really confuse things) to two different sets of units. Most books that you’ll read choose one convention or the other and stick with it. Instead, throughout this book we are going to follow what happens in ‘real life’ (or at least at scientific conferences on magnetism) and use whichever convention is most appropriate to the particular problem. We’ll see that it makes most sense to use Système International d’Unités (SI) units when we talk in terms of circulating currents, and centimeter–gram–second (cgs) units for describing interactions between magnetic poles.

To avoid total confusion later, we will give our definitions in this chapter and the next from both viewpoints, and provide a conversion chart for units and equations at the end of Chapter 2. Reference 1 provides an excellent light-hearted discussion of the unit systems used in describing magnetism.
1 Review of basic magnetostatics

1.1 Magnetic field

1.1.1 Magnetic poles

So let’s begin by defining the magnetic field, H, in terms of magnetic poles. This is the order in which things happened historically – the law of interaction between magnetic poles was discovered by Michell in England in 1750, and by Coulomb in France in 1785, a few decades before magnetism was linked to the flow of electric current. These gentlemen found empirically that the force between two magnetic poles is proportional to the product of their pole strengths, p, and inversely proportional to the square of the distance between them,

$$ F \propto \frac{p_1 p_2}{r^2}. \quad (1.1) $$

This is analogous to Coulomb’s law for electric charges, with one important difference – scientists believe that single magnetic poles (magnetic monopoles) do not exist. They can however be approximated by one end of a very long bar magnet, which is how the experiments were carried out. By convention, the end of a freely suspended bar magnet which points towards magnetic north is called the north pole, and the opposite end is called the south pole.† In cgs units, the constant of proportionality is unity, so

$$ F = \frac{p_1 p_2}{r^2} \quad \text{(cgs)}, \quad (1.2) $$

where r is in centimeters and F is in dynes. Turning Eqn 1.2 around gives us the definition of pole strength:

A pole of unit strength is one which exerts a force of one dyne on another unit pole located at a distance of one centimeter.

The unit of pole strength does not have a name in the cgs system.

In SI units, the constant of proportionality in Eqn 1.1 is $1/4\pi \mu_0$, so

$$ F = \frac{1}{4\pi \mu_0} \frac{p_1 p_2}{r^2} \quad \text{(SI)}, \quad (1.3) $$

where μ_0 is called the permeability of free space, and has the value $4\pi \times 10^{-7}$ weber/ampere meter (Wb/Am). The SI unit of force is the newton (N), and 1 newton $= 10^5$ dyne (dyn).

To understand what causes the force, we can think of the first pole generating a magnetic field, \mathbf{H}, which in turn exerts a force on the second pole. So

$$ F = \left(\frac{p_1}{r^2} \right) p_2 = \mathbf{H} p_2 \quad (1.4) $$

† Note however that if we think of the earth’s magnetic field as originating from a bar magnet, then the *south* pole of the earth’s ‘bar magnet’ is actually at the magnetic north pole!
1.1 Magnetic field

Figure 1.1 Field lines around a bar magnet. By convention, the lines originate at the north pole and end at the south pole.

giving, by definition,

$$H = \frac{p_1}{r^2}. \quad (1.5)$$

So:

A field of unit strength is one which exerts a force of one dyne on a unit pole.

By convention, the north pole is the source of the magnetic field, and the south pole is the sink, so we can sketch the magnetic field lines around a bar magnet as shown in Fig. 1.1.

The units of magnetic field are oersteds (Oe) in cgs units, so a field of unit strength has an intensity of one oersted. In the SI system, the field from a pole is

$$H = \frac{p}{4\pi \mu_0 r^2} \quad (1.6)$$

and the units are amperes per meter (A/m); 1 Oe = (1000/4\pi) A/m.

The earth’s magnetic field has an intensity of around one-tenth of an oersted, and the field at the end of a typical kindergarten toy bar magnet is around 5000 Oe.

1.1.2 Magnetic flux

It’s appropriate next to introduce another rather abstract concept, that of magnetic flux, Φ. The idea behind the term ‘flux’ is that the field of a magnetic pole is conveyed to a distant place by something which we call a flux. Rigorously the flux is defined as the surface integral of the normal component of the magnetic field. This means that the amount of flux passing through unit area perpendicular to the field is equal to the field strength. So the field strength is equal to the amount of
flux per unit area, and the flux is the field strength times the area,
\[\Phi = HA. \]
(1.7)
The unit of flux in cgs units, the oersted cm2, is called the maxwell (Mx). In SI units the expression for flux is
\[\Phi = \mu_0 HA \]
(1.8)
and the unit of flux is called the weber.

Magnetic flux is important because a changing flux generates an electric current in any circuit which it intersects. In fact we define an ‘electromotive force’, ε, equal to the rate of change of the flux linked with the circuit:
\[\varepsilon = -\frac{d\Phi}{dt}. \]
(1.9)
Equation 1.9 is Faraday’s law of electromagnetic induction. The electromotive force provides the potential difference which drives electric current around the circuit. The minus sign in Eqn 1.9 shows us that the current sets up a magnetic field which acts in the opposite direction to the magnetic flux. (This is known as Lenz’s law).†

The phenomenon of electromagnetic induction leads us to an alternative definition of flux, which is (in SI units):

A flux of one weber, when reduced to zero in one second, produces an electromotive force of one volt in a one-turn coil through which it passes.

1.1.3 Circulating currents

The next development in the history of magnetism took place in Denmark in 1820 when Oersted discovered that a magnetic compass needle is deflected in the neighborhood of an electric current. This was really a huge breakthrough because it unified two sciences. The new science of electromagnetism, which dealt with forces between moving charges and magnets, encompassed both electricity, which described the forces between charges, and magnetism, which described the forces between magnets.

Then Ampère discovered (again experimentally) that the magnetic field of a small current loop is identical to that of a small magnet. (By small we mean small with respect to the distance at which the magnetic field is observed). The north pole of a bar magnet corresponds to current circulating in a counter-clockwise direction, whereas clockwise current is equivalent to the south pole, as shown in Fig. 1.2. In addition, Ampère hypothesized that all magnetic effects are due to current loops, and that the magnetic effects in magnetic materials such as iron are due to so-called

† We won’t cover electromagnetic induction in much detail in this book. A good introductory text is Ref. 2.
molecular currents’. This was remarkably insightful considering that the electron would not be discovered for another 100 years! Today it’s believed that magnetic effects are caused by the orbital and spin angular momenta of electrons.

This leads us to an alternative definition of the magnetic field, in terms of current flow:

A current of one ampere passing through an infinitely long straight wire generates a field of strength \(\frac{1}{2\pi} \) amperes per meter at a radial distance of one meter.

Of course the next obvious question to ask is what happens if the wire is not straight? What magnetic field does a general circuit produce? Ampère solved this one too.

1.1.4 Ampère’s circuital law

Ampère observed that the magnetic field generated by an electrical circuit depends on both the shape of the circuit and on the amount of current being carried. In fact, the total current, \(I \), is equal to the line integral of the magnetic field around a closed path containing the current. In SI units

\[
\oint H \cdot dl = I. \tag{1.10}
\]

This expression is called Ampère’s circuital law, and it can be used to calculate the field produced by a current-carrying conductor. We will look at some examples later.

1.1.5 Biot–Savart law

An equivalent statement to Ampère’s circuital law (which is sometimes easier to use for particular symmetries) is given by the Biot–Savart law. The Biot–Savart law gives the field contribution, \(\delta H \), generated by a current flowing in an elemental
1 Review of basic magnetostatics

Figure 1.3 Calculation of the field from a current flowing in a long straight wire, using Ampère’s circuital law.

length, δl of a conductor:

$$
\delta H = \frac{1}{4\pi r^2} I \delta l \times \hat{u} \tag{1.11}
$$

where r is the radial distance from the conductor, and \hat{u} is a unit vector along the radial direction.

1.1.6 Field from a straight wire

To show that these laws are equivalent, let’s use them both to calculate the magnetic field generated by a current flowing in a straight wire.

First using Ampère’s law. The geometry of the problem is shown in Fig. 1.3. If we assume that the field lines go around the wire in closed circles (by symmetry this is a fairly safe assumption) then the field, H, has the same value at all points on a circle concentric with the wire. This makes the line integral of Eqn 1.10 straightforward. It’s just

$$
\oint H \cdot dl = 2\pi a H = I \quad \text{by Ampère’s law,} \tag{1.12}
$$

and so the field, H, at a distance a from the wire is

$$
H = \frac{I}{2\pi a}. \tag{1.13}
$$

For this particular problem, the Biot–Savart law is somewhat less straightforward to apply. The geometry for calculating the field at a point P at a distance a from the wire is shown in Fig. 1.4. Now

$$
\delta H = \frac{1}{4\pi r^2} I \delta l \times \hat{u}
= \frac{1}{4\pi r^2} I |\delta l||\hat{u}| \sin \theta \tag{1.14}
$$

where θ is the angle between δl and \hat{u}, which is equal to $(90 + \alpha)$. So

$$
\delta H = \frac{I}{4\pi r^2} r \delta l \sin(90 + \alpha)
= \frac{I}{4\pi r^2 \cos \alpha} \sin(90 + \alpha) \tag{1.15}
$$
Figure 1.4 Calculation of the field from a current flowing in a long straight wire, using the Biot–Savart law.

since \(\delta I = r \delta \alpha / \cos \alpha \).

But \(\sin(90 + \alpha) = \cos \alpha \), and \(r = a / \cos \alpha \). So

\[
\delta H = \frac{I}{4\pi} \frac{\cos^2 \alpha}{a^2} \frac{a \delta \alpha}{\cos^\alpha} \cos \alpha
= \frac{I \cos \alpha \delta \alpha}{4\pi a}
\]

(1.16)

and

\[
H = \frac{I}{4\pi a} \int_{-\pi/2}^{\pi/2} \cos \alpha \, d\alpha
= \frac{I}{4\pi a} [\sin \alpha]_{-\pi/2}^{\pi/2}
= \frac{I}{2\pi a}.
\]

The same result as that obtained using Ampère’s law! Clearly Ampère’s law was a better choice for this particular problem.

Unfortunately, analytic expressions for the field produced by a current can only be obtained for conductors with rather simple geometries. For more complicated shapes the field must be calculated numerically. Numerical calculation of magnetic fields is an active research area, and is tremendously important in the design of electromagnetic devices. A review is given in Ref. 3.

1.2 Magnetic moment

Next we need to introduce the concept of magnetic moment, which is the moment of the couple exerted on either a bar magnet or a current loop when it is in an applied field. Again we can define the magnetic moment either in terms of poles, or in terms of currents.
Imagine a bar magnet is at an angle θ to a magnetic field, H, as shown in Fig. 1.5. We showed in Section 1.1.1 that the force on each pole, $F = pH$. So the moment acting on the magnet, which is just the force times the perpendicular distance from the center of mass, is

$$pH \sin \theta \frac{l}{2} + pH \sin \theta \frac{l}{2} = pHl \sin \theta = mH \sin \theta$$

where $m = pl$, the product of the pole strength and the length of the magnet, is the magnetic moment. (Our notation here is to represent vector quantities by bold italic type, and their magnitudes by regular italic type). This gives a definition:

The magnetic moment is the moment of the couple exerted on a magnet when it is perpendicular to a uniform field of 1 oersted.

Alternatively, if a current loop has area A and carries a current I, then its magnetic moment is defined as

$$m = IA.$$ \hfill (1.19)

The cgs unit of magnetic moment is the emu. In SI units, magnetic moment is measured in A m2.

1.2.1 Magnetic dipole

A magnetic dipole is defined as either the magnetic moment, m, of a bar magnet in the limit of small length but finite moment, or the magnetic moment m of a current loop in the limit of small area but finite moment. The field lines around a magnetic dipole are shown in Fig. 1.6. The energy of a magnetic dipole is defined to be zero when the dipole is perpendicular to a magnetic field. So the work done (in ergs) in
turning through an angle $d\theta$ against the field is

$$
\begin{align*}
\Delta E &= 2(\mu H \sin \theta) \frac{l}{2} d\theta \\
&= m H \sin \theta d\theta
\end{align*}
$$

and the energy of a dipole at an angle θ to a magnetic field is

$$
\begin{align*}
E &= \int_{\pi/2}^{\theta} m H \sin \theta d\theta \\
&= -m H \cos \theta \\
&= -m \cdot H.
\end{align*}
$$

This expression for the energy of a magnetic dipole in a magnetic field is in cgs units. In SI units the energy is $E = -\mu_0 m \cdot H$. We will be using the concept of magnetic dipole, and this expression for its energy in a magnetic field, extensively throughout this book.

1.3 Definitions

Finally for this chapter, let’s review the definitions which we’ve introduced so far. Here we give all the definitions in cgs units.

1. **Magnetic pole, p**. A pole of unit strength is one which exerts a force of one dyne on another unit pole located at a distance of one centimeter.

2. **Magnetic field, H**. A field of unit strength is one which exerts a force of one dyne on a unit pole.

3. **Magnetic flux, Φ**. The amount of magnetic flux passing through an area A is equal to the product of the magnetic field strength and the area; $\Phi = HA$.

4. **Magnetic moment, m**. The magnetic moment of a magnet is the moment of the couple exerted on the magnet when it is perpendicular to a uniform field of one oersted. For a bar magnet, $m = pl$, where p is the pole strength, and l is the length of the magnet.

5. **Magnetic dipole**. The energy of a magnetic dipole in a magnetic field is the dot product of the magnetic moment and the magnetic field; $E = -m \cdot H$.
1 Review of basic magnetostatics

Homework

Exercises

1.1 Using either the Biot–Savart law or Ampère’s circuital law, derive a general expression for the magnetic field produced by a current flowing in a circular coil, at the center of the coil.

1.2a Derive an expression for the field produced by a current flowing in a circular coil, at a general point on the axis of the coil.

1.2b Could we derive a corresponding analytic expression for the field at a general, off-axis point? If not, how might we go about calculating magnetic fields for generalized geometries?

1.3a Calculate the field generated by an electron moving in a circular orbit of radius $1 \, \text{Å}$ ($1 \, \text{Å} = 10^{-10} \, \text{m}$) with angular momentum $\hbar \, \text{J} \, \text{s}$, at a distance of $3 \, \text{Å}$ from the center of the orbit, and along its axis.

1.3b Calculate the magnetic dipole moment of the electron in 1.3a. Give your answer in SI and cgs units.

1.3c Calculate the magnetic dipolar energy of the circulating electron in 1.3a, when it is in the field generated by a second identical circulating electron at a distance of $3 \, \text{Å}$ away along its axis. Assume that the magnetic moment of the first electron is aligned parallel to the field from the second electron.

1.4 Derive an expression for the field H produced by ‘Helmholtz coils’, that is, two coaxial coils each of radius a, and separated by a distance a, at a point on the axis x between the coils:

 (a) with current flowing in the same sense in each coil, and
 (b) with current flowing in the opposite sense in each coil. In this case, derive the expression for dH/dx also.

For $a = 1 \, \text{m}$, and for both current orientations, calculate the value of the field halfway between the coils, and at $\frac{1}{4}$ and $\frac{3}{4}$ along the axis. What qualitative feature of the field is significant in each case? Suggest a use for each pair of Helmholtz coils.

Further reading
