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Chapter 6
Electronic structures

Electrons are the “glue” that holds the nuclei together in the chemical
bonds of molecules and ions. Of course, it is the nuclei’s positive charges
that bind the electrons to the nuclei. The competitions among Coulomb
repulsions and attractions as well as the existence of non-zero electronic
and nuclear kinetic energies make the treatment of the full electronic–
nuclear Schrödinger equation an extremely difficult problem. Electronic
structure theory deals with the quantum states of the electrons, usually
within the Born–Oppenheimer approximation (i.e., with the nuclei held
fixed). It also addresses the forces that the electrons’ presence creates
on the nuclei; it is these forces that determine the geometries and en-
ergies of various stable structures of the molecule as well as transition
states connecting these stable structures. Because there are ground and
excited electronic states, each of which has different electronic proper-
ties, there are different stable-structure and transition-state geometries
for each such electronic state. Electronic structure theory deals with all of
these states, their nuclear structures, and the spectroscopies (e.g., elec-
tronic, vibrational, rotational) connecting them.

Theoretical treatment of electronic structure:
atomic and molecular orbital theory

In Chapter 5’s discussion of molecular structure, I introduced you to the strategies
that theory uses to interpret experimental data relating to such matters, and how
and why theory can also be used to simulate the behavior of molecules. In carrying
out simulations, the Born–Oppenheimer electronic energy E(R) as a function of
the 3N coordinates of the N atoms in the molecule plays a central role. It is
on this landscape that one searches for stable isomers and transition states, and
it is the second derivative (Hessian) matrix of this function that provides the
harmonic vibrational frequencies of such isomers. In the present chapter, I want
to provide you with an introduction to the tools that we use to solve the electronic
Schrödinger equation to generate E(R) and the electronic wave function�(r | R).
In essence, this treatment will focus on orbitals of atoms and molecules and how
we obtain and interpret them.

184
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For an atom, one can approximate the orbitals by using the solutions of the hy-
drogenic Schrödinger equation discussed in the Background Material. Although
such functions are not proper solutions to the actual N -electron Schrödinger
equation (believe it or not, no one has ever solved exactly any such equation for
N > 1) of any atom, they can be used as perturbation or variational starting-point
approximations when one may be satisfied with qualitatively accurate answers.
In particular, the solutions of this one-electron hydrogenic problem form the
qualitative basis for much of atomic and molecular orbital theory. As discussed
in detail in the Background Material, these orbitals are labeled by n, l, and m
quantum numbers for the bound states and by l and m quantum numbers and the
energy E for the continuum states.

Much as the particle-in-a-box orbitals are used to qualitatively describe
π-electrons in conjugated polyenes or electronic bands in solids, these so-called
hydrogen-like orbitals provide qualitative descriptions of orbitals of atoms with
more than a single electron. By introducing the concept of screening as a way to
represent the repulsive interactions among the electrons of an atom, an effective
nuclear charge Zeff can be used in place of Z in the hydrogenic ψn,l,m and En,l

formulas of the Background Material to generate approximate atomic orbitals
to be filled by electrons in a many-electron atom. For example, in the crudest
approximation of a carbon atom, the two 1s electrons experience the full nuclear
attraction, so Zeff = 6 for them, whereas the 2s and 2p electrons are screened
by the two 1s electrons, so Zeff = 4 for them. Within this approximation, one
then occupies two 1s orbitals with Z = 6, two 2s orbitals with Z = 4 and two 2p
orbitals with Z = 4 in forming the full six-electron product wave function of the
lowest-energy state of carbon:

�(1, 2, . . . , 6) = ψ1sα(1)ψ1sβ(2)ψ2sα(3) . . . ψ2p(0)β(6). (6.1)

However, such approximate orbitals are not sufficiently accurate to be of use
in quantitative simulations of atomic and molecular structure. In particular, their
energies do not properly follow the trends in atomic orbital (AO) energies that are
taught in introductory chemistry classes and that are shown pictorially in Fig. 6.1.
For example, the relative energies of the 3d and 4s orbitals are not adequately
described in a model that treats electron repulsion effects in terms of a simple
screening factor. So, now it is time to examine how we can move beyond the
screening model and take the electron repulsion effects, which cause the inter-
electronic couplings that render the Schrödinger equation insoluble, into account
in a more reliable manner.

6.1 Orbitals

6.1.1 The Hartree description

The energies and wave functions within the most commonly used theories of
atomic structure are assumed to arise as solutions of a Schrödinger equation
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whose Hamiltonian he(r ) possess three kinds of energies:

(i) Kinetic energy, whose average value is computed by taking the expectation value
of the kinetic energy operator −h2/2m∇2 with respect to any particular solution
φJ (r ) to the Schrödinger equation: KE = 〈φJ | − h2/2m∇2|φJ 〉;

(ii) Coulomb attraction energy with the nucleus of charge Z : 〈φJ | − Ze2/r |φJ 〉;
(iii) Coulomb repulsion energies with all of the n − 1 other electrons, which are

assumed to occupy other atomic orbitals (AOs) denoted φK , with this energy
computed as

∑
K 〈φJ (r )φK (r ′)|(e2/|r − r ′|)|φJ (r )φK (r ′)〉.

The so-called Dirac notation 〈φJ (r )φK (r ′)|(e2/|r − r ′|)|φJ (r )φK (r ′)〉 is used
to represent the six-dimensional Coulomb integral JJ,K = ∫ |φJ (r )|2|φK (r ′)|2
(e2/| r − r ′)drdr ′ that describes the Coulomb repulsion between the charge den-
sity |φJ (r )|2 for the electron in φJ and the charge density |φK (r ′)|2 for the electron
in φK . Of course, the sum over K must be limited to exclude K = J to avoid
counting a “self-interaction” of the electron in orbital φJ with itself.

The total energy εJ of the orbital φJ is the sum of the above three contributions:

εJ = 〈φJ | − h2

2m
∇2|φJ 〉 + 〈φJ | − Ze2

|r | |φJ 〉

+
∑

K

〈φJ (r )φK (r ′)| e2

|r − r ′| |φJ (r )φK (r ′)〉. (6.2)
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This treatment of the electrons and their orbitals is referred to as the Hartree-
level of theory. As stated above, when screened hydrogenic AOs are used to
approximate the φJ and φK orbitals, the resultant εJ values do not produce
accurate predictions. For example, the negative of εJ should approximate the
ionization energy for removal of an electron from the AO φJ . Such ionization
potentials (IPs) can be measured, and the measured values do not agree well with
the theoretical values when a crude screening approximation is made for the AOs.

6.1.2 The LCAO expansion

To improve upon the use of screened hydrogenic AOs, it is most common to
approximate each of the Hartree AOs {φK } as a linear combination of so-called
basis AOs {χµ}:

φJ =
∑

µ

CJ,µχµ, (6.3)

using what is termed the linear-combination-of-atomic-orbitals (LCAO) expan-
sion. In this equation, the expansion coefficients {CJ,µ} are the variables that are
to be determined by solving the Schrödinger equation

heφJ = εJ φJ . (6.4)

After substituting the LCAO expansion for φJ into this Schrödinger equation,
multiplying on the left by one of the basis AOs χν , and then integrating over the
coordinates of the electron in φJ , one obtains∑

µ

〈χν |he|χµ〉CJ,µ = εJ

∑
µ

〈χν | χµ〉CJ,µ. (6.5)

This is a matrix eigenvalue equation in which the εJ and {CJ,µ} appear as eigen-
values and eigenvectors. The matrices 〈χν |he|χµ〉 and 〈χν | χµ〉 are called the
Hamiltonian and overlap matrices, respectively. An explicit expression for the
former is obtained by introducing the earlier definition of he:

〈χν |he|χµ〉 = 〈χν | − h2

2m
∇2|χµ〉 + 〈χν | − Ze2

|r | |χµ〉

+
∑
K ,η,γ

CK ,ηCK ,γ 〈χν(r )χη(r ′)|
(

e2

|r − r ′|
)

|χµ(r )χγ (r ′)〉. (6.6)

An important thing to notice about the form of the matrix Hartree equations
is that to compute the Hamiltonian matrix, one must know the LCAO coeffi-
cients {CK ,γ } of the orbitals which the electrons occupy. On the other hand,
these LCAO coefficients are supposed to be found by solving the Hartree matrix
eigenvalue equations. This paradox leads to the need to solve these equations
iteratively in a so-called self-consistent field (SCF) technique. In the SCF pro-
cess, one inputs an initial approximation to the {CK ,γ } coefficients. This then
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allows one to form the Hamiltonian matrix defined above. The Hartree matrix
equations

∑
µ〈χν |he|χµ〉CJ,µ = εJ

∑
µ〈χν | χµ〉CJ,µ are then solved for “new”

{CK ,γ } coefficients and for the orbital energies {εK }. The new LCAO coefficients
of those orbitals that are occupied are then used to form a “new” Hamiltonian
matrix, after which the Hartree equations are again solved for another generation
of LCAO coefficients and orbital energies. This process is continued until the
orbital energies and LCAO coefficients obtained in successive iterations do not
differ appreciably. Upon such convergence, one says that a self-consistent field
has been realized because the {CK ,γ } coefficients are used to form a Coulomb
field potential that details the electron–electron interactions.

6.1.3 AO basis sets

STOs and GTOs
As noted above, it is possible to use the screened hydrogenic orbitals as the
{χµ}. However, much effort has been expended at developing alternative sets of
functions to use as basis orbitals. The result of this effort has been to produce
two kinds of functions that currently are widely used.

The basis orbitals commonly used in the LCAO process fall into two primary
classes:

(i) Slater-type orbitals (STOs) χn,l,m(r, θ, φ) = Nn,l,m,ζ Yl,m(θ, φ)rn−1 exp(−ζr ) are
characterized by quantum numbers n, l, and m and exponents (which characterize
the orbital’s radial “size”) ζ . The symbol Nn,l,m,ζ denotes the normalization
constant.

(ii) Cartesian Gaussian-type orbitals (GTOs) χa,b,c(r, θ, φ) = N ′
a,b,c,αxa ybzc

exp(−αr 2) are characterized by quantum numbers a, b, and c, which detail the
angular shape and direction of the orbital, and exponents α which govern the radial
“size”.

For both types of AOs, the coordinates r , θ , and φ refer to the position of
the electron relative to a set of axes attached to the nucleus on which the basis
orbital is located. Note that Slater-type orbitals (STOs) are similar to hydrogenic
orbitals in the region close to the nucleus. Specifically, they have a non-zero slope
near the nucleus (i.e., d/dr (exp(−ζr ))r=0 = −ζ ). In contrast, GTOs have zero
slope near r = 0 because d/dr (exp(−αr2))r=0 = 0. We say that STOs display a
“cusp” at r = 0 that is characteristic of the hydrogenic solutions, whereas GTOs
do not.

Although STOs have the proper “cusp” behavior near nuclei, they are used
primarily for atomic and linear-molecule calculations because the multi-center in-
tegrals 〈χµ(1)χκ (2)|e2/|r1 − r2‖χν(1)χγ (2)〉 which arise in polyatomic-molecule
calculations (we will discuss these integrals later in this chapter) can not efficiently



Orbitals 189

be evaluated when STOs are employed. In contrast, such integrals can routinely
be computed when GTOs are used. This fundamental advantage of GTOs has led
to the dominance of these functions in molecular quantum chemistry.

To overcome the primary weakness of GTO functions (i.e., their radial deriva-
tives vanish at the nucleus), it is common to combine two, three, or more GTOs,
with combination coefficients which are fixed and not treated as LCAO parame-
ters, into new functions called contracted GTOs or CGTOs. Typically, a series of
radially tight, medium, and loose GTOs are multiplied by contraction coefficients
and summed to produce a CGTO which approximates the proper “cusp” at the
nuclear center (although no such combination of GTOs can exactly produce such
a cusp because each GTO has zero slope at r = 0).

Although most calculations on molecules are now performed using Gaussian
orbitals, it should be noted that other basis sets can be used as long as they span
enough of the regions of space (radial and angular) where significant electron
density resides. In fact, it is possible to use plane wave orbitals of the form
χ (r, θ, φ) = N exp[i(kxr sin θ cos φ + kyr sin θ sin φ + kzr cos θ )], where N is
a normalization constant and kx , ky , and kz are quantum numbers detailing the
momenta of the orbital along the x, y, and z Cartesian directions. The advantage
to using such “simple” orbitals is that the integrals one must perform are much
easier to handle with such functions. The disadvantage is that one must use many
such functions to accurately describe sharply peaked charge distributions of, for
example, inner-shell core orbitals.

Much effort has been devoted to developing and tabulating in widely available
locations sets of STO or GTO basis orbitals for main-group elements and transi-
tion metals. This ongoing effort is aimed at providing standard basis set libraries
which:

(i) Yield predictable chemical accuracy in the resultant energies.
(ii) Are cost effective to use in practical calculations.

(iii) Are relatively transferable so that a given atom’s basis is flexible enough to be used
for that atom in various bonding environments (e.g., hybridization and degree of
ionization).

The fundamental core and valence basis
In constructing an atomic orbital basis, one can choose from among several
classes of functions. First, the size and nature of the primary core and valence
basis must be specified. Within this category, the following choices are common:

(i) A minimal basis in which the number of CGTO orbitals is equal to the number of
core and valence atomic orbitals in the atom.

(ii) A double-zeta (DZ) basis in which twice as many CGTOs are used as there are core
and valence atomic orbitals. The use of more basis functions is motivated by a
desire to provide additional variational flexibility so the LCAO process can
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generate molecular orbitals of variable diffuseness as the local electronegativity of
the atom varies.

(iii) A triple-zeta (TZ) basis in which three times as many CGTOs are used as the
number of core and valence atomic orbitals (of course, there are quadruple-zeta
and higher-zeta bases also).

Optimization of the orbital exponents (ζ s or αs) and the GTO-to-CGTO con-
traction coefficients for the kind of bases described above have undergone explo-
sive growth in recent years. The theory group at the Pacific Northwest National
Labs (PNNL) offer a World Wide Web site from which one can find (and even
download in a form prepared for input to any of several commonly used electronic
structure codes) a wide variety of Gaussian atomic basis sets. This site can be
accessed at http://www.emsl.pnl.gov:2080/forms/basisform.html.

Polarization functions
One usually enhances any core and valence basis set with a set of so-called
polarization functions. They are functions of one higher angular momentum than
appears in the atom’s valence orbital space (e.g, d-functions for C, N, and O and
p-functions for H), and they have exponents (ζ or α) which cause their radial
sizes to be similar to the sizes of the valence orbitals (i.e., the polarization p
orbitals of the H atom are similar in size to the 1s orbital). Thus, they are not
orbitals which describe the atom’s valence orbital with one higher l-value; such
higher-l valence orbitals would be radially more diffuse.

The primary purpose of polarization functions is to give additional angular
flexibility to the LCAO process in forming bonding orbitals between pairs of
valence atomic orbitals. This is illustrated in Fig. 6.2 where polarization dπ

orbitals on C and O are seen to contribute to formation of the bonding π orbital of a
carbonyl group by allowing polarization of the carbon atom’s pπ orbital toward the
right and of the oxygen atom’s pπ orbital toward the left. Polarization functions are
essential in strained ring compounds because they provide the angular flexibility
needed to direct the electron density into regions between bonded atoms, but they
are also important in unstrained compounds when high accuracy is required.

Diffuse functions
When dealing with anions or Rydberg states, one must further augment the AO
basis set by adding so-called diffuse basis orbitals. The valence and polarization
functions described above do not provide enough radial flexibility to adequately
describe either of these cases. The PNNL web site data base cited above offers a
good source for obtaining diffuse functions appropriate to a variety of atoms.

Once one has specified an atomic orbital basis for each atom in the molecule,
the LCAO-MO procedure can be used to determine the Cµ,i coefficients that
describe the occupied and virtual (i.e., unoccupied) orbitals. It is important to
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keep in mind that the basis orbitals are not themselves the SCF orbitals of the
isolated atoms; even the proper atomic orbitals are combinations (with atomic
values for the Cµ,i coefficients) of the basis functions. The LCAO-MO-SCF
process itself determines the magnitudes and signs of the Cµ,i . In particular, it is
alternations in the signs of these coefficients that allow radial nodes to form.

6.1.4 The Hartree–Fock approximation

Unfortunately, the Hartree approximation discussed above ignores an important
property of electronic wave functions – their permutational antisymmetry. The
full Hamiltonian

H =
∑

j

(
− h2

2m
∇2

j − Ze2

r j

)
+ 1

2

∑
j,k

e2

|r j − rk | (6.7)

is invariant (i.e., is left unchanged) under the operation Pi, j in which a pair of
electrons have their labels (i, j) permuted. We say that H commutes with the
permutation operator Pi, j . This fact implies that any solution � to H� = E�

must also be an eigenfunction of Pi, j . Because permutation operators are
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idempotent, which means that if one applies P twice, one obtains the identity
PP = 1, it can be seen that the eigenvalues of P must be either +1 or −1. That
is, if P� = c�, then PP � = cc�, but PP = 1 means that cc = 1, so c = +1
or −1.

As a result of H commuting with electron permutation operators and of the
idempotency of P , the eigenfunctions � must either be odd or even under the
application of any such permutation. Particles whose wave functions are even
under P are called Bose particles or bosons, those for which � is odd are called
fermions. Electrons belong to the latter class of particles.

The simple spin-orbital product function used in Hartree theory

� =
∏

k=1,N

φk (6.8)

does not have the proper permutational symmetry. For example, the Be atom
function � = 1sα(1) 1sβ(2) 2sα(3) 2sβ(4) is not odd under the interchange of
the labels of electrons 3 and 4; instead one obtains 1sα(1) 1sβ(2) 2sα(4) 2sβ(3).
However, such products of spin-orbitals (i.e., orbitals multiplied by α or β spin
functions) can be made into properly antisymmetric functions by forming the
determinant of an N × N matrix whose row index labels the spin-orbital and
whose column index labels the electrons. For example, the Be atom function
1sα(1) 1sβ(2) 2sα(3) 2sβ(4) produces the 4 × 4 matrix whose determinant is
shown below ∣∣∣∣∣∣∣∣∣

1sα(1) 1sα(2) 1sα(3) 1sα(4)

1sβ(1) 1sβ(2) 1sβ(3) 1sβ(4)

2sα(1) 2sα(2) 2sα(3) 2sα(4)

2sβ(1) 2sβ(2) 2sβ(3) 2sβ(4)

∣∣∣∣∣∣∣∣∣
(6.9)

Clearly, if one interchanges any columns of this determinant, one changes the
sign of the function. Moreover, if a determinant contains two or more rows that
are identical (i.e., if one attempts to form such a function having two or more
spin-orbitals equal), it vanishes. This is how such antisymmetric wave functions
embody the Pauli exclusion principle.

A convenient way to write such a determinant is as follows:∑
P

(−1)pφP1(1)φP2(2) . . . φPN (N ), (6.10)

where the sum is over all N ! permutations of the N spin-orbitals and the notation
(−1)p means that a −1 is affixed to any permutation that involves an odd number
of pairwise interchanges of spin-orbitals and a +1 sign is given to any that involves
an even number. To properly normalize such a determinental wave function, one
must multiply it by (N !)−1/2. So, the final result is that wave functions of the form

� = (N !)−1/2
∑

P

(−1)pφP1(1)φP2(2) . . . φPN (N ) (6.11)
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have the proper permutational antisymmetry. Note that such functions consist
of a sum of N ! factors, all of which have exactly the same number of electrons
occupying the same number of spin orbitals; the only difference among the N !
terms involves which electron occupies which spin-orbital. For example, in the
1sα 2sα function appropriate to the excited state of He, one has

� = (2)−1/2{1sα(1) 2sα(2) − 2sα(1) 1sα(2)}. (6.12)

This function is clearly odd under the interchange of the labels of the two electrons,
yet each of its two components has one electron in a 1sα spin-orbital and another
electron in a 2sα spin-orbital.

Although having to make � antisymmetric appears to complicate mat-
ters significantly, it turns out that the Schrödinger equation appropriate to the
spin-orbitals in such an antisymmetrized product wave function is nearly the
same as the Hartree Schrödinger equation treated earlier. In fact, the resultant
equation is

heφJ =
[
− h2

2m
∇2 − Ze2

r
+
∑

K

〈φK (r ′)| e2

|r − r ′| |φK (r ′)〉
]

φJ (r )

−
∑

K

〈φK (r ′)| e2

|r − r ′| |φJ (r ′)〉φK (r )

= εJ φJ (r ). (6.13)

In this expression, which is known as the Hartree–Fock equation, the same kinetic
and nuclear attraction potentials occur as in the Hartree equation. Moreover, the
same Coulomb potential

∑
K

∫
φK (r ′)e2/|r − r ′|φK (r ′)dr ′ =

∑
K

〈φK (r ′)|e2/|r − r ′| | φK (r ′)〉

=
∑

K

JK (r ) (6.14)

appears. However, one also finds a so-called exchange contribution to the Hartree–
Fock potential that is equal to

∑
L〈φL (r ′)|(e2/|r − r ′|)|φJ (r ′)〉φL (r ) and is often

written in short-hand notation as
∑

L KLφJ (r ). Notice that the Coulomb and
exchange terms cancel for the L = J case; this causes the artificial self-interaction
term JLφL (r ) that can appear in the Hartree equations (unless one explicitly
eliminates it) to automatically cancel with the exchange term KLφL (r ) in the
Hartree–Fock equations.

When the LCAO expansion of each Hartree–Fock (HF) spin-orbital is substi-
tuted into the above HF Schrödinger equation, a matrix equation is again obtained:

∑
µ

〈χν |he|χµ〉CJ,µ = εJ

∑
µ

〈χν | χµ〉CJ,µ, (6.15)
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Overlap region

Figure 6.3 An s and a p
orbital and their overlap
region.

where the overlap integral 〈χν | χµ〉 is as defined earlier, and the he matrix
element is

〈χν |he|χµ〉 = 〈χν | − h2

2m
∇2|χµ〉 +

〈
χν | − Ze2

|r | χµ

〉

+
∑
K ,η,γ

CK ,ηCK ,γ

[
〈χν(r )χη(r ′)|

(
e2

|r − r ′|
)

|χµ(r )χγ (r ′)〉

−〈χν(r )χη(r ′)|
(

e2

|r − r ′|
)

|χγ (r )χµ(r ′)〉
]

. (6.16)

Clearly, the only difference between this expression and the corresponding result
of Hartree theory is the presence of the last term, the exchange integral. The SCF
interative procedure used to solve the Hartree equations is again used to solve
the HF equations.

Next, I think it is useful to reflect on the physical meaning of the Coulomb
and exchange interactions between pairs of orbitals. For example, the Coulomb
integral J1,2 = ∫ |φ1(r )|2e2/|r − r ′|φ2(r ′)|2drdr ′ appropriate to the two orbitals
shown in Fig. 6.3 represents the Coulomb repulsion energy e2/|r − r ′| of two
charge densities, |φ1|2 and |φ2|2, integrated over all locations r and r ′ of the two
electrons.

In contrast, the exchange integral K1,2 = ∫ φ1(r )φ2(r ′)e2/|r − r ′|φ2(r )φ1

(r ′)drdr ′ can be thought of as the Coulomb repulsion between two electrons
whose coordinates r and r ′ are both distributed throughout the “overlap region”
φ1φ2. This overlap region is where both φ1 and φ2 have appreciable magnitude, so
exchange integrals tend to be significant in magnitude only when the two orbitals
involved have substantial regions of overlap.

Finally, a few words are in order about one of the most computer time-
consuming parts of any Hartree–Fock calculation (or those discussed later) –
the task of evaluating and transforming the two-electron integrals 〈χν(r )χη(r ′)|
(e2/|r − r ′|)|χµ(r )χγ (r ′)〉. Even when M GTOs are used as basis functions,
the evaluation of M 4/8 of these integrals poses a major hurdle. For example,
with 500 basis orbitals, there will be of the order of 7.8 × 109 such integrals.
With each integral requiring 2 words of disk storage, this would require at least
1.5 × 104 Mwords of disk storage. Even in the era of modern computers that pos-
sess 100 Gby disks, this is a significant requirement. One of the more important
technical advances that is under much current development is the efficient calcu-
lation of such integrals when the product functions χν(r )χµ(r ) and χγ (r ′)χη(r ′)
that display the dependence on the two electrons’ coordinates r and r ′ are spatially
distant. In particular, multipolar expansions of these product functions are used to
obtain more efficient approximations to their integrals when these functions are
far apart. Moreover, such expansions offer a reliable way to “ignore” (i.e., approx-
imate as zero) many integrals whose product functions are sufficiently distant.
Such approaches show considerable promise for reducing the M 4/8 two-electron
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integral list to one whose size scales much less strongly with the size of the AO
basis.

Koopmans’ theorem
The HF-SCF equations heφi = εiφi imply that the orbital energies εi can be
written as

εi = 〈φi |he|φi 〉 = 〈φi |T + V |φi 〉 +
∑

j(occupied)

〈φi |Jj − K j |φi 〉

= 〈φi |T + V |φi 〉 +
∑

j(occupied)

[Ji, j − Ki, j ], (6.17)

where T + V represents the kinetic (T ) and nuclear attraction (V ) energies,
respectively. Thus, εi is the average value of the kinetic energy plus Coulomb
attraction to the nuclei for an electron in φi plus the sum over all of the spin-
orbitals occupied in � of Coulomb minus exchange interactions.

If φi is an occupied spin-orbital, the j = i term [Ji,i − Ki,i ] disappears in the
above sum and the remaining terms in the sum represent the Coulomb minus
exchange interaction of φi with all of the N − 1 other occupied spin-orbitals.
If φi is a virtual spin-orbital, this cancellation does not occur because the sum
over j does not include j = i . So, one obtains the Coulomb minus exchange
interaction of φi with all N of the occupied spin-orbitals in �. Hence the en-
ergies of occupied orbitals pertain to interactions appropriate to a total of N
electrons, while the energies of virtual orbitals pertain to a system with N + 1
electrons.

Let us consider the following model of the detachment or attachment of an
electron in an N -electron system.

(i) In this model, both the parent molecule and the species generated by adding or
removing an electron are treated at the single-determinant level.

(ii) The Hartree–Fock orbitals of the parent molecule are used to describe both species.
It is said that such a model neglects “orbital relaxation” (i.e., the reoptimization of
the spin-orbitals to allow them to become appropriate to the daughter species).

Within this model, the energy difference between the daughter and the parent
can be written as follows (φk represents the particular spin-orbital that is added
or removed): for electron detachment:

E N−1 − E N = −εk ; (6.18)

and for electron attachment:

E N − E N+1 = −εk . (6.19)

So, within the limitations of the HF, frozen-orbital model, the ionization poten-
tials (IPs) and electron affinities (EAs) are given as the negative of the occupied
and virtual spin-orbital energies, respectively. This statement is referred to as
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Koopmans’ theorem; it is used extensively in quantum chemical calculations as
a means of estimating IPs and EAs and often yields results that are qualitatively
correct (i.e., ±0.5 eV).

Orbital energies and the total energy
The total HF-SCF electronic energy can be written as

E =
∑

i(occupied)

〈φi |T + V |φi 〉 +
∑

i> j(occupied)

[ Ji, j − Ki, j ], (6.20)

and the sum of the orbital energies of the occupied spin-orbitals is given by

∑
i(occupied)

εi =
∑

i(occupied)

〈φi |T + V |φi 〉 +
∑

i, j(occupied)

[ Ji, j − Ki, j ]. (6.21)

These two expressions differ in a very important way; the sum of occupied orbital
energies double counts the Coulomb minus exchange interaction energies. Thus,
within the Hartree–Fock approximation, the sum of the occupied orbital energies
is not equal to the total energy. This finding teaches us that we can not think of
the total electronic energy of a given orbital occupation in terms of the orbital
energies alone. We need to also keep track of the inter-electron Coulomb and
exchange energies.

6.1.5 Molecular orbitals

Before moving on to discuss methods that go beyond the HF model, it is ap-
propriate to examine some of the computational effort that goes into carrying
out an SCF calculation on molecules. The primary differences that appear when
molecules rather than atoms are considered are:

(i) The electronic Hamiltonian he contains not only one nuclear-attraction Coulomb
potential

∑
j Ze2/r j but a sum of such terms, one for each nucleus in the molecule∑

a

∑
j Zae2/|r j − Ra |, whose locations are denoted Ra .

(ii) One has AO basis functions of the type discussed above located on each nucleus of
the molecule. These functions are still denoted χµ(r − Ra), but their radial and
angular dependences involve the distance and orientation of the electron relative to
the particular nucleus on which the AO is located.

Other than these two changes, performing a SCF calculation on a molecule (or
molecular ion) proceeds just as in the atomic case detailed earlier. Let us briefly
review how this iterative process occurs.

Once atomic basis sets have been chosen for each atom, the one- and two-
electron integrals appearing in the h and overlap matrices must be evaluated.
There are numerous highly efficient computer codes that allow such integrals to



Orbitals 197

be computed for s, p, d, f, and even g, h, and i basis functions. After executing
one of these “integral packages” for a basis with a total of M functions, one has
available (usually on the computer’s hard disk) of the order of M 2/2 one-electron
(〈χµ|he|χν〉 and 〈χµ | χν〉) and M4/8 two-electron (〈χµχδ | χνχκ〉) integrals.
When treating extremely large atomic orbital basis sets (e.g., 500 or more ba-
sis functions), modern computer programs calculate the requisite integrals but
never store them on the disk. Instead, their contributions to the 〈χµ|he|χν〉 matrix
elements are accumulated “on the fly” after which the integrals are discarded.

Shapes, sizes, and energies of orbitals
Each molecular spin-orbital (MO) that results from solving the HF-SCF equations
for a molecule or molecular ion consists of a sum of components involving all of
the basis AOs:

φ j =
∑

µ

C j,µχµ. (6.22)

In this expression, the C j,µ are referred to as LCAO-MO coefficients because they
tell us how to linearly combine AOs to form the MOs. Because the AOs have
various angular shapes (e.g., s, p, or d shapes) and radial extents (i.e., different
orbital exponents), the MOs constructed from them can be of different shapes
and radial sizes. Let’s look at a few examples to see what I mean.

The first example arises when two H atoms combine to form the H2 molecule.
The valence AOs on each H atom are the 1s AOs; they combine to form the two
valence MOs (σ and σ ∗) depicted in Fig. 6.4. The bonding MO labeled σ has
LCAO-MO coefficients of equal sign for the two 1s AOs, as a result of which
this MO has the same sign near the left H nucleus (A) as near the right H nucleus
(B). In contrast, the antibonding MO labeled σ ∗ has LCAO-MO coefficients
of different sign for the A and B 1s AOs. As was the case in the Hückel or
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ψA1s ψB1s

σ∗

σ

Figure 6.4 Two 1s
hydrogen atomic
orbitals combine to form
a bonding and
antibonding molecular
orbital.
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π∗

π

Figure 6.5 Two pπ

atomic orbitals on
carbon atoms combine
to form a bonding and
antibonding molecular
orbital.

tight-binding model outlined in the Background Material, the energy split-
ting between the two MOs depends on the overlap 〈χ1sA | χ1sB〉 between the
two AOs.

An analogous pair of bonding and antibonding MOs arises when two p orbitals
overlap “sideways” as in ethylene to form π and π∗ MOs which are illustrated
in Fig. 6.5. The shapes of these MOs clearly are dictated by the shapes of the
AOs that comprise them and the relative signs of the LCAO-MO coefficients that
relate the MOs to AOs. For the π MO, these coefficients have the same sign on
the left and right atoms; for the π∗ MO, they have opposite signs.

I should stress that the signs and magnitudes of the LCAO-MO coefficients
arise as eigenvectors of the HF-SCF matrix eigenvalue equation:

∑
µ

〈χν |he|χµ〉C j,µ = ε j

∑
µ

〈χν | χµ〉C j,µ. (6.23)

It is a characteristic of such eigenvalue problems for the lower energy eigenfunc-
tions to have fewer nodes than the higher energy solutions as we learned from
several examples that we solved in the Background Material.

Another thing to note about the MOs shown above is that they will differ in
their quantitative details, but not in their overall shapes, when various functional
groups are attached to the ethylene molecule’s C atoms. For example, if electron
withdrawing groups such as Cl, OH or Br are attached to one of the C atoms,
the attractive potential experienced by a π electron near that C atom will be
enhanced. As a result, the bonding MO will have larger LCAO-MO coefficients
Ck,µ belonging to the “tighter” basis AOs χµ on this C atom. This will make the
bonding π MO more radially compact in this region of space, although its nodal
character and gross shape will not change. Alternatively, an electron donating
group such as H3C or t-butyl attached to one of the C centers will cause the π

MO to be more diffuse (by making its LCAO-MO coefficients for more diffuse
basis AOs larger).

In addition to MOs formed primarily of AOs of one type (i.e., for H2 it is
primarily s-type orbitals that form the σ and σ ∗ MOs; for ethylene’s π bond, it
is primarily the C 2p AOs that contribute), there are bonding and antibonding
MOs formed by combining several AOs. For example, the four equivalent C H
bonding MOs in CH4 shown in Fig. 6.6 each involve C 2s and 2p as well as H 1s
basis AOs.

The energies of the MOs depend on two primary factors: the energies of the
AOs from which the MOs are constructed and the overlap between these AOs.
The pattern in energies for valence MOs formed by combining pairs of first-row
atoms to form homonuclear diatomic molecules is shown in Fig. 6.7. In this
figure, the core MOs formed from the 1s AOs are not shown, but only those
MOs formed from 2s and 2p AOs appear. The clear trend toward lower orbital

Figure 6.6 The four
C H bonds in methane.
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σu∗

σu∗

σg

σg

πg∗
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Li2 Be2 B2 C2 N2 O2 F2

Figure 6.7 Energies of
the valence molecular
orbitals in homonuclear
diatomics involving
first-row atoms.

energies as one moves from left to right is due primarily to the trends in orbital
energies of the constituent AOs. That is, F being more electronegative than N has
a lower-energy 2p orbital than does N.

Bonding, antibonding, non-bonding, and Rydberg orbitals
As noted above, when valence AOs combine to form MOs, the relative signs of
the combination coefficients determine, along with the AO overlap magnitudes,
the MO’s energy and nodal properties. In addition to the bonding and antibonding
MOs discussed and illustrated earlier, two other kinds of MOs are important to
know about.

Non-bonding MOs arise, for example, when an orbital on one atom is not
directed toward and overlapping with an orbital on a neighboring atom. For
example, the lone pair orbitals on H2O or on the oxygen atom of H2C O are
non-bonding orbitals. They still are described in the LCAO-MO manner, but
their Cµ,i coefficients do not contain dominant contributions from more than one
atomic center.

Finally, there is a type of orbital that all molecules possess but that is ignored in
most elementary discussions of electronic structure. All molecules have so-called
Rydberg orbitals. These orbitals can be thought of as large diffuse orbitals that
describe the regions of space an electron would occupy if it were in the presence
of the corresponding molecular cation. Two examples of such Rydberg orbitals
are shown in Fig. 6.8. On the left, we see the Rydberg orbital of NH4 and on the
right, that of H3N CH3. The former species can be thought of as a closed-shell
ammonium cation NH+

4 around which a Rydberg orbital resides. The latter is
protonated methyl amine with its Rydberg orbital.
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H
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H

Figure 6.8 Rydberg
orbitals of NH+

4 and of
protonated methyl
amine.

6.2 Deficiencies in the single determinant model

To achieve reasonable chemical accuracy (e.g., ±5 kcal mol−1) in electronic
structure calculations, one can not describe the wave function � in terms of a
single determinant. The reason such a wave function is inadequate is because the
spatial probability density functions are not correlated. This means the probability
of finding one electron at position r is independent of where the other electrons are,
which is absurd because the electrons’ mutual Coulomb repulsion causes them to
“avoid” one another. This mutual avoidance is what we call electron correlation
because the electrons’ motions, as reflected in their spatial probability densities,
are correlated (i.e., inter-related). Let us consider a simple example to illustrate
this problem with single determinant functions. The |1sα(r ) 1sβ(r ′)| determinant,
when written as

|1sα(r ) 1sβ(r ′)| = 2−1/2{1sα(r ) 1sβ(r ′) − 1sα(r ′)1sβ(r )} (6.24)

can be multiplied by itself to produce the two-electron spin- and spatial-
probability density:

P(r, r ′) = 1/2{[1sα(r ) 1sβ(r ′)]2 + [1sα(r ′) 1sβ(r )]2

− 1sα(r ) 1sβ(r ′) 1sα(r ′) 1sβ(r ) − 1sα(r ′) 1sβ(r ) 1sα(r ) 1sβ(r ′)}. (6.25)

If we now integrate over the spins of the two electrons and make use of

〈α | α〉 = 〈β | β〉 = 1, and 〈α | β〉 = 〈β | α〉 = 0, (6.26)

we obtain the following spatial (i.e., with spin absent) probability density:

P(r, r ′) = |1s(r )|2 |1s(r ′)|2. (6.27)

This probability, being a product of the probability density for finding one electron
at r times the density of finding another electron at r ′, clearly has no correlation
in it. That is, the probability of finding one electron at r does not depend on where
(r ′) the other electron is. This product form for P(r, r ′) is a direct result of the
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single-determinant form for �, so this form must be wrong if electron correlation
is to be accounted for.

6.2.1 Electron correlation

Now, we need to ask how � should be written if electron correlation effects
are to be taken into account. As we now demonstrate, it turns out that one can
account for electron avoidance by taking � to be a combination of two or more
determinants that differ by the promotion of two electrons from one orbital to
another orbital. For example, in describing the π2 bonding electron pair of an
olefin or the ns2 electron pair in alkaline earth atoms, one mixes in doubly excited
determinants of the form (π∗)2 or np2, respectively.

Briefly, the physical importance of such doubly excited determinants can be
made clear by using the following identity involving determinants:

C1| . . . φαφβ . . . | − C2| . . . φ′αφ′β . . . | = C1/2{| . . . (φ − xφ′)α(φ + xφ′)β . . . |
− | . . . (φ − xφ′)β(φ + xφ′)α . . . |}, (6.28)

where

x = (C2/C1)1/2. (6.29)

This allows one to interpret the combination of two determinants that differ
from one another by a double promotion from one orbital (φ) to another (φ′)
as equivalent to a singlet coupling (i.e., having αβ-βα spin function) of two
different orbitals (φ − xφ′) and (φ + xφ′) that comprise what are called polarized
orbital pairs. In the simplest embodiment of such a configuration interaction (CI)
description of electron correlation, each electron pair in the atom or molecule
is correlated by mixing in a configuration state function (CSF) in which that
electron pair is “doubly excited” to a correlating orbital.

In the olefin example mentioned above, the two non-orthogonal polarized or-
bital pairs involve mixing the π and π∗ orbitals to produce two left-right polarized
orbitals as depicted in Fig. 6.9. In this case, one says that the π2 electron pair

π + xπ*

left polarized

π

π∗

π − xπ*

right polarized

Figure 6.9 Left and
right polarized orbitals
of an olefin.
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2s and 2pz
2s + a2pz

2s − a2pz

Figure 6.10 Angularly
polarized orbital pairs.

undergoes left-right correlation when the (π∗)2 determinant is mixed into the CI
wave function.

In the alkaline earth atom case, the polarized orbital pairs are formed by mixing
the ns and np orbitals (actually, one must mix in equal amounts of px , py , and
pz orbitals to preserve overall 1S symmetry in this case), and give rise to angular
correlation of the electron pair. Such a pair of polarized orbitals is shown in
Fig. 6.10. More specifically, the following four determinants are found to have
the largest amplitudes in �:

� ∼= C1|1s22s2| − C2

[∣∣1s22p2
x

∣∣+ ∣∣1s22p2
y

∣∣+ ∣∣1s22p2
z

∣∣] . (6.30)

The fact that the latter three terms possess the same amplitude C2 is a result of
the requirement that a state of 1S symmetry is desired. It can be shown that this
function is equivalent to:

� ∼= 1/6 C1|1sα 1sβ{[(2s − a2px )α(2s + a2px )β − (2s − a2px )β(2s + a2px )α]

+ [(2s − a2py)α(2s + a2py)β − (2s − a2py)β(2s + a2py)α]

+ [(2s − a2pz)α(2s + a2pz)β − (2s − a2pz)β(2s + a2pz)α]}|, (6.31)

where a = √
3C2/C1.

Here two electrons occupy the 1s orbital (with opposite, α and β spins), and
are thus not being treated in a correlated manner, while the other pair resides in
2s/2p polarized orbitals in a manner that instantaneously correlates their motions.
These polarized orbital pairs (2s ± a2px,y,or z) are formed by combining the 2s
orbital with the 2px,y,or z orbital in a ratio determined by C2/C1.

This ratio C2/C1 can be shown using perturbation theory to be propor-
tional to the magnitude of the coupling 〈1s22s2|H |1s22p2〉 between the two
configurations involved and inversely proportional to the energy difference
[〈1s22s2|H |1s22s2〉 − 〈1s22p2|H |1s22p2〉] between these configurations. In gen-
eral, configurations that have similar Hamiltonian expectation values and that
are coupled strongly give rise to strongly mixed (i.e., with large |C2/C1| ratios)
polarized orbital pairs.

In each of the three equivalent terms in the alkaline earth wave function, one of
the valence electrons moves in a 2s + a2p orbital polarized in one direction while
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the other valence electron moves in the 2s − a2p orbital polarized in the oppo-
site direction. For example, the first term [(2s − a2px )α (2s + a2px )β − (2s −
a2px )β (2s + a2px )α] describes one electron occupying a 2s − a2px polarized
orbital while the other electron occupies the 2s + a2px orbital. The electrons
thus reduce their Coulomb repulsion by occupying different regions of space; in
the SCF picture 1s22s2, both electrons reside in the same 2s region of space. In
this particular example, the electrons undergo angular correlation to avoid one
another.

The use of doubly excited determinants is thus seen as a mechanism by which
� can place electron pairs, which in the single-configuration picture occupy the
same orbital, into different regions of space (i.e., each one into a different member
of the polarized orbital pair) thereby lowering their mutual Coulombic repulsion.
Such electron correlation effects are extremely important to include if one expects
to achieve chemically meaningful accuracy (i.e., ±5 kcal mol−1).

6.2.2 Essential configuration interaction

There are occasions in which the inclusion of two or more determinants in � is
essential to obtaining even a qualitatively correct description of the molecule’s
electronic structure. In such cases, we say that we are including essential corre-
lation effects. To illustrate, let us consider the description of the two electrons in
a single covalent bond between two atoms or fragments that we label X and Y.
The fragment orbitals from which the bonding σ and antibonding σ ∗ MOs are
formed we will label sX and sY, respectively.

Several spin- and spatial-symmetry adapted two-electron determinants can
be formed by placing two electrons into the σ and σ ∗ orbitals. For example,
to describe the singlet determinant corresponding to the closed-shell σ 2 orbital
occupancy, a single Slater determinant

1
∑

(0) = |σασβ| = (2)−1/2{σα(1)σβ(2) − σβ(1)σα(2)} (6.32)

suffices. An analogous expression for the (σ*)2 determinant is given by

1
∗∗∑

(0) = |σ ∗α σ ∗β| = (2)−1/2{σ ∗α(1) σ ∗β(2) − σ ∗α(2) σ ∗β(1)}. (6.33)

Also, the MS = 1 component of the triplet state having σσ ∗ orbital occupancy
can be written as a single Slater determinant:

3
∗∑

(1) = |σα σ ∗α| = (2)−1/2{σα(1) σ ∗α(2) − σ ∗α(1) σα(2)}, (6.34)

as can the MS = −1 component of the triplet state

3
∗∑

(−1) = |σβ σ ∗β| = (2)−1/2{σβ(1) σ ∗β(2) − σ ∗β(1) σβ(2)}. (6.35)




