Discrete Choice Methods with Simulation

Kenneth E. Train

University of California, Berkeley
and
Contents

1 Introduction
1.1 Motivation
1.2 Choice Probabilities and Integration
1.3 Outline of Book
1.4 Topics Not Covered
1.5 A Couple of Notes

Part I Behavioral Models
2 Properties of Discrete Choice Models
2.1 Overview
2.2 The Choice Set
2.3 Derivation of Choice Probabilities
2.4 Specific Models
2.5 Identification of Choice Models
2.6 Aggregation
2.7 Forecasting
2.8 Recalibration of Constants

3 Logit
3.1 Choice Probabilities
3.2 The Scale Parameter
3.3 Power and Limitations of Logit
3.4 Nonlinear Representative Utility
3.5 Consumer Surplus
3.6 Derivatives and Elasticities
3.7 Estimation
3.8 Goodness of Fit and Hypothesis Testing
3.9 Case Study: Forecasting for a New Transit System
3.10 Derivation of Logit Probabilities
vi Contents

4 GEV 80
 4.1 Introduction 80
 4.2 Nested Logit 81
 4.3 Three-Level Nested Logit 90
 4.4 Overlapping Nests 93
 4.5 Heteroskedastic Logit 96
 4.6 The GEV Family 97

5 Probit 101
 5.1 Choice Probabilities 101
 5.2 Identification 104
 5.3 Taste Variation 110
 5.4 Substitution Patterns and Failure of IIA 112
 5.5 Panel Data 114
 5.6 Simulation of the Choice Probabilities 118

6 Mixed Logit 138
 6.1 Choice Probabilities 138
 6.2 Random Coefficients 141
 6.3 Error Components 143
 6.4 Substitution Patterns 145
 6.5 Approximation to Any Random Utility Model 145
 6.6 Simulation 148
 6.7 Panel Data 149
 6.8 Case Study 151

7 Variations on a Theme 155
 7.1 Introduction 155
 7.2 Stated-Preference and Revealed-Preference Data 156
 7.3 Ranked Data 160
 7.4 Ordered Responses 163
 7.5 Contingent Valuation 168
 7.6 Mixed Models 170
 7.7 Dynamic Optimization 173

Part II Estimation

8 Numerical Maximization 189
 8.1 Motivation 189
 8.2 Notation 189
 8.3 Algorithms 191
 8.4 Convergence Criterion 202
 8.5 Local versus Global Maximum 203
 8.6 Variance of the Estimates 204
 8.7 Information Identity 205
Contents

9 Drawing from Densities 208
 9.1 Introduction 208
 9.2 Random Draws 208
 9.3 Variance Reduction 217

10 Simulation-Assisted Estimation 240
 10.1 Motivation 240
 10.2 Definition of Estimators 241
 10.3 The Central Limit Theorem 248
 10.4 Properties of Traditional Estimators 250
 10.5 Properties of Simulation-Based Estimators 253
 10.6 Numerical Solution 260

11 Individual-Level Parameters 262
 11.1 Introduction 262
 11.2 Derivation of Conditional Distribution 265
 11.3 Implications of Estimation of θ 267
 11.4 Monte Carlo Illustration 270
 11.5 Average Conditional Distribution 272
 11.6 Case Study: Choice of Energy Supplier 273
 11.7 Discussion 283

12 Bayesian Procedures 285
 12.1 Introduction 285
 12.2 Overview of Bayesian Concepts 287
 12.3 Simulation of the Posterior Mean 294
 12.4 Drawing from the Posterior 296
 12.5 Posteriors for the Mean and Variance
 of a Normal Distribution 297
 12.6 Hierarchical Bayes for Mixed Logit 302
 12.7 Case Study: Choice of Energy Supplier 308
 12.8 Bayesian Procedures for Probit Models 316

Bibliography 319
Index 331
1 Introduction

1.1 Motivation

When I wrote my first book, *Qualitative Choice Analysis*, in the mid-1980s, the field had reached a critical juncture. The breakthrough concepts that defined the field had been made. The basic models – mainly logit and nested logit – had been introduced, and the statistical and economic properties of these models had been derived. Applications had proven successful in many different areas, including transportation, energy, housing, and marketing – to name only a few.

The field is at a similar juncture today for a new generation of procedures. The first-generation models contained important limitations that inhibited their applicability and realism. These limitations were well recognized at the time, but ways to overcome them had not yet been discovered. Over the past twenty years, tremendous progress has been made, leading to what can only be called a sea change in the approach and methods of choice analysis. The early models have now been supplemented by a variety of more powerful and more flexible methods. The new concepts have arisen gradually, with researchers building on the work of others. However, in a sense, the change has been more like a quantum leap than a gradual progression. The way that researchers think about, specify, and estimate their models has changed. Importantly, a kind of consensus, or understanding, seems to have emerged about the new methodology. Among researchers working in the field, a definite sense of purpose and progress prevails.

My purpose in writing this new book is to bring these ideas together, in a form that exemplifies the unity of approach that I feel has emerged, and in a format that makes the methods accessible to a wide audience. The advances have mostly centered on simulation. Essentially, simulation is the researcher’s response to the inability of computers to perform integration. Stated more precisely, simulation provides a numerical...
approximation to integrals, with different methods offering different properties and being applicable to different kinds of integrands.

Simulation allows estimation of otherwise intractable models. Practically any model can be estimated by some form of simulation. The researcher is therefore freed from previous constraints on model specification – constraints that reflected mathematical convenience rather than the economic reality of the situation. This new flexibility is a tremendous boon to research. It allows more realistic representation of the hugely varied choice situations that arise in the world. It enables the researcher to obtain more information from any given dataset and, in many cases, allows previously unapproachable issues to be addressed.

This flexibility places a new burden on the researcher. First, the methods themselves are more complicated than earlier ones and utilize many concepts and procedures that are not covered in standard econometrics courses. Understanding the various techniques – their advantages and limitations, and the relations among them – is important when choosing the appropriate method in any particular application and for developing new methods when none of the existing models seems right. The purpose of this book is to assist readers along this path.

Second, to implement a new method or a variant on an old method, the researcher needs to be able to program the procedure into computer software. This means that the researcher will often need to know how maximum likelihood and other estimation methods work from a computational perspective, how to code specific models, and how to take existing code and change it to represent variations in behavior. Some models, such as mixed logit and pure probit (in addition, of course, to standard logit), are available in commercially available statistical packages. In fact, code for these and other models, as well as manuals and sample data, are available (free) at my website http://elsa.berkeley.edu/~train. Whenever appropriate, researchers should use available codes rather than writing their own. However, the true value of the new approach to choice modeling is the ability to create tailor-made models. The computational and programming steps that are needed to implement a new model are usually not difficult. An important goal of the book is to teach these skills as an integral part of the exposition of the models themselves. I personally find programming to be extremely valuable pedagogically. The process of coding a model helps me to understand how exactly the model operates, the reasons and implications of its structure, what features constitute the essential elements that cannot be changed while maintaining the basic approach, and what features are arbitrary and can easily be changed. I imagine other people learn this way too.
1.2 Choice Probabilities and Integration

To focus ideas, I will now establish the conceptual basis for discrete choice models and show where integration comes into play. An agent (i.e., person, firm, decision maker) faces a choice, or a series of choices over time, among a set of options. For example, a customer chooses which of several competing products to buy; a firm decides which technology to use in production; a student chooses which answer to give on a multiple-choice test; a survey respondent chooses an integer between 1 and 5 on a Likert-scale question; a worker chooses whether to continue working each year or retire. Denote the outcome of the decision(s) in any given situation as y, indicating the chosen option or sequence of options. We assume for the purposes of this book that the outcome variable is discrete in that it takes a countable number of values. Many of the concepts that we describe are easily transferable to situations where the outcome variable is continuous. However, notation and terminology are different with continuous outcome variables than with discrete ones. Also, discrete choices generally reveal less information about the choice process than continuous-outcome choices, so that the econometrics of discrete choice is usually more challenging.

Our goal is to understand the behavioral process that leads to the agent’s choice. We take a causal perspective. There are factors that collectively determine, or cause, the agent’s choice. Some of these factors are observed by the researcher and some are not. The observed factors are labeled x, and the unobserved factors ε. The factors relate to the agent’s choice through a function $y = h(x, \varepsilon)$. This function is called the behavioral process. It is deterministic in the sense that given x and ε, the choice of the agent is fully determined.

Since ε is not observed, the agent’s choice is not deterministic and cannot be predicted exactly. Instead, the probability of any particular outcome is derived. The unobserved terms are considered random with density $f(\varepsilon)$. The probability that the agent chooses a particular outcome from the set of all possible outcomes is simply the probability that the unobserved factors are such that the behavioral process results in that outcome: $P(y \mid x) = \text{Prob}(\varepsilon \text{ s.t. } h(x, \varepsilon) = y)$.

We can express this probability in a more usable form. Define an indicator function $I[h(x, \varepsilon) = y]$ that takes the value of 1 when the statement in brackets is true and 0 when the statement is false. That is, $I[\cdot] = 1$ if the value of ε, combined with x, induces the agent to choose outcome y, and $I[\cdot] = 0$ if the value of ε, combined with x, induces the agent to choose some other outcome. Then the probability that the agent chooses outcome y is simply the expected value of this
indicator function, where the expectation is over all possible values of the unobserved factors:

\[
P(y | x) = \text{Prob}(I[h(x, \varepsilon) = y] = 1)
\]

\[
= \int I[h(x, \varepsilon) = y] f(\varepsilon) d\varepsilon.
\]

(1.1)

Stated in this form, the probability is an integral – specifically an integral of an indicator for the outcome of the behavioral process over all possible values of the unobserved factors.

To calculate this probability, the integral must be evaluated. There are three possibilities.

1.2.1. Complete Closed-Form Expression

For certain specifications of \(h \) and \(f \), the integral can be expressed in closed form. In these cases, the choice probability can be calculated exactly from the closed-form formula. For example, consider a binary logit model of whether or not a person takes a given action, such as buying a new product. The behavioral model is specified as follows. The person would obtain some net benefit, or utility, from taking the action. This utility, which can be either positive or negative, consists of a part that is observed by the researcher, \(\beta'x \), where \(x \) is a vector of variables and \(\beta \) is a vector of parameters, and a part that is not observed, \(\varepsilon: U = \beta'x + \varepsilon \). The person takes the action only if the utility is positive, that is, only if doing so provides a net benefit. The probability that the person takes the action, given what the researcher can observe, is therefore \(P = \int I[\beta'x + \varepsilon > 0] f(\varepsilon) d\varepsilon \), where \(f \) is the density of \(\varepsilon \). Assume that \(\varepsilon \) is distributed logistically, such that its density is \(f(\varepsilon) = e^{-\varepsilon}/(1 + e^{-\varepsilon})^2 \) with cumulative distribution \(F(\varepsilon) = 1/(1 + e^{-\varepsilon}) \). Then the probability of the person taking the action is

\[
P = \int I[\beta'x + \varepsilon > 0] f(\varepsilon) d\varepsilon
\]

\[
= \int I[\varepsilon > -\beta'x] f(\varepsilon) d\varepsilon
\]

\[
= \int_{\varepsilon = -\beta'x}^{\infty} f(\varepsilon) d\varepsilon
\]

\[
= 1 - F(-\beta'x) = 1 - \frac{1}{1 + e^{\beta'x}}
\]

\[
= \frac{e^{\beta'x}}{1 + e^{\beta'x}}.
\]
For any \(x \), the probability can be calculated exactly as \(P = \exp(\beta'x)/(1 + \exp(\beta'x)) \).

Other models also have closed-form expressions for the probabilities. Multinomial logit (in Chapter 3), nested logit (Chapter 4), and ordered logit (Chapter 7) are prominent examples. The methods that I described in my first book and that served as the basis for the first wave of interest in discrete choice analysis relied almost exclusively on models with closed-form expressions for the choice probabilities. In general, however, the integral for probabilities cannot be expressed in closed form. More to the point, restrictions must be placed on the behavioral model \(h \) and the distribution of random terms \(f \) in order for the integral to take a closed form. These restrictions can make the models unrealistic for many situations.

1.2.2. Complete Simulation

Rather than solve the integral analytically, it can be approximated through simulation. Simulation is applicable in one form or another to practically any specification of \(h \) and \(f \). Simulation relies on the fact that integration over a density is a form of averaging. Consider the integral \(\bar{t} = \int t(\varepsilon)f(\varepsilon)\,d\varepsilon \), where \(t(\varepsilon) \) is a statistic based on \(\varepsilon \) which has density \(f(\varepsilon) \). This integral is the expected value of \(t \) over all possible values of \(\varepsilon \). This average can be approximated in an intuitively straightforward way. Take numerous draws of \(\varepsilon \) from its distribution \(f \), calculate \(t(\varepsilon) \) for each draw, and average the results. This simulated average is an unbiased estimate of the true average. It approaches the true average as more and more draws are used in the simulation.

This concept of simulating an average is the basis for all simulation methods, at least all of those that we consider in this book. As given in equation (1.1), the probability of a particular outcome is an average of the indicator \(I(\cdot) \) over all possible values of \(\varepsilon \). The probability, when expressed in this form, can be simulated directly as follows:

1. Take a draw of \(\varepsilon \) from \(f(\varepsilon) \). Label this draw \(\varepsilon^1 \), where the superscript denotes that it is the first draw.
2. Determine whether \(h(x, \varepsilon^1) = y \) with this value of \(\varepsilon \). If so, create \(I^1 = 1 \); otherwise set \(I^1 = 0 \).
3. Repeat steps 1 and 2 many times, for a total of \(R \) draws. The indicator for each draw is labeled \(I^r \) for \(r = 1, \ldots, R \).
4. Calculate the average of the \(I^r \)'s. This average is the simulated probability: \(\hat{P}(y \mid x) = \frac{1}{R} \sum_{r=1}^{R} I^r \). It is the proportion of times that the draws of the unobserved factors, when combined with the observed variables \(x \), result in outcome \(y \).
Introduction

As we will see in the chapters to follow, this simulator, while easy to understand, has some unfortunate properties. Choice probabilities can often be expressed as averages of other statistics, rather than the average of an indicator function. The simulators based on these other statistics are calculated analogously, by taking draws from the density, calculating the statistic, and averaging the results. Probit (in Chapter 5) is the most prominent example of a model estimated by complete simulation. Various methods of simulating the probit probabilities have been developed based on averages of various statistics over various (related) densities.

1.2.3. Partial Simulation, Partial Closed Form

So far we have provided two polar extremes: either solve the integral analytically or simulate it. In many situations, it is possible to do some of both.

Suppose the random terms can be decomposed into two parts labeled ε_1 and ε_2. Let the joint density of ε_1 and ε_2 be $f(\varepsilon) = f(\varepsilon_1, \varepsilon_2)$. The joint density can be expressed as the product of a marginal and a conditional density: $f(\varepsilon_1, \varepsilon_2) = f(\varepsilon_2 | \varepsilon_1) \cdot f(\varepsilon_1)$. With this decomposition, the probability in equation (1.1) can be expressed as

$$P(y | x) = \int_I h(x, \varepsilon_1, \varepsilon_2) = y \int f(\varepsilon_1) f(\varepsilon_2 | \varepsilon_1) d\varepsilon_1.$$

Now suppose that a closed form exists for the integral in large brackets. Label this formula $g(\varepsilon_1) = \int_\varepsilon f(\varepsilon_2 | \varepsilon_1) d\varepsilon_2$, which is conditional on the value of ε_1. The probability then becomes $P(y | x) = \int_{\varepsilon_1} g(\varepsilon_1) f(\varepsilon_1) d\varepsilon_1$. If a closed-form solution does not exist for this integral, then it is approximated through simulation. Note that it is simply the average of g over the marginal density of ε_1. The probability is simulated by taking draws from $f(\varepsilon_1)$, calculating $g(\varepsilon_1)$ for each draw, and averaging the results.

This procedure is called convenient error partitioning (Train, 1995). The integral over ε_2 given ε_1 is calculated exactly, while the integral over ε_1 is simulated. There are clear advantages to this approach over complete simulation. Analytic integrals are both more accurate and easier to calculate than simulated integrals. It is useful, therefore, when possible, to decompose the random terms so that some of them can be integrated analytically, even if the rest must be simulated. Mixed logit (in Chapter 6) is a prominent example of a model that uses this decomposition.
Introduction

effectively. Other examples include Gourieroux and Monfort’s (1993) binary probit model on panel data and Bhat’s (1999) analysis of ordered responses.

1.3 Outline of Book

Discrete choice analysis consists of two interrelated tasks: specification of the behavioral model and estimation of the parameters of that model. Simulation plays a part in both tasks. Simulation allows the researcher to approximate the choice probabilities that arise in the behavioral model. As we have stated, the ability to use simulation frees the researcher to specify models without the constraint that the resulting probabilities must have a closed form. Simulation also enters the estimation task. The properties of an estimator, such as maximum likelihood, can change when simulated probabilities are used instead of the actual probabilities. Understanding these changes, and mitigating any ill effects, is important for a researcher. In some cases, such as with Bayesian procedures, the estimator itself is an integral over a density (as opposed to the choice probability being an integral). Simulation allows these estimators to be implemented even when the integral that defines the estimator does not take a closed form.

The book is organized around these two tasks. Part I describes behavioral models that have been proposed to describe the choice process. The chapters in this section move from the simplest model, logit, to progressively more general and consequently more complex models. A chapter is devoted to each of the following: logit, the family of generalized extreme value models (whose most prominent member is nested logit), probit, and mixed logit. This part of the book ends with a chapter titled “Variations on a Theme,” which covers a variety of models that build upon the concepts in the previous chapters. The point of this chapter is more than simply to introduce various new models. The chapter illustrates the underlying concept of the book, namely, that researchers need not rely on the few common specifications that have been programmed into software but can design models that reflect the unique setting, data, and goals of their project, writing their own software and using simulation as needed.

Part II describes estimation of the behavioral models. Numerical maximization is covered first, since most estimation procedures involve maximization of some function, such as the log-likelihood function. We then describe procedures for taking draws from various kinds of densities, which are the basis for simulation. This chapter also describes different kinds of draws, including antithetic variants and quasi-random
sequences, that can provide greater simulation accuracy than independent random draws. We then turn to simulation-assisted estimation, looking first at classical procedures, including maximum simulated likelihood, method of simulated moments, and method of simulated scores. Finally, we examine Bayesian estimation procedures, which use simulation to approximate moments of the posterior distribution. The Bayesian estimator can be interpreted from either a Bayesian or classical perspective and has the advantage of avoiding some of the numerical difficulties associated with classical estimators. The power that simulation provides when coupled with Bayesian procedures makes this chapter a fitting finale for the book.

1.4 Topics Not Covered

I feel it is useful to say a few words about what the book does not cover. There are several topics that could logically be included but are not. One is the branch of empirical industrial organization that involves estimation of discrete choice models of consumer demand on market-level data. Customer-level demand is specified by a discrete choice model, such as logit or mixed logit. This formula for customer-level demand is aggregated over consumers to obtain market-level demand functions that relate prices to shares. Market equilibrium prices are determined as the interaction of these demand functions with supply, based on marginal costs and the game that the firms are assumed to play. Berry (1994) and Berry et al. (1995) developed methods for estimating the demand parameters when the customer-level model takes a flexible form such as mixed logit. The procedure has been implemented in numerous markets for differentiated goods, such as ready-to-eat cereals (Nevo, 2001).

I have decided not to cover these procedures, despite their importance because doing so would involve introducing the literature on market-level models, which we are not otherwise considering in this book. For market demand, price is typically endogenous, determined by the interaction of demand and supply. The methods cited previously were developed to deal with this endogeneity, which is probably the central issue with market-level demand models. This issue does not automatically arise in customer-level models. Prices are not endogenous in the traditional sense, since the demand of the customer does not usually affect market price. Covering the topic is therefore not necessary for our analysis of customers’ choices.

It is important to note, however, that various forms of endogeneity can indeed arise in customer-level models, even if the traditional type of
endogeneity does not. For example, suppose a desirable attribute of products is omitted from the analysis, perhaps because no measure of it exists. Price can be expected to be higher for products that have high levels of this attribute. Price therefore becomes correlated with the unobserved components of demand, even at the customer level: the unobserved part of demand is high (due to a high level of the omitted attribute) when the price is high. Estimation without regard to this correlation is inconsistent. The procedures cited above can be applied to customer-level models to correct for this type of endogeneity, even though they were originally developed for market-level data. For researchers who are concerned about the possibility of endogeneity in customer-level models, Petrin and Train (2002) provide a useful discussion and application of the methods.

A second area that this book does not cover is discrete–continuous models. These models arise when a regression equation for a continuous variable is related in any of several ways to a discrete choice. The most prominent situations are the following.

1. The continuous variable depends on a discrete explanatory variable that is determined endogenously with the dependent variable. For example, consider an analysis of the impact of job-training programs on wages. A regression equation is specified with wages as the dependent variable and a dummy variable for whether the person participated in a job-training program. The coefficient of the participation dummy indicates the impact of the program on wages. The situation is complicated, however, by the fact that participation is voluntary: people choose whether to participate in job-training programs. The decision to participate is at least partially determined by factors that also affect the person’s wage, such as the innate drive, or “go-for-it” attitude, of the person. Estimation of the regression by ordinary least squares is biased in this situation, since the program-participation dummy is correlated with the errors in the wage equation.

2. A regression equation is estimated on a sample of observations that are selected on the basis of a discrete choice that is determined endogenously with the dependent variable. For example, a researcher might want to estimate the effect of weather on peak energy load (that is, consumption during the highest-demand hour of the day). Data on energy loads by time of day are available only for households that have chosen time-of-use rates. However, the households’ choice of rate plan can be expected
Introduction

to be related to their energy consumption, with customers who have high peak loads tending not to choose time-of-use rates, since those rates charge high prices in the peak. Estimation of the regression equation on this self-selected sample is biased unless the endogeneity of the sample is allowed for.

3. The continuous dependent variable is truncated. For example, consumption of goods by households is necessarily positive. Stated statistically, consumption is truncated below at zero, and for many goods (such as opera tickets) observed consumption is at this truncation point for a large share of the population. Estimation of the regression without regard to the truncation can cause bias.

The initial concepts regarding appropriate treatment of discrete–continuous models were developed by Heckman (1978, 1979) and Dubin and McFadden (1984). These early concepts are covered in my earlier book (Train, 1986, Chapter 5). Since then, the field has expanded tremendously. An adequate discussion of the issues and procedures would take a book in itself. Moreover, the field has not reached (at least in my view) the same type of juncture that discrete choice modeling has reached. Many fundamental concepts are still being hotly debated, and potentially valuable new procedures have been introduced so recently that there has not been an opportunity for researchers to test them in a variety of settings. The field is still expanding more than it is coalescing.

There are several ongoing directions of research in this area. The early procedures were highly dependent on distributional assumptions that are hard to verify. Researchers have been developing semi- and nonparametric procedures that are hopefully more robust. The special 1986 issue of the Journal of Econometrics provides a set of important articles on the topic. Papers by Lewbel and Linton (2002) and Levy (2001) describe more recent developments. Another important development concerns the representation of behavior in these settings. The relation between the discrete and continuous variables has been generalized beyond the fairly simple representation that the early methods assumed. For example, in the context of job training, it is likely that the impact of the training differs over people and that people choose to participate in the training program on the basis of the impact it will have on them. Stated in econometric terms: the coefficient of the participation dummy in the wage equation varies over people and affects the value of the dummy. The dummy is correlated with its own coefficient, as well as with the unobserved variables that enter the error of the regression.
A recent discussion of approaches to this issue is provided by Carneiro et al. (2001).

1.5 A Couple of Notes

Throughout the book, I refer to the researcher as “she” and the decision maker as “he.” This usage, as well as being comparatively gender-neutral (or at least symmetrically noninclusive), allows both people to be referred to in the same paragraph without confusion.

Many colleagues have provided valuable comments and suggestions on earlier drafts of the book. I am very grateful for this help. I thank Greg Allenby, Moshe Ben-Akiva, Chandra Bhat, Denis Bolduc, David Brownstone, Siddhartha Chib, Jon Eisen-Hecht, Florian Heiss, David Hensher, Joe Herriges, Rich Johnson, Frank Koppelman, Jordan Louviere, Aviv Nevo, Juan de Dios Ortúzar, Ken Small, Joan Walker, Cliff Winston, Joachim Winter, and the students in my graduate econometrics course.

I welcome readers to contact me if you feel I have not covered material that you consider important, or if I have confused rather than clarified any of the material that I do cover. Hopefully, another edition of this book will someday materialize.