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1
Introduction

We begin this chapter with an overview in section 1 of how the scalar–
tensor theory was conceived, how it has evolved, and also what issues
we are going to discuss from the point of view of such cosmological
subjects as the cosmological constant and time-variability of coupling
constants. In section 2 we provide a simplified view of fundamental theo-
ries which are supposed to lie behind the scalar–tensor theory. Section 3
includes comments expected to be useful for a better understanding of
the whole subject. This section will also summarize briefly what we have
achieved.
In section 1 we emphasize that the scalar field in what is qualified

to be called the scalar–tensor theory is not simply added to the tensor
gravitational field, but comes into play through the nonminimal coupling
term, which was invented by P. Jordan. Subsequently, however, a version
that we call the prototype Brans–Dicke (BD) model has played the most
influential role up to the present time. We also explain the notation and
the system of units to be used in this book.
The list of the fundamental ideas sketched in section 2 includes the

Kaluza–Klein (KK) theory, string theory, brane theory as the latest out-
growth of string theory, and a conjecture on two-sheeted space-time.
Particular emphasis is placed on showing how closely the scalar field can
be related to the “dilaton” as a partner of the graviton in string theory
that emerged from an entirely different point of view.
Section 3 will be a collection of comments. We wish to answer potential

questions that might be asked by readers who have not yet entered the
main body of the book but have nonetheless heard something about the
scalar–tensor theory. We also embed certain abstracts or advertisements
of the related subjects which will be discussed later in detail. As a result of
our doing so we expect that readers may be acquainted beforehand with

1



2 Introduction

our achievements from a wider perspective of the whole development.
The topics will cover the weak equivalence principle (WEP), parameters
of the prototype BD model, conformal transformation, Mach’s principle
and variable G, and a question about whether there is any advantage to
be gained from sticking to a complicated scalar–tensor theory instead of
less constrained theories of scalar fields, like the quintessence model.

1.1 What is the scalar–tensor theory of gravitation?

Einstein’s general theory of relativity is a geometrical theory of space-
time. The fundamental building block is a metric tensor field. For this
reason the theory may be called a “tensor theory.” A “scalar theory” of
gravity had earlier been attempted by G. Nodström by promoting the
Newtonian potential function to a Lorentz scalar. Owing to the lack of a
geometrical nature, however, the equivalence principle (EP), one of the
two pillars supporting the entire structure of general relativity, was left
outside the aim of the theory in the early 1910s. This did not satisfy
Einstein, who eventually arrived at a dynamical theory of space-time ge-
ometry. His theory must have appeared highly speculative at first, but
proved later to be truly realistic, since it was supported by observations
of diverse physical phenomena, including those in modern cosmology. It
also served as an excellent textbook showing how a new way of thinking
develops to reality.
In spite of the widely recognized success of general relativity, now called

the standard theory of gravitation, the theory has also nurtured many
“alternative theories” for one reason or another. Among them we focus
particularly on the “scalar–tensor theory.” It might appear as if the old
idea of scalar gravity were being resurrected. In fact, however, this type
of theory does not merely combine the two kinds of fields. It is built on
the solid foundation of general relativity, and the scalar field comes into
play in a highly nontrivial manner, specifically through a “nonminimal
coupling term,” as will be explained shortly.
The scalar–tensor theory was conceived originally by Jordan, who

started to embed a four-dimensional curved manifold in five-dimensional
flat space-time [1]. He showed that a constraint in formulating projec-
tive geometry can be a four-dimensional scalar field, which enables one to
describe a space-time-dependent gravitational “constant,” in accordance
with P. A. M. Dirac’s argument that the gravitational constant should be
time-dependent [2], which is obviously beyond what can be understood
within the scope of the standard theory. He also discussed the possi-
ble connection of his theory with another five-dimensional theory, which
had been offered by Th. Kaluza and O. Klein [3]. On the basis of these
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considerations he presented a general Lagrangian for the scalar field living
in four-dimensional curved space-time:

LJ =
√
−g

[
ϕγ

J

(
R− ωJ

1
ϕ2

J

gµν ∂µϕJ ∂νϕJ

)
+ Lmatter(ϕJ,Ψ)

]
, (1.1)

where ϕJ(x) is Jordan’s scalar field, while γ and ωJ are constants, also
with Ψ representing matter fields collectively. The introduction of the
nonminimal coupling term, ϕγ

JR, the first term on the right-hand side,
marked the birth of the scalar–tensor theory. The term Lmatter(ϕJ,Ψ)
was for the matter Lagrangian, which depends generally on the scalar
field, as well.
For later convenience, we here explain the unit system we are going to

use throughout the book. Since we always encounter relativity and quan-
tum mechanics in the area of particle physics, it is convenient to choose
a unit system in which c and h̄ are set equal to unity. By doing so we can
express all three fundamental dimensions only in terms of one remain-
ing dimension, which may be chosen as length, time, mass, or energy. In
particular, the gravitational constant, or Newton’s constant, G turns out
to have a mass dimension −2, or length squared. We then write

8πG = ch̄M−2
P , (1.2)

withMP called the Planck mass, which is estimated to be 2.44× 1018 GeV,
which is quite heavy compared with other ordinary particles. We hereafter
choose MP = 1. In this way we can express every quantity as if it were
dimensionless. This unit system is called the reduced Planckian unit sys-
tem, though G = 1 is often chosen in the plain Planckian unit system. We
prefer the former system with the difference of

√
8π. We show units of

length, time, and energy in this system expressed in conventional units:

8.07× 10−33 cm, 2.71× 10−43 s, 2.44× 1018 GeV. (1.3)

Sometimes, however, it is convenient to leave one of the dimensions
still “floating,” not necessarily set fixed. We choose it to be mass, for
example, as was shown in (1.2). In the same context, the Lagrangian is
found to have a mass dimension 4, while a derivative contributes a mass
dimension 1. The metric tensor is dimensionless. If a scalar field has a
conventional canonical kinetic term, then we conclude that the field has
a mass dimension 1.
Now the second term on the right-hand side of (1.1) resembles a kinetic

term of ϕJ. Requiring this term to have a correct mass dimension 4 yields
the result that ϕJ has mass dimension 2/γ. It then follows that ϕγ

J , which
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multiplies R in the first term on the right-hand side of (1.1), has mass
dimension 2, the same as G−1. In this way we re-assure ourselves that
the first two terms on the right-hand side of (1.1) contain no dimensional
constant. This remains true for any value of γ, although this “invari-
ance” under a change of γ need not be respected if ϕJ enters the matter
Lagrangian, in general.
Jordan’s effort was taken over particularly by C. Brans and R. H. Dicke.

They defined their scalar field ϕ by

ϕ = ϕγ
J , (1.4)

which simplifies (1.1) by making use of the fact that the specific choice
of the value of γ is irrelevant, as explained above. This process is justi-
fied only because they demanded that the matter part of the Lagrangian√−gLmatter be decoupled from ϕ(x) as an implementation of their re-
quirement that the WEP be respected, in contrast to Jordan’s model. The
reason for this crucial decision, after the critical argument by Fierz [4] and
others, will be made clear soon.
In this way they proposed the basic Lagrangian

LBD =
√
−g

(
ϕR− ω 1

ϕ
gµν ∂µϕ∂νϕ+ Lmatter(Ψ)

)
. (1.5)

We call the model described by (1.5) the prototype BD model throughout
this book [5]. The adjective “prototype” emphasizes the unique features
that characterize the original model compared with many extended ver-
sions. The dimensionless constant ω is the only parameter of the theory.
Note that we left out the factor 16π that multiplied the whole expression

on the right-hand side in the original paper, to make the result appear in
a more standard fashion. For this reason our ϕ is related to their original
scalar field, denoted here by φBD, by the relation

ϕ = 16πφBD. (1.6)

We now take a special look at the nonminimal coupling term, the first
term on the right-hand side of (1.5). This replaces the Einstein–Hilbert
term,

LEH =
√
−g 1

16πG
R, (1.7)

in the standard theory, in which R is multiplied by a constant G−1. By
comparing (1.5) and (1.7) we find that this model has no gravitational
“constant,” but is characterized by an effective gravitational constant Geff

defined by
1

16πGeff
= ϕ, (1.8)
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as long as the dynamical field ϕ varies sufficiently slowly. In particular we
may expect that ϕ is spatially uniform, but varies slowly with cosmic time,
as suggested by Dirac. We should be careful, however, to distinguish Geff ,
the gravitational constant for the tensor force only, from the one including
the possible contribution from the scalar field, as will be discussed later.
As another point, we note that the second term on the right-hand side

of (1.5) appears to be a kinetic term of the scalar field ϕ, but looks
slightly different. First, the presence of ϕ−1 seems to indicate a singularity.
Secondly, there is a multiplying coefficient ω. These are, however, super-
ficial differences. The whole term can be cast into the standard canonical
form by redefining the scalar field.
For this purpose we introduce a new field φ and a new dimensionless

constant ξ, chosen to be positive, by putting

ϕ = 1
2ξφ

2 (1.9)

and
εξ−1 = 4ω, (1.10)

in terms of which the second term on the right-hand side of (1.5) is re-
expressed in the desired form;

√
−g

(
−1

2εg
µν ∂µφ∂νφ

)
, (1.11)

with ε = ±1 = Signω.
No singularity appears, as suggested. ε = +1 corresponds to a normal

field having a positive energy, in other words, not a ghost. Note that
(1.11) becomes φ̇2/2 for ε = +1 in the limit of flat space-time where
g00 ∼ η00 = −1. The choice ε = −1 seems to indicate a negative energy,
which is unacceptable physically. As will be shown later in detail, how-
ever, this need not be an immediate difficulty owing to the presence of the
nonminimal coupling. We will show in fact that some of the models do
require ε = −1. Even the extreme choice ε = 0, corresponding to choosing
ω = 0 in the original formulation, according to (1.10), leaving ξ arbitrary,
may not be excluded immediately. Note also that (1.9) shows that φ has
a mass dimension 1, as in the usual formulation.
In this way (1.5) is cast into the new form

LBD =
√
−g

(
1
2ξφ

2R− 1
2εg

µν ∂µφ∂νφ+ Lmatter

)
. (1.12)

Discussing consequences of (1.12) will be the main purpose of Chapter 2.
We briefly outline here subjects of particular interest.
Obviously (1.12) describes something beyond what one would obtain

simply by adding the kinetic term of the scalar field to the Lagrangian
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with the Einstein–Hilbert term. We reserve the term “scalar–tensor
theory” specifically for a class of theories featuring a nonminimal coupling
term or its certain extension.
As we explain in the subsequent section, there are theoretical models to

be categorized in this class. More general models have also been discussed.
The prototype BD model still deserves detailed study, from which we may
learn many lessons useful in analyzing other models.
Deriving field equations from (1.12) is a somewhat nontrivial task, as

we elaborate in Chapter 2. In particular, we obtain

�ϕ = ζ2T, (1.13)

where T is the trace of the matter energy–momentum tensor Tµν , while
ζ is a constant defined by

ζ−2 = 6 + εξ−1 = 6 + 4ω. (1.14)

Notice that ϕ in (1.13) is the BD scalar field, now given by the combi-
nation of φ as given by (1.9), though the field equation itself was derived
by considering φ as an independent field. The fact that the right-hand
side of (1.13) is given in terms of the matter energy–momentum tensor
guarantees that the force mediated by the scalar field respects the WEP,
or universal free-fall (UFF). This is because, in the limit of zero momen-
tum transferred, the source of the scalar field is given by the integrated
T00, which is the total energy of the system independent of what the
content is.
One might be puzzled to see how the scalar field decoupled from the

matter at the level of the Lagrangian comes to have a coupling at the level
of the field equations. The underlying mechanism is provided by the
nonminimal coupling term which acts as a mixing interaction between
the scalar field and the spinless component of the tensor field, as will be
elaborated toward the end of Chapter 2.
From (1.13) we expect that the scalar field mediates a long-range force

between massive objects in the same way as the Newtonian force does in
the weak-field limit of Einstein’s gravity. The coupling strength is essen-
tially of the same order of magnitude as that of the Newtonian force as
long as ξ or ω is roughly of the order of unity, as we can see by restoring
8πG in the conventional unit system. Equation (1.14) also shows that the
coupling vanishes as ω → ∞, or ξ → 0. It is often stated that the theory
reduces to Einstein’s theory in this limit.
According to (1.13) the scalar field does not couple to the photon,

for example, indicating that the light-deflection phenomenon will remain



1.1 What is the scalar–tensor theory of gravitation? 7

unaffected by the scalar force. This is an example displaying how the
scalar force makes a difference from general relativity. On re-examining
what had been done in general relativity, Brans and Dicke discovered room
for the scalar component to be accommodated within the limit ω >∼ 6 or
|ξ| <∼ 0.042 [5].
Shapiro time-delay measurements during the Viking Project in the

1970s, however, yielded the constraint ω >∼ 1000, or ξ <∼ 2.5× 10−4 [6]. Two
decades later, the latest bound from the VLBI experiments, basically con-
cerning the light-deflection phenomenon involving light from extragalactic
radio sources, is even stronger [7]:

ω >∼ 3.6× 103, or ξ <∼ 7.0× 10−5, (1.15)

severer than that expected initially by nearly three orders of magnitude.
Notice that ε = +1 is also implied. There has been no unambiguous evi-
dence for the presence of the additional scalar field, only certain bounds
of the parameter having been obtained.
It seems as if Brans and Dicke wished naturally to find positive ev-

idence right at the very beginning. At one time, Dicke, as an experi-
mentalist, wondered whether there was a flaw in comparing theory and
observation. He specifically suspected that the Sun is not completely
spherically symmetric, which property was used extensively to derive the
Schwarzschild solution. He performed his own experiment to re-measure
the Sun’s oblateness. If the quadrupole moment J2 turned out to be as
large as ∼10−5, as he and Goldenberg reported [8], it would have allowed
more deviation from general relativity, resulting in ω ∼ 5 or ∼ 0.2 for
ε = 1 or −1, respectively.
Unfortunately, however, subsequent re-measurements by other groups

yielded values mostly as small as ∼10−6 for J2, including the latest even
smaller value [7]. In this sense, there seems to be little hope that ω or ξ
is close to anywhere around unity. The smallness of ξ has affected con-
siderably the development of the theory during the years that followed.
It appeared as if the theory were destined to grow only to occupy an
ever smaller territory without an obvious reason, although Dicke himself
worked actively on initiating a new era of “experimental relativity.” In
some sense, the scalar–tensor theory served as an explicit model illustrat-
ing what the world could be like if Einstein were not entirely right.
In spite of all these circumstances surrounding the scalar–tensor theory,

however, there have been some people who were deeply impressed by the
idea that nature’s simplest phenomenon, a scalar field, plays a major
role, and tried to modify the prototype BD model in such a way that
the constraint (1.15) could be evaded. V. Wagoner suggested extending
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the original model by introducing arbitrary functions of the scalar field,
including a mass term as well [9], though without well-defined physical
principles to determine those functions.
One of the present authors (Y. F.) proposed that a dilaton, a Nambu–

Goldstone (NG) boson of broken scale invariance, might mediate a finite-
range gravity (non-Newtonian force) based on an idea in particle physics
[10]. O’Hanlon [11], and Acharia and Hogan [12] showed immediately that
the dilaton can be identified as the scalar field of a version of the prototype
BD model, hence finding that the massive scalar field does have a place
in the theory of gravity.
A crucial point in these approaches is that the scalar field is naturally

not immune against acquiring a nonzero mass. If the corresponding force-
range of the scalar force turns out to be smaller than the size of the
solar system, it no longer affects the perihelion advance of Mercury, for
example, thus leaving a constraint like (1.15) irrelevant. This will free us
from a long-standing curse.
More recently, T. Damour and A. Polyakov showed that extending the

prototype BD model in a way allowing the scalar field to enter in a more
complicated manner is rather natural from the viewpoint of string the-
ory [13]. They specifically proposed the “least-coupling principle” (LCP)
according to which one might be able to understand why the deviation
from general relativity is so small if there is any, though the idea is still
short of being implemented from a realistic point of view.
In this book we will be interested also in the cosmological constant,

which seems to be one of the hot topics at the present time [14, 15].
Although this subject has a long but widely known history, what we face
today is quite new, and appears to be a challenge that probably requires
something beyond the standard theory. Today might be a time when the
discovery of an accelerating universe [14, 15] is in fact a crisis on which
physics will thrive [16]. We may more specifically expect this issue to be
a fresh ground to which the scalar–tensor theory applies. The situation
might provide a chance to go beyond an “alternative theory,” suggesting
phenomena that had never been thought of in general relativity.
Ideas based on scalar fields have already been attempted, particularly

under the name of “quintessence” [17]. Some of these theories are not
necessarily related to the scalar–tensor theory. One has more flexibility,
but to some extent they are more phenomenological. After giving a brief
overview of the recent developments on these subjects, we will see how we
reach an understanding of the accelerating universe in terms of the scalar–
tensor theory, which has been extended minimally from the prototype BD
model, from our point of view. As a further attempt, we apply the theory
also to the reported time-dependence of α, the fine-structure constant [18].
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As one of the conclusions that has emerged from our efforts, our classical
solutions of the cosmological equations are partially chaotic, with very
sensitive dependence on the initial values. Closely connected with this is
the great likelihood that we are in a transient state before reaching a final,
asymptotic state. All these things may alter our traditional view that the
universe we see at the present time should have an attractor solution that
depends on the initial values supposedly as little as possible. The universe
after all might also be like many natural phenomena around us.

1.2 Where does the scalar field come from?

As we stated before, Brans and Dicke assumed that decoupling of the
scalar field from the matter part of the Lagrangian occurs. As we see in
the following, this is an assumption that hardly seems to be supported
by any of the examples of more fundamental theories. They never made
it clear how they could avoid this. It appears as if they had never been
particularly concerned about whether there were any theories at a deeper
level behind their model, which they viewed as an alternative theory in
its own right.
It is nevertheless hard to deny that the scalar–tensor theory has at-

tracted wide interest because it appears to provide a small window through
which one can look into phenomenological aspects of more fundamental
theories to which one is still denied any direct access otherwise.
It is truly remarkable and even surprising to find that a candidate

scalar field of the desired nature is provided by the string theory of the
late twentieth century, not to mention the KK theory of the 1920s. We
will discuss briefly such candidates, starting from a reasonably detailed
account of the KK approach. We then move on to the “dilaton” expected
from string theory, and further to the recent development of the “brane,”
which has become a focus of attention even though it is still highly spec-
ulative. We also sketch another highly hypothetical idea that is closely
related to “noncommutative geometry,” which turns out to be yet an-
other supplier of a scalar field.

1.2.1 The scalar field arising from the size of compactified
internal space

Shortly after the advent of general relativity, the historic attempts at
unification appeared, first due to H. Weyl [19], and then due to Kaluza.
Weyl’s theory eventually laid the foundation for what was later called
gauge theory, the heart of the contemporary version of unification theories,
whereas Kaluza’s proposal, later known as the KK theory, played a



10 Introduction

decisive role in making clear the importance of higher-dimensional space-
time in string theory, not to mention serving as an ancestor of the scalar–
tensor theory.
Kaluza envisioned five-dimensional space-time to which general

relativity was applied. One of the spatial dimensions was assumed to
be “compactified” to a small circle leaving four-dimensional space-time
extended infinitely as we see it. The size of the circle is so small that no
phenomena of sufficiently low energies can detect it.
He started with the metric in five dimensions, of which the “off-

diagonal” components connecting the four dimensions with the fifth di-
mension behave as a 4-vector that has been shown to play the role of
the electromagnetic potential. In this way the theory offered the unified
Einstein–Maxwell theory. The gauge transformation for the potential is
interpreted as an isometry transformation along the circle.
The idea was re-discovered later from a more contemporary point of

view [20], in particular in connection with the realization that string the-
ory requires higher-dimensional space-time [21]. We outline briefly how
the size of compactified internal space behaves as a four-dimensional scalar
field precisely of the nature of the prototype BD model, with the parame-
ter determined uniquely in terms of the dimensionality of space-time. See
Appendix A for more details of derivations.
Let us assume the “Ansatz” for the D = (4 + n)-dimensional metric

with n-dimensional compactified space:

gµ̄ν̄ =

(
gµν(x) 0

0 A(x)2g̃αβ(θ)

)
, (1.16)

with the radius A, while g̃αβ(θ) means the purely geometrical portion
described by the coordinates θα with α, β = 1, 2, . . . , n. We choose θα to
be dimensionless, like angles. Notice that we omitted, for the moment, the
off-diagonal components for the gauge fields, focusing on the scalar field.
We also have √

−(D)g =
√
−gAn

√
g̃, (1.17)

where g is the four-dimensional determinant, while
√
g̃ is related to the

volume Vn of compactified space by

Vn = AnṼn, (1.18)

where

Ṽn =
∫ √

g̃ dnθ. (1.19)
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We then compute the Einstein–Hilbert term inD dimensions, obtaining
the effective Lagrangian in four dimensions, by dividing by Ṽn for later
convenience;

L4 =
√
−gL4, (1.20)

where

L4(x) = AnṼ−1
n

∫ √
g̃
1
2
Rdnθ,

=
1
8

n

n− 1
φ2R+

1
2
gµν ∂µφ∂νφ

+
1
2

(
1
4

n

n− 1
φ2

)1−2/n

R̃, (1.21)

for n > 1, with φ defined by

φ = 2
√
n− 1
n

An/2. (1.22)

It should be noticed that the sign of the second term on the right-hand
side of (1.21) shows that the field φ is a ghost, corresponding to

ε = −1, (1.23)

in (1.12) [22]. We will show in later chapters, however, that this does not
imply physical inconsistencies; the energy of the whole system remains
positive due to the mixing interaction with the spinless component of the
metric field, a crucial role played by the nonminimal coupling term.
The first term on the right-hand side of (1.21), with R for a curvature

scalar in four dimensions, is the nonminimal coupling term shown in (1.12)
with a special choice:

ξ =
1
4

n

n− 1
. (1.24)

Notice that this is certainly in conflict with the constraint obtained from
the solar-system experiment (1.15), and will be discussed in connection
with the idea of spontaneously broken scale invariance.
We further point out that the scalar field enters the nonminimal cou-

pling term always in the form of φ2 in any dimensionality n > 1. For the
underlying reason, see Appendix A.
In the last term on the right-hand side of (1.21), R̃ is a curvature scalar

computed in terms of g̃αβ , giving a potential of the scalar field unless it
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gives a cosmological constant for n = 2, or D = 6. Notice also that no
mass term (∼φ2) is present.
Obviously (1.21) and (1.22) lose their meaning if n = 1, for which there

is no kinetic term for the scalar field. We simply choose

φ = ξ−1/2A, (1.25)

with ε = 0 and ξ > 0 in (1.12). Also we have R̃ = 0 for n = 1. We do not
use (1.10), but (1.13) is still obtained with ζ2 = 1

6 , which agrees with what
we find by using ε = 0 in (1.14). This shows that φ still has a dynamical
degree of freedom in spite of the absence of the kinetic term. This is again
due to the nonminimal coupling term that induces mixing with the tensor
gravitational field.
It might be relevant here to add a remark in passing on the absence

of the kinetic term of the scalar field if D = 5. This is in an apparent
contradiction with (1.1) proposed by Jordan, who based his conclusion
on the analysis of his five-dimensional theory. This indicates that he
dealt with something that is not exactly the same as what we under-
stand as the KK theory with a recipe for compactification, as we find
today. It nonetheless still seems true that he was greatly inspired by the
KK theory.
We point out that the nonminimal coupling term arises because of the

occurrence of A in the determinant, as given by (1.17). This indicates
that the scalar field should likely appear in the matter Lagrangian as
well, unless there is a special mechanism to prohibit it. From this point of
view, it seems difficult for one of the BD requirements to be implemented
in the KK approach.

1.2.2 The dilaton from string theory

We find a new breed of scalar fields emerging from string theory, which
has been the focus of extensive studies for the past few decades, as one of
the most promising approaches toward unification.
It was shown that a closed string has a zero mode described by a sym-

metric second-rank tensor that behaves in the low-energy limit like the
space-time metric. This was done by demonstrating that the interaction
among strings occurs in the same way as that in which gravitons interact
with each other according to general relativity. It was also shown that
the graviton in this context has companions, a scalar field Φ, coming
from the trace of a symmetric second-rank tensor, and an antisymmetric
second-rank tensor field Bµ̄ν̄ .
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The field equations of these zero-mode fields were derived explicitly as
shown in Eq. (3.4.56) in [23]:

Rµ̄ν̄ = −2∇µ̄∇ν̄Φ+ 1
4Hµ̄ρ̄σ̄H

ρ̄σ̄
ν̄ , (1.26)

∇λ̄H
λ̄µ̄ν̄ − 2 (∂λ̄Φ)H

λ̄µ̄ν̄ = 0, (1.27)

R = 4
(
�Φ+ (∂Φ)2

)
+

1
12
(HH), (1.28)

re-expressed according to our own sign convention, with an obvious nota-
tion (HH). We are in the critical dimension D = 10 or 26, depending on
whether supersymmetry is included or not, respectively. Also the totally
antisymmetric field strength is defined by

Hµ̄ν̄λ̄ = ∂µ̄Bν̄λ̄ + cyclic permutation, (1.29)

while H µ̄ν̄λ̄ is given by raising indices with the help of the inverse metric
in D dimensions.
The equations (1.26)–(1.28) can be shown to be derived from the

Lagrangian;

Lst =
√
−ge−2Φ

(
1
2
R+ 2gµ̄ν̄ ∂µ̄Φ ∂ν̄Φ− 1

12
Hµ̄ν̄λ̄H

µ̄ν̄λ̄
)
. (1.30)

The second term on the right-hand side resembles the kinetic term of
Φ, except for the multiplicative factor e−2Φ. This term can be converted
into the standard kinetic term if we introduce the field φ by putting

φ = 2e−Φ, (1.31)

as one can easily show by recognizing that dφ = −2e−Φ dΦ. In fact we
re-express (1.30) as

Lst =
√
−g

(
1
2
ξφ2R− 1

2
εgµ̄ν̄ ∂µ̄φ∂ν̄φ−

1
24
ξφ2(HH)

)
, (1.32)

where
ξ−1 = 4 (1.33)

and
ε = −1. (1.34)

Here the first two terms on the right-hand side of (1.32) agree with the
D-dimensional version of the BD Lagrangian (1.12) [24, 25]. The factor
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ζ−2 defined in (1.14) in four dimensions is replaced by its D-dimensional
version given by (6.36):

ζ−2
D = 4

D − 1
D − 2

+ εξ−1. (1.35)

For εξ−1 = −4, this reduces to

ζ−2
D =

4
D − 2

, (1.36)

which is always positive for any D > 2, satisfying the condition that the
“diagonalized” scalar field be a nonghost field.
Suppose that we are simple-minded enough to expect that each of

the D − 4 dimensions is compactified trivially with a common radius
A = constant. Then (1.32), except for the last term for the moment, re-
duces to the four-dimensional Lagrangian (1.12). Positivity for the physi-
cal mode is assured, but the result ξ = 1

4 , (1.33), is in contradiction with
the observational constraint (1.15), as shown in the model of the KK the-
ory, suggesting again the need for a departure from the original model.
We point out, however, that it is still not entirely clear how one can go

to four dimensions from D dimensions. There might be some other way
of compactification by which the effective coefficient ξ in four dimensions
can be made sufficiently smaller than the “original” ξ = 1

4 .
Before going into any such details, one might ask what the underlying

reason for the prototype BD model to have emerged from string theory
is. The question may be traced back to why the overall common factor
e−2Φ appeared in (1.30). The answer will be given below.
String theory offers a way to avoid the divergences that have plagued

traditional field theory for decades. Obviously this is primarily because
a string is an extended object, which is contrary to the concept of point
particles upon which field theory is based. From a more technical point of
view, however, finiteness is due to an invariance under conformal transfor-
mation in two-dimensional space-time in which propagating strings reside.
Moreover, one has to protect this classical invariance from being broken
by quantum effects. A fully consistent theory of strings can be obtained
only if what are known as quantum anomalies are removed. In fact, the
field equations we mentioned before can be derived also as anomaly-free
conditions.
The two-dimensional conformal invariance has its descendant in D-

dimensional field theory, namely dilatation invariance, which is imple-
mented with the help of the scalar field in precisely the same way as in the
prototype BD model. The relevant transformations are simple extensions
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of (1.73) and (1.74);

gµ̄ν̄ → g∗µ̄ν̄ = Ω2gµ̄ν̄ , (1.37)

φ → φ∗ = Ω1−dφ, (1.38)

Bµ̄ν̄ → B∗µ̄ν̄ = Ω2Bµ̄ν̄ , (1.39)

with d = D/2, where we restricted ourselves to Ω = constant.
Under (1.37), we find

√
−gR = Ω2−D√−g∗R∗, (1.40)

which implies that the Einstein–Hilbert term is not invariant unlessD=2.
Also, comparing (1.38) and (1.39) reveals that the present transforma-

tion is different from the scale transformation involving the mass dimen-
sion of fields, as was mentioned before. The field φ or Φ is naturally called
a dilaton.
Another point to be discussed is the question of whether the dilaton

couples to matter fields, like gauge fields and fermions, at the level of the
Lagrangian. The same argument that led to dilatation invariance on the
zero modes of closed strings likely applies to other matter fields coming
from open strings, hence yielding direct dilaton–matter coupling. Accord-
ing to the analyses available so far, it does not seem that there is any
simple way to forbid this coupling to matter, though details have yet to
be worked out. In this sense one might have to accept the possibility of vi-
olation of the WEP as one of the natural consequences of string theory as
well as of the KK model. This was what Jordan must have realized from
the KK approach, was also noted by Fienz, but was rejected by Brans and
Dicke, who chose to appreciate the validity of the WEP as an empirical
fact. We also suggest that the coupling to matter can be closely connected
with the mechanism by which the massless dilaton acquires a nonzero
mass, as shown by an explicit model to be elaborated in Chapter 6.
As we saw above, a major limitation to this approach lies in com-

plications and ambiguities in implementing realistic compactification to
four-dimensional space-time. For this reason, we are still not sure whether
the simple scale invariance like (1.37)–(1.39) descends to four dimensions.
We have no reliable way of knowing how large the effects of violation of
the WEP should be either.
For the same reason, we have no way to reject the scenario of the

LCP due to Damour and Polyakov [13], who tried to derive a model
of the scalar–tensor theory in which the nonminimal coupling term is
more complicated than φ2 as in the prototype BD model. They expect in-
stead a function F (φ) that has a maximum at φ = φ1, a certain constant.
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Since this maximum serves eventually as a minimum in the potential,
one expects that φ tends to φ1, for which φ is decoupled from the rest
of the system, thus leaving the world of general relativity. In the present
epoch we are coming close to this asymptotic state, having only a small
amount of time-variation of coupling constants and WEP-violating
phenomena.
As we are going to show later, on the other hand, we raise the possibility

that we are not in the asymptotic state, but still in a transient state, which
allows an understanding of the accelerating universe and a time-dependent
fine-structure constant, for example. We accept the prototype BD model
with certain modifications as an “empirical” rule, which may well not
allow immediate derivation from string theory, but offers a suggestion
regarding the fundamental theory of what the desired compactification
should be like.

1.2.3 The scalar field in a brane world

String theory predicts a new type of nonlinear structure, which is called
a brane, a nomenclature created artificially from “membrane” [26]. It is
a boundary layer on which edges of open strings stand. The idea of a
brane with duality plays an important role in the statistical derivation
of the entropy of a black hole. This also suggests a new perspective in
cosmology; we are living in a brane world, which is a three-dimensional
hypersurface in a higher-dimensional space-time [27]. In contrast to the
already familiar notion that we live in four-dimensional space-time with n
dimensions compactified as an “internal space,” which we inherited from
the KK theory, our worldview appears to be changed completely. In the
following, we are going to review briefly what we should expect to see,
though it is not entirely clear for the moment how this picture is related
to the scalar–tensor theory.
According to the results of recent progress in superstring theory, dif-

ferent string theories are connected with each other via dualities, mak-
ing them unified to the M-theory in 11 dimensions [28]. Among string
theories, the ten-dimensional E8 × E8 heterotic string theory is a strong
candidate for our real world because the theory may contain the stan-
dard model. Hořava and Witten showed that this heterotic string model
is equivalent to an 11-dimensional realization of M-theory compactified
on the orbifold R10 × S1/Z2 [29]. Each gauge field on E8 is confined
to the ten-dimensional boundary brane of S1/Z2. The ten-dimensional
space-time is compactified to M4 × CY 6, where M4 and CY 6 are four-
dimensional Minkowski space-time (our universe) and Calabi–Yau space,
respectively. Particles in the standard model are expected to be confined
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to this four-dimensional Minkowski space-time, whereas the gravitons
propagate in the entire bulk space-time.
A new type of KK cosmology based on this brane world picture was

proposed by Arkani-Hamed et al. [30]. Ordinary matter fields are con-
fined on the brane which is infinitesimally “thin” mathematically, though
it may be thick physically, probably of the order of the Planck length.
Compared with this thickness, on the other hand, the extra dimensions
where only gravitons propagate could be larger. How large it is can be
ascertained only by gravitational experiments [31]. Since all of the ex-
periments performed to confirm Newtonian gravity have been carried out
above the 1-mm scale, the laws of gravity might be different only below
this scale. We re-emphasize that the extra-dimensional space was a tiny
internal space of matter fields in the KK approach, but is now a larger
space wherein only gravity resides.
Suppose that the fundamental theory of gravity is given by the Einstein–

Hilbert term in D (= 4 + n) dimensions and the entire space-time is com-
pactified into four-dimensional space-time times n extra dimensions. This
scenario might be formulated by writing an equation for the action:

S =
1

16πGD

∫
dDx

√
−(D)gR

=
1

16πGD
Vn

∫
d4x

√
−gR =

1
16πG

∫
d4x

√
−gR, (1.41)

where Vn is the volume of extra dimensions given by (1.18), while GD is
a gravitational constant in D-dimensional space-time. In an analogy with
(1.2) we may define the D-dimensional Planck mass M (D)

P by

8πGD =
(
M

(D)
P

)−(n+2)
. (1.42)

Notice that, in D dimensions, G−1
D has mass dimension D − 2 = n+ 2.

Using this in (1.41) we obtain

(MP)
2 =

(
M

(D)
P

)(n+2)
Vn. (1.43)

According to the old KK idea, the size of extra dimensions should be
much smaller than 10−17 cm (∼ 1TeV−1), so that they remain undetected
by low-energy experiments. We have even assumed that the size is nearly
as small as the Planck length, the inverse ofMP. In the language ofM

(D)
P ,

this corresponds to the choice M (D)
P =MP.

If we believe, on the other hand, that ordinary matter fields are confined
on a brane world, the extra dimensions are not necessarily required to be
so small. This might also be connected with a conjecture that the mass
scale M (D)

P in D-dimensional space-time at the more fundamental level
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is as low as ∼1TeV, nearly the same as the electroweak mass scale. This
is expected to remove what is called a “hierarchy problem,” which has
loomed all the time whenever we try to understand a huge difference
between MP and the energy scale of particle physics in the usual sense.
In other words, the hierarchy problem is now interpreted as being present
only because we live in four-dimensional space-time which is so “distant”
from the fundamental space-time in D dimensions.
Once we accept this idea, we use (1.43) to derive a typical size r0 of the

extra dimensions in the following way:

r0 ∼ (Vn)1/n ∼ 10(30/n)−17 cm, (1.44)

where we have used the values given by (1.3).
If n = 1, we expect r0 ∼ 1013 cm (∼1 astronomical unit), which is not

possible. If n = 2, on the other hand, we find r0 ∼ 1 mm, precisely the
shortest distance only above which the Newtonian inverse-square law has
been tested to within a certain precision, as stated before. In addition to
this interesting possibility with the unification scale within reach of our
experiments in the near future, also still in accordance basically with the
KK approach, there is another alternative scenario based on the brane
world picture.
According to the proposal made by Randall and Sundrum [32, 33],

the Hořava–Witten model just mentioned can be simplified to a five-
dimensional theory in which matter fields are confined to four-dimensional
space-time while gravity acts in five dimensions, because the six-
dimensional Calabi–Yau space is smaller by at least an order of magnitude
than the remaining five-dimensional space-time [34]. They simplified the
model further by assuming that our brane is identical to a domain wall
in five-dimensional anti-de Sitter space-time with a negative cosmological
constant Λ. The five-dimensional space-time is described by the metric,
which is not factorizable:

ds2 = e−2|y|/�gµν(x) dxµ dxν + dy2, (1.45)

where - =
√
−6/Λ. To find the Minkowski space on the brane (gµν = ηµν),

the tension T of the brane must satisfy |T | = 3/(4π-G5). The “warp”
factor e−2|y|/� which is rapidly changing in the extra dimension plays a
very important role, in contrast to the usual KK compactification. They
discussed two models.
In their first model (the Randall–Sundrum type-I model) [32], they

proposed a mechanism to solve the hierarchy problem by incorporating a
small extra dimension bounded by two boundary branes, with positive and
negative tension, located at y = 0 and y = s, respectively, as illustrated
in Fig. 1.1.
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Fig. 1.1. The Randall–Sundrum type-I model. Since gravity is confined
on the brane B, it can be described by the induced metric of B. The circles
describe the warp factor e−2|y|/�.

By assuming that we are living in a negative-tension brane, we find a
solution to the hierarchy problem. We first estimate the four-dimensional
Planck mass scale by integrating the five-dimensional action in the fifth
direction as

Seff
g =

∫
d4x

∫ s

0
dy

1
16πG5

√
−(5)g(5)R

∼ 1
16πG5

∫ s

0
dye−2|y|/� ·

∫
d4x

√
−gR, (1.46)

where we made an approximate estimate (5)R ∼ e2|y|/�R, without solving
Einstein’s equation in five dimensions rigorously. Note also that the sep-
arated fifth dimension has no curvature. We then find

M2
P =

1
8πG

∼ 1
8πG5

∫ s

0
dy e−2|y|/� =

-

16πG5

(
1− e−2s/�

)
. (1.47)

This means that MP depends weakly on the distance s, as long as
e−s/�� 1. To show how the hierarchy problem is resolved, we consider
a fundamental Higgs field confined in the visible brane with negative
tension. The action is given by

Svis =
∫
d4x

√
−gvis

[
gµνvisDµH

†DνH − λ
(
|H|2 − v2

0

)2
]
, (1.48)

where gvis
µν denotes the four-dimensional components of the five-

dimensional metric evaluated at y = s, i.e. gvis
µν = e−2s/�gµν . This, together

with redefinition of the Higgs field, H → es/�H, leads to

Seff
vis =

∫
d4x

√
−g

[
gµνDµH

†DνH − λ
(
|H|2 − v2

eff

)2
]
, (1.49)
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where veff = e−s/�v0 gives the physical symmetry-breaking energy scale,
which could be much smaller than the original energy scale v0. In fact,
if s/- ∼ 35, this produces a TeV energy scale from the four-dimensional
Planck scaleMP. This may be a natural explanation of the hierarchy prob-
lem. In this discussion, although we assumed that M (5)

P = (8πG5)−1/3 ≈
MP is the fundamental energy scale, we are allowed to consider that the
TeV scale is fundamental and the Planck scale is induced, contrary to the
conventional wisdom.
In their second model (the Randall–Sundrum type-II model) [33], on the

other hand, we assume that we are living in the positive-tension brane sur-
rounded by AdS. There is no second brane with negative tension, which is
obtained from a two-brane model in the limit of s→ ∞. Although hierar-
chy is still left unsolved, four-dimensional Newtonian gravity is recovered
at low energies even if the extra dimension is not compact. This is proved
by applying a perturbation approximation to the above solution (1.45)
with a positive-tension Minkowski brane at y = 0. Consider perturbation
to the four-dimensional components, (5)gµν = e−2|y|/�ηµν + hµν . By set-
ting h(x, y) = ψ̂(z)e−|y|/(2�)eipx with z = -(e|y|/� − 1) and p2 = −m2, we
find the perturbation equation of the graviton to be

[
−1

2∂
2
z + V (z)

]
ψ̂ = m2ψ̂, (1.50)

where

V (z) =
15

8-2(|z|/-+ 1)
− 3
2-
δ(z) (1.51)

is a volcano-shaped potential. Note that the indices of metric pertur-
bations are the same in all terms when one is working in the gauge
of ∂µhµν = h µ

µ = 0. The volcano-shaped potential confines a massless
mode on the brane. As a result, even if the fifth dimension is not com-
pact, the Newtonian gravitational potential is recovered in the low-energy
limit as

V (r) ∼ Gm1m2

r

(
1 +

-2

r2

)
, (1.52)

where m1 and m2 are masses of two particles on the brane. This “com-
pactification” is completely different from the KK-type compactification.
Although there are many interesting ideas in this new field, we will focus

here on the possibility of the occurrence of a scalar field in the brane world.
The scalar field may arise in two different forms, either the one similar
to ordinary moduli fields associated with the process of compactification,
such as in the manner of the conventional KK approach and in superstring




