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1

Stringology

In this chapter we introduce the basic objects of interest to this book: finite and
infinite words. A set of words forms a language, a concept introduced in Section 1.3.
Morphisms, discussed in Section 1.4, provide a way to transform words. Two of
the basic theorems on words – the theorems of Lyndon and Schützenberger – are
discussed in Section 1.5.

Repetitions in words are introduced in Section 1.6. Section 1.7 discusses the
particular case of binary words avoiding a certain type of repetition called an over-
lap; this section is rather technical and can be omitted on a first reading. Finally,
Section 1.8 briefly introduces some additional topics about repetitions.

1.1 Words

One of the fundamental mathematical objects we will study in this book is the
word. A word is made up of symbols (or letters), which are usually displayed in a
typewriter-like font like this. (We treat the notion of symbol as primitive and do
not define it further.) Let � denote a nonempty set of symbols, or alphabet; in this
book, � will almost always be finite. One alphabet is so important that we give it
a special symbol: if k is an integer ≥ 2, then we define

�k = {0,1, . . . , k − 1}.
Note that we sometimes identify symbols with the integers they represent, so that,
for example,

�2 = {0,1} = {0, 1}.
We typically denote variables whose domain is � using the lowercase italic

letters a, b, c, d. A word or string (we use the terms interchangeably) is a finite or
infinite list of symbols chosen from �. Although we usually denote words by simply
juxtaposing their symbols, such as 3245, for clarity (particularly when negative
integers are involved) we sometimes write them using an explicit concatenation
operator, e.g., Concat(3, 2, 4, 5). If unspecified, a word is assumed to be finite.

1
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2 Stringology

We typically use the lowercase italic letters s, t, u, v, w, x, y, z to represent finite
words.

More precisely, let [m.. n] denote the set of integers {m, m + 1, . . . , n}. Then
a finite word is a map from either [0..n − 1] or [1..n] to �. (The choice of the
initial index gives us a little flexibility in defining words.) If n = 0, we get the
empty word, which we denote by ε. The set of all finite words made up of let-
ters chosen from � is denoted by �∗. For example, if � = {a,b}, then �∗ =
{ε,a,b,aa,ab,ba,bb,aaa, . . . }. We let �+ denote the set of all nonempty
words over �.

If w is a finite word, then its length (the number of symbols it contains) is denoted
by |w|. For example, if w = five, then |w| = 4. Note that |ε| = 0. We can also
count the occurrences of a particular letter in a word. If a ∈ � and w ∈ �∗, then |w|a
denotes the number of occurrences of a in w. Thus, for example, if w = abbab,
then |w|a = 2 and |w|b = 3.

One of the fundamental operations on words is concatenation. We concatenate
two finite words w and x by juxtaposing their symbols, and we denote this by wx .
For example, if w = book and x = case, then wx = bookcase. Concatenation
of words is, in general, not commutative; for example, we have xw = casebook.
However, concatenation is associative: we have w(xy) = (wx)y for all words
w, x, y. Notationally, concatenation is treated like multiplication, so that wn denotes
the word www · · · w (n times). Note that the set �∗ together with concatenation
becomes an algebraic structure called a monoid, with the empty word ε playing the
part of the identity element.

We say a word y is a subword or factor of a word w if there exist words x, z such
that w = xyz. We say x is a prefix of w if there exists y such that w = xy. We say x
is a proper prefix of w if y �= ε. We say that z is a suffix of w if there exists y such that
w = yz. If w = a1a2 · · · an , then for 1 ≤ i ≤ n, we define w[i] = ai . If 1 ≤ i ≤ n
and i − 1 ≤ j ≤ n, we define w[i.. j] = ai ai+1 · · · a j . Note that w[i..i] = ai and
w[i..i − 1] = ε.

A language over � is a (finite or infinite) set of words – that is, a subset of �∗.

Example 1.1.1 The following are examples of languages:

PRIMES2 = {10,11,101,111, . . . }
(the primes expressed in base 2),

EQ = {x ∈ {0,1}∗ : |x |0 = |x |1}
(words containing an equal number of each symbol).

We now define infinite words (or infinite sequences – we use the terms inter-
changeably). We let Z denote the integers, Z+ denote the positive integers, Z−

denote the negative integers, and N denote the non-negative integers. Then we will
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usually take a one-sided (or unidirectional) right-infinite word a = a0a1a2 · · · to
be a map from N to �. We can form an infinite word by concatenating infinitely
many finite words; for example, ∏

i≥1

wi

denotes a word w1w2w3 · · · , which is infinite if and only if wi �= ε infinitely often.

Example 1.1.2 The following is an example of a right-infinite word:

q = (qn)n≥0 = 11001000010000001 · · · ,

where qn = 1 if n is a square and 0 otherwise. The sequence q is called the char-
acteristic sequence of the perfect squares.

Sometimes, if subscripts become too cumbersome, we write a = a(0)a(1)
a(2) · · · instead. Also, instead of beginning indices at 0, occasionally we will use
a map from Z+ to �, beginning our indices at 1, as the following example shows.

Example 1.1.3 Define

p = (pn)n≥1 = 0110101000101 · · · ,

the characteristic sequence of the prime numbers.

The set of all one-sided right-infinite words over � is denoted by �ω. We define
�∞ = �∗ ∪ �ω.

A left-infinite word · · · a−3a−2a−1 is a map from Z− to �. The set of all left-
infinite words is denoted by ω�.

A two-sided (or bidirectional) infinite word is a map from Z to �. Such a word
is of the form · · · c−2c−1c0.c1c2c3 · · · ; the decimal point is a notational convention
and not part of the word itself. We denote the set of all two-sided infinite words
over � by �Z. In this book, infinite words are typically denoted in boldface. Unless
otherwise indicated, infinite words are assumed to be one-sided and right-infinite.

We can produce one-sided infinite words from two-sided infinite words by
ignoring the portion to the right or left of the decimal point. Suppose w = · · ·
c−2c−1c0.c1c2c3 · · · . We define

L(w) = · · · c−2c−1c0,

a left-infinite word, and

R(w) = c1c2c3 · · · ,

a right-infinite word.



CB546-01 CB546/ALLOUCHE & SHALLIT March 12, 2003 10:24 Char Count= 0

4 Stringology

The notions of subword, prefix, and suffix for finite words have evident analogues
for infinite words. Let w = a0a1a2 · · · be an infinite word. For i ≥ 0 we define
w[i] = ai . For i ≥ 0 and j ≥ i − 1, we define w[i.. j] = ai ai+1 · · · a j . We also
define w[i..∞] = ai ai+1 · · · . If

lim
n→∞

| w[0..n − 1] |b
n

exists and equals r , then the frequency of the symbol b in w is defined to be r . We
denote this frequency as Freqb(w).

Example 1.1.4 Consider the word q from Example 1.1.2. Then Freq0(q) = 1 and
Freq1(q) = 0.

Infinite words may be specified by the limit of a sequence of finite words. If
w1, w2, w3, . . . form a sequence of words with wi a proper prefix of w j for i < j ,
then limn→∞ wn is the unique infinite word of which w1, w2, . . . are all prefixes.

Let k be an integer ≥ 2. A k-aligned subword of an infinite word x = a0a1a2 · · ·
is a subword of the form aki aki+1 · · · aki+k−1 for some integer i ≥ 0.

We can also concatenate a finite word on the left with an infinite word on the
right, but not vice versa. Clearly we cannot concatenate two right-infinite or two
left-infinite words, but it is possible to concatenate a left-infinite word with a right-
infinite word; see below. If x is a nonempty finite word, then xω is the right-infinite
word xxx · · · . Such a word is called purely periodic. An infinite word w of the
form x yω for y �= ε is called ultimately periodic. If w is ultimately periodic, then
we can write it in the form x yω for finite words x, y with y �= ε. Then x is called
a preperiod of w, and y is called a period. (Sometimes we abuse terminology by
calling the length |x | the preperiod and |y| the period.) If |x |, |y| are chosen as small
as possible, then x is called the least preperiod, and y is called the least period.

If L is a language, we define

Lω = {w1w2w3 · · · : wi ∈ L \ {ε} for all i ≥ 1}.
Thus, for example, �ω

2 is the set of all right-infinite words over {0,1}. Similarly,
we define

ωL = {· · · w−2w−1w0 : wi ∈ L \ {ε} for all i ≤ 0}.
If w is a nonempty finite word, then by wZ we mean the two-sided infinite

word · · · www.www · · · . Using concatenation, we can join a left-infinite word
w = · · · c−2c−1c0 with a right-infinite word x = d0d1d2 · · · to form a new two-
sided infinite word, as follows:

w.x := · · · c−2c−1c0.d0d1d2 · · · .
If L is a language, we define

LZ := {· · · w−2w−1w0.w1w2 · · · : wi ∈ L \ {ε} for all i ∈ Z}.
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If w = a1a2 · · · an and x = b1b2 · · · bn are finite words of the same length, then
by w X x we mean the word a1b1a2b2 · · · anbn , the perfect shuffle of w and x .
For example, clipXaloe = calliope. A similar definition can be given for
infinite words.

If w = a1a2 · · · an is a finite word, then by wR we mean the reversal of the word
w, that is, wR = anan−1 · · · a2a1. For example, (drawer)R = reward. Note that
(wx)R = x RwR . A word w is a palindrome if w = wR . Examples of palindromes
in English include deified, rotator, repaper, and redivider.

If w = a0a1a2 · · · is a one-sided right-infinite word, then we define the shift
map S(w) to be the word a1a2a3 · · · . Similarly, for k ≥ 0, we have Sk(w) =
akak+1ak+2 · · · . For k < 0, we define Sk(w) = uw for an arbitrarily chosen word
u of length k. For two-sided infinite words and k ∈ Z, we define

Sk(· · · a−2a−1a0.a1a2a3 · · · ) = ak−2ak−1ak .ak+1ak+2ak+3 · · · .
This notation is also extended to finite words, where for k ≥ 0 we define

Sk(a0a1 · · · a j ) =
{

akak+1 · · · a j if 0 ≤ k ≤ j,

ε, otherwise.

If w = a0a1a2 · · · is an infinite word over � and x = b0b1b2 · · · is an infinite
word over 
, then by w × x we mean the infinite word c0c1c2 · · · over � × 


defined by ci = (ai , bi ). We also extend the notation × to apply to finite words of
the same length.

If � is an ordered set, we can define an ordering on words of �ω. We define a
lexicographic order �ω as follows: let w = a1a2a3 · · · and x = b1b2b3 · · · . Define
w < x if there exists an index i ≥ 0 such that a j = b j for j ≤ i and ai+1 < bi+1.
A similar definition can be given for finite words of the same length.

Let w = a0a1a2 · · · be an infinite word over �, and let k be an integer ≥ 1.
The k-block compression of w, which we write as comp(w, k), is an infinite word
b0b1b2 · · · over the alphabet �k defined by bi = (aki , aki+1, . . . , aki+k−1).

If L1, L2 are languages over �, we define L1L2 = {xy : x ∈ L1, y ∈ L2}.

1.2 Topology and Measure

Let A be a set, and let T be a collection of subsets of A. Recall that we say (A, T )
is a topological space, or just a topology, if

(i) ∅ and A are members of T ;
(ii) if (Xi )i∈I are members of T , then so is

⋃
i∈I Xi ;

(iii) if (Xi )1≤i≤n are members of T for some integer n ≥ 1, then so is
⋂

1≤i≤n Xi .

The elements of T are called open sets. A subset F ⊆ A is called closed if its
complement A \ F is open. A topology may be specified by providing a base B;
this is a collection of open sets such that each element of T may be expressed as a
union of elements of B. A topology may be also specified by providing a sub-base
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D of B; this is a collection of open sets such that each element of B can be expressed
as a nonempty finite intersection of elements of D.

Example 1.2.1 Let A = R, and let the topology T be specified by letting B, a base,
consist of the open intervals of the form (a, b) with a, b ∈ R and a < b.

Let � be a finite alphabet. We can specify a natural topology on �ω, the set of
one-sided right-infinite words over �, by specifying a sub-base D as follows:

D =
⋃
j≥0

a∈�

D j,a,

where D j,a consists of those words w such that w[ j] = a. Base elements, which are
nonempty finite intersections of the D j,a , are of the form �i1a1�

i2a2 · · · �i j a j�
ω,

where j, i1, i2, . . . , i j ≥ 0 are integers and a1, a2, . . . , a j ∈ �. Such a set is called
a cylinder.

Theorem 1.2.2 The open sets in �ω are precisely those sets of the form L�ω, with
L ⊆ �∗.

Proof. Since by definition the D j,a form a sub-base for the topology, every base
element is of the form �i1a1�

i2a2 · · · �i j a j�
ω, where j, i1, i2, . . . , i j ≥ 0 are in-

tegers and a1, a2, . . . , a j ∈ �. Thus every base element is of the form L�ω, where
L = �i1a1�

i2a2 · · · �i j a j . Now by definition each open set is a union of sets of the
form Li�

ω. But
⋃

i∈I Li�
ω = (

⋃
i∈I Li )�ω.

For the converse, we need to show that L�ω is open. But L�ω = ⋃x∈L x�ω,
and each element of the form x�ω for x ∈ �∗ is clearly a base element. �

Let (X, T ) be a topological space, and A ⊆ X . We say that x ∈ X is a limit point
of A if every open set containing x intersects A \ {x}. The set of all limit points of
A is called the derived set and is sometimes written as A′. If A = A′, we say A is
perfect.

Recall that a metric on a set A is a map d : A → R≥0 such that

(i) for x, y ∈ A we have d(x, y) = 0 if and only if x = y;
(ii) for x, y ∈ A we have d(x, y) = d(y, x);

(iii) for x, y, z ∈ A we have the triangle inequality d(x, z) ≤ d(x, y) + d(y, z).

Here by R≥0 we mean the non-negative real numbers. The pair (A, d) is called a
metric space.

A metric d induces a topology as follows: we take as a base the family of all
open balls of the form {x ∈ A : d(x, y) < r} for y ∈ A and r > 0.
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We can make �ω into a metric space by defining

d(x, y) =
{

0 if x = y,

2−n otherwise,

where n = min{i : x[i] �= y[i]}. Intuitively, two infinite sequences are “close to-
gether” if they agree on a long prefix. Note that in addition to the triangle inequality,
d satisfies the stronger ultrametric inequality

d(x, y) ≤ max(d(x, z), d(y, z))

for all x, y, z ∈ �ω. It is not difficult to see that the topology induced by d is the
same as the topology mentioned above.

The closure of a set X ⊆ �ω is defined to be the intersection of all closed subsets
of �ω containing X ; it is denoted by Cl(X ). Alternatively, w ∈ Cl(X ) if for all real
δ > 0 there exists x ∈ X such that d(w, x) < δ.

Theorem 1.2.3 Let X ⊆ �ω, and let w ∈ �ω. Then w ∈ Cl(X ) if and only if every
prefix of w is the prefix of some word in X.

Proof. We have w ∈ Cl(X ) if and only if for all k ≥ 0 there exists x ∈ X with
d(w, x) ≤ 2−k , if and only if for all k ≥ 0 there exists x ∈ X which agrees with w
on the first k terms. �

We can extend the metric d to �∞ by introducing a new symbol b, not in �, and
identifying each finite word w with the right-infinite word wbω ∈ (� ∪ {b})ω.

Finally, we can put a measure m on �ω by defining the measure of the cylinders

m(�i1a1�
i2a2 · · · �i j a j�

ω) = k− j ,

where k = Card �.

1.3 Languages and Regular Expressions

As we have seen above, a language over � is a subset of �∗. Languages may be
of finite or infinite cardinality. We start by defining some common operations on
languages.

Let L , L1, L2 ⊆ �∗ be languages. Recall that we define the product of languages
by

L1L2 = {wx : w ∈ L1, x ∈ L2}.
We define L0 = {ε} and define Li as L Li−1 for i ≥ 1. We define

L≤i = L0 ∪ L1 ∪ · · · ∪ Li .

We define L∗ as
⋃

i≥0 Li ; the operation L∗ is sometimes called Kleene closure. We
define L+ = L L∗; the operation + in the superscript is sometimes called positive
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closure. If L is a language, then the reversed language is defined as follows: L R =
{x R : x ∈ L}. Finally, we define the quotient of languages as follows:

L1/L2 = {x ∈ �∗ : ∃ y ∈ L2 such that xy ∈ L1}.
We now turn to a common notation for representing some kinds of languages. A

regular expression over the alphabet � is a well-formed word over the alphabet

� ∪ {ε, ∅, (, ), +, *}.
(Exercise 64 makes this more precise.) In evaluating such an expression, * repre-
sents Kleene closure and has highest precedence. Concatenation is represented by
juxtaposition, and has next highest precedence. Finally, + represents union and has
lowest precedence. Parentheses are used for grouping.

If the word u is a regular expression, then L(u) represents the language that u
specifies. For example, consider the regular expression u = (0+10)*(1+ε). Then
L(u) represents all finite words of 0’s and 1’s that do not contain two consecutive
1’s. Frequently we will abuse the notation by referring to the language as the naked
regular expression without the surrounding L(). A language L is said to be regular
if L = L(u) for some regular expression u.

Theorem 1.3.1 Every finite language is regular.

Proof. If L = {w1, w2, . . . , wi }, then a regular expression for L is just w1+
w2+ · · ·+wi . �

1.4 Morphisms

In this section we introduce a fundamental tool of formal languages, the homomor-
phism, or just morphism for short. Let � and 
 be alphabets. A morphism is a map
h from �∗ to 
∗ that obeys the identity h(xy) = h(x)h(y) for all words x, y ∈ �∗.
Typically, we use the Latin letters f, g, h and Greek letters ϕ, θ, µ, σ, ρ to denote
morphisms.

Clearly if h is a morphism, then we must have h(ε) = ε. Furthermore, once h is
defined for all elements of �, it can be uniquely extended to a map from �∗ to 
∗.
Henceforth, when we define a morphism, we will always give it by specifying its
action on �.

Example 1.4.1 Let � = {e,m,o,s}, let 
 = {a,e,l,n,r,s,t}, and define

h(m) = ant,

h(o) = ε,

h(s) = ler,

h(e) = s.

Then h(moose) = antlers.
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If � = 
, then we can iterate the application of h. We define h0(a) = a and
hi (a) = h(hi−1(a)) for all a ∈ �.

Example 1.4.2 Let � = 
 = {0,1}. Define the Thue–Morse morphism µ(0) =
01 and µ(1) = 10. Then µ2(0) = 0110 and µ3(0) = 01101001.

There are various parameters associated with a morphism h : �∗ → 
∗. We def-
ine Width h = maxa∈� |h(a)|, Depth h = Card �, and Size h =∑a∈� |h(a)|.

We can classify morphisms into different groups, as follows: if there is a constant
k such that |h(a)| = k for all a ∈ �, then we say that h is k-uniform (or just uniform,
if k is clear from the context). A 1-uniform morphism is called a coding. We typically
use the Greek letters τ and ρ to denote codings. A morphism is said to be expanding
if |h(a)| ≥ 2 for all a ∈ �.

If h(a) �= ε for all a ∈ �, then h is nonerasing. If h(a) = ε for all a ∈ �, then we
say h is trivial. If there exists an integer j ≥ 1 such that h j (a) = ε, then the letter a is
said to be mortal. The set of mortal letters associated with a morphism h is denoted
by Mh . The mortality exponent of a morphism h is defined to be the least integer
t ≥ 0 such that ht (a) = ε for all a ∈ Mh . (If Mh = ∅, we take t = 0.) We write the
mortality exponent as exp(h) = t . It is easy to prove that exp(h) ≤ Card Mh; see
Exercise 3.

We also define the notion of inverse homomorphism of languages. Given h :
�∗ → 
∗ and a language L , we define

h−1(L) = {x ∈ �∗ : h(x) ∈ L}.
We can also apply morphisms to infinite words. If w = c0c1c2 · · · is a right-

infinite word, then we define

h(w) = h(c0)h(c1)h(c2) · · · .
If w = · · · c−2c−1c0.c1c2 · · · is a two-sided infinite word, and h is a morphism, then
we define

h(w) := · · · h(c−2)h(c−1)h(c0).h(c1)h(c2) · · · . (1.1)

We now introduce the notion of a primitive morphism. A morphism h : �∗ → �∗

is said to be primitive if there exists an integer n ≥ 1 such that for all a, b ∈ �, a
occurs in hn(b).

One reason why primitive morphisms are of interest is that if h is primitive, then
the growth rate of |hr (a)| is essentially independent of a. We have the following

Theorem 1.4.3 Let h : �∗ → �∗ be a primitive morphism. Then there exists a
constant C (which does not depend on n but may depend on Width h and Depth h)
such that |hn(b)| ≤ C |hn(c)| for all b, c ∈ � and all n ≥ 0.
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Proof. Let W = Width h. Since h is primitive, there exists an integer e ≥ 1 such
that for all b, c ∈ � we have he(c) ∈ �∗b�∗. Thus for r ≥ 1 we have

|her (c)| = |he(r−1)(he(c))|
= |he(r−1)(xby)| for some x, y ∈ �∗

≥ |he(r−1)(b)|.
Also |her (b)| = |he(he(r−1)(b))| ≤ W e|he(r−1)(b)|. Putting these bounds together,
we get |her (b)| ≤ W e|her (c)|.

Now write n = er + i for some r ≥ 0 and 0 ≤ i < e. If r = 0, we have |hi (b)| ≤
W i ≤ W i |hi (c)|. If r ≥ 1, then

|her+i (b)| ≤ W i |her (b)|
≤ W i+e|her (c)|
≤ W i+e|her+i (c)|.

It follows that |hn(b)| ≤ W 2e−1|hn(c)|, so we may take C = W 2e−1. �

Exercise 8.8 explores how big e can be. Note: Theorem 1.4.3 is made more
precise in Proposition 8.4.1.

Let h : �∗ → �∗ be a morphism. A finite or infinite word w such that h(w) = w

is said to be a fixed point of h. If there exists a letter a ∈ � such that h(a) = ax ,
and x �∈ M∗

h , we say h is prolongable on a. In this case, the sequence of words
a, h(a), h2(a), . . . converges, in the limit, to the infinite word

hω(a) := a x h(x) h2(x) · · · ,

which is a fixed point of h, that is, h(hω(a)) = hω(a). Furthermore, it is easy to see
that hω(a) is the unique fixed point of h which starts with a. If w = hω(a), then we
call w a pure morphic sequence. If there is a coding τ : � → 
 and w = τ (hω(a)),
then we call w a morphic sequence.

1.5 The Theorems of Lyndon and Schützenberger

In this section, we prove two beautiful and fundamental theorems due to Lyndon
and Schützenberger. We start with one of the simplest and most basic results on
words, sometimes known as Levi’s lemma:

Theorem 1.5.1 Let u, v, x, y ∈ �∗, and suppose that uv = xy. If |u| ≥ |x |, there
exists t ∈ �∗ such that u = xt and y = tv. If |u| < |x |, there exists t ∈ �+ such
that x = ut and v = t y.

Proof. Left to the reader. �
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Now we can state the first theorem of Lyndon and Schützenberger:

Theorem 1.5.2 Let y ∈ �∗ and x, z ∈ �+. Then xy = yz if and only if there ex-
ist u, v ∈ �∗ and an integer e ≥ 0 such that x = uv, z = vu, and y = (uv)eu =
u(vu)e.

Proof. =⇒: The proof is by induction on |y|. If |y| = 0, then we can take v = x = z,
u = ε, and e = 0. Thus suppose that |y| ≥ 1. There are two cases.

Case I: If |x | ≥ |y|, then we have a situation like the following:

x

zy

y

w

By Levi’s lemma there exists w ∈ �∗ such that x = yw and z = wy. Now take
u = y, v = w, e = 0, and we are done.

Case II: Now suppose that |x | < |y|. Then we have a situation like the following:

y z

x y

w

By Levi’s lemma there exists w ∈ �+ such that y = wz = xw. By induction (since
|w| = |y| − |z| < |y|), we know there exist u, v, e such that

x = uv,

z = vu,

w = (uv)eu = u(vu)e,

so it follows that y = u(vu)e+1 = (uv)e+1u.
⇐=: We have

xy = uv(uv)eu = (uv)e+1u,

yz = u(vu)evu = u(vu)e+1,

and these words are identical. �
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We now state and prove the second theorem of Lyndon and Schützenberger.

Theorem 1.5.3 Let x, y ∈ �+. Then the following three conditions are equivalent:

(1) xy = yx.
(2) There exist integers i, j > 0 such that xi = y j .
(3) There exist z ∈ �+ and integers k, l > 0 such that x = zk and y = zl .

Proof. We show that (1) =⇒ (3), (3) =⇒ (2), and (2) =⇒ (1).
(1) =⇒ (3): By induction on |xy|. If |xy| = 2, then |x | = |y| = 1, so x = y and

we may take z = x = y, k = l = 1.
Now assume the implication is true for all x, y with |xy| < n. We prove it for

|xy| = n. Without loss of generality, assume |x | ≥ |y|. Then we have a situation
like the following:

x

y

y

w

x

Hence there exists w ∈ �∗ such that x = wy = yw. If |w| = 0 then x = y and
we can take z = x = y, k = l = 1.

Otherwise |w| ≥ 1. We have |wy| = |x | < |xy| = n, so the induction hypothesis
applies, and there exists z ∈ �+ and integers k, l > 0 such that w = zk , y = zl . It
follows that x = wy = zk+l .

(3) =⇒ (2): By (3) there exist z ∈ �+ and integers k, l > 0 such that x = zk and
y = zl . Hence, taking i = l, j = k, we get

xi = (zk)i = zkl = (zl)k = (zl) j = y j ,

as desired.
(2) =⇒ (1): We have xi = y j . If |x | = |y| then we must have i = j and so x = y.

Otherwise, without loss of generality assume |x | > |y|. Then we have a situation
like the following:

x x x x

y y y y y y

w

That is, there exists w ∈ �+ such that x = yw. Hence xi = (yw)i = y j , and so
y(wy)i−1w = y j . Therefore (wy)i−1w = y j−1, and so, by multiplying by y on the
right, we get (wy)i = y j . Hence (yw)i = (wy)i , and hence yw = wy. It follows
that x = yw = wy and xy = (yw)y = y(wy) = yx . �


