Nutritional Biochemistry of the Vitamins

SECOND EDITION

DAVID A. BENDER
University College London
Contents

List of Figures	page xvii
List of Tables	xxi
Preface	xxiii

1 The Vitamins

1.1 Definition and Nomenclature of the Vitamins 2

1.1.1 Methods of Analysis and Units of Activity 6

1.1.2 Biological Availability 8

1.2 Vitamin Requirements and Reference Intakes 10

1.2.1 Criteria of Vitamin Adequacy and the Stages of Development of Deficiency 10

1.2.2 Assessment of Vitamin Nutritional Status 12

1.2.3 Determination of Requirements 17

1.2.3.1 Population Studies of Intake 17

1.2.3.2 Depletion/Repletion Studies 18

1.2.3.3 Replacement of Metabolic Losses 18

1.2.3.4 Studies in Patients Maintained on Total Parenteral Nutrition 19

1.2.4 Reference Intakes of Vitamins 19

1.2.4.1 Adequate Intake 23

1.2.4.2 Reference Intakes for Infants and Children 23

1.2.4.3 Tolerable Upper Levels of Intake 24

1.2.4.4 Reference Intake Figures for Food Labeling 27

2 Vitamin A: Retinoids and Carotenoids

2.1 Vitamin A Vitamers and Units of Activity 31

2.1.1 Retinoids 31

2.1.2 Carotenoids 33

2.1.3 International Units and Retinol Equivalents 35
2.2 Absorption and Metabolism of Vitamin A and Carotenoids 35
 2.2.1 Absorption and Metabolism of Retinol and Retinoic Acid 35
 2.2.1.1 Liver Storage and Release of Retinol 36
 2.2.1.2 Metabolism of Retinoic Acid 38
 2.2.1.3 Retinoyl Glucuronide and Other Metabolites 39
 2.2.2 Absorption and Metabolism of Carotenoids 40
 2.2.2.1 Carotene Dioxygenase 41
 2.2.2.2 Limited Activity of Carotene Dioxygenase 42
 2.2.2.3 The Reaction Specificity of Carotene Dioxygenase 43
 2.2.3 Plasma Retinol Binding Protein (RBP) 45
 2.2.4 Cellular Retinoid Binding Proteins CRBPs and CRABPs 47
2.3 Metabolic Functions of Vitamin A 49
 2.3.1 Retinol and Retinaldehyde in the Visual Cycle 49
 2.3.2 Genomic Actions of Retinoic Acid 54
 2.3.2.1 Retinoid Receptors and Response Elements 55
 2.3.3 Nongenomic Actions of Retinoids 58
 2.3.3.1 Retinoylation of Proteins 58
 2.3.3.2 Retinoids in Transmembrane Signaling 60
2.4 Vitamin A Deficiency (Xerophthalmia) 61
 2.4.1 Assessment of Vitamin A Nutritional Status 64
 2.4.1.1 Plasma Concentrations of Retinol and \(\beta \)-Carotene 64
 2.4.1.2 Plasma Retinol Binding Protein 65
 2.4.1.3 The Relative Dose Response (RDR) Test 66
 2.4.1.4 Conjunctival Impression Cytology 66
2.5 Vitamin A Requirements and Reference Intakes 66
 2.5.1 Toxicity of Vitamin A 68
 2.5.1.1 Teratogenicity of Retinoids 70
 2.5.2 Pharmacological Uses of Vitamin A, Retinoids, and Carotenoids 71
 2.5.2.1 Retinoids in Cancer Prevention and Treatment 71
 2.5.2.2 Retinoids in Dermatology 72
 2.5.2.3 Carotene 72
3 Vitamin D 77
 3.1 Vitamin D Vitamers, Nomenclature, and Units of Activity 78
 3.2 Metabolism of Vitamin D 79
 3.2.1 Photosynthesis of Cholecalciferol in the Skin 80
 3.2.2 Dietary Vitamin D 82
 3.2.3 25-Hydroxylation of Cholecalciferol 83
 3.2.4 Calcidiol 1α-Hydroxylase 85
 3.2.5 Calcidiol 24-Hydroxylase 85
 3.2.6 Inactivation and Excretion of Calcitriol 86
 3.2.7 Plasma Vitamin D Binding Protein (Gc-Globulin) 87
Contents

3.2.8 Regulation of Vitamin D Metabolism 87
3.2.8.1 Calcitriol 88
3.2.8.2 Parathyroid Hormone 88
3.2.8.3 Calcitonin 88
3.2.8.4 Plasma Concentrations of Calcium and Phosphate 89

3.3 Metabolic Functions of Vitamin D 89
3.3.1 Nuclear Vitamin D Receptors 91
3.3.2 Nongenomic Responses to Vitamin D 92
3.3.3 Stimulation of Intestinal Calcium and Phosphate Absorption 93
3.3.3.1 Induction of Calbindin-D 93
3.3.4 Stimulation of Renal Calcium Reabsorption 94
3.3.5 The Role of Calcitriol in Bone Metabolism 94
3.3.6 Cell Differentiation, Proliferation, and Apoptosis 96
3.3.7 Other Functions of Calcitriol 97
3.3.7.1 Endocrine Glands 98
3.3.7.2 The Immune System 98

3.4 Vitamin D Deficiency – Rickets and Osteomalacia 98
3.4.1 Nonnutritional Rickets and Osteomalacia 99
3.4.2 Vitamin D-Resistant Rickets 100
3.4.3 Osteoporosis 101
3.4.3.1 Glucocorticoid-Induced Osteoporosis 102

3.5 Assessment of Vitamin D Status 103

3.6 Requirements and Reference Intakes 104
3.6.1 Toxicity of Vitamin D 105
3.6.2 Pharmacological Uses of Vitamin D 106

4 Vitamin E: Tocopherols and Tocotrienols 109

4.1 Vitamin E Vitamers and Units of Activity 109
4.2 Metabolism of Vitamin E 113
4.3 Metabolic Functions of Vitamin E 115
4.3.1 Antioxidant Functions of Vitamin E 116
4.3.1.1 Prooxidant Actions of Vitamin E 118
4.3.1.2 Reaction of Tocopherol with Peroxynitrite 119
4.3.2 Nutritional Interactions Between Selenium and Vitamin E 120
4.3.3 Functions of Vitamin E in Cell Signaling 121
4.4 Vitamin E Deficiency 122
4.4.1 Vitamin E Deficiency in Experimental Animals 122
4.4.2 Human Vitamin E Deficiency 125
4.5 Assessment of Vitamin E Nutritional Status 125
4.6 Requirements and Reference Intakes 127
4.6.1 Upper Levels of Intake 128
4.6.2 Pharmacological Uses of Vitamin E 128
4.6.2.1 Vitamin E and Cancer 129
4.6.2.2 Vitamin E and Cardiovascular Disease 129
Contents

4.6.2.3 Vitamin E and Cataracts 129
4.6.2.4 Vitamin E and Neurodegenerative Diseases 129

5 Vitamin K 131
 5.1 Vitamin K Vitamers 132
 5.2 Metabolism of Vitamin K 133
 5.2.1 Bacterial Biosynthesis of Menaquinones 135
 5.3 The Metabolic Functions of Vitamin K 135
 5.3.1 The Vitamin K-Dependent Carboxylase 136
 5.3.2 Vitamin K-Dependent Proteins in Blood Clotting 139
 5.3.3 Osteocalcin and Matrix Gla Protein 141
 5.3.4 Vitamin K-Dependent Proteins in Cell Signaling – Gas6 142
 5.4 Vitamin K Deficiency 142
 5.4.1 Vitamin K Deficiency Bleeding in Infancy 143
 5.5 Assessment of Vitamin K Nutritional Status 143
 5.6 Vitamin K Requirements and Reference Intakes 145
 5.6.1 Upper Levels of Intake 145
 5.6.2 Pharmacological Uses of Vitamin K 146

6 Vitamin B₁ – Thiamin 148
 6.1 Thiamin Vitamers and Antagonists 148
 6.2 Metabolism of Thiamin 150
 6.2.1 Biosynthesis of Thiamin 153
 6.3 Metabolic Functions of Thiamin 153
 6.3.1 Thiamin Diphosphate in the Oxidative Decarboxylation of Oxoacids 154
 6.3.1.1 Regulation of Pyruvate Dehydrogenase Activity 155
 6.3.1.2 Thiamin-Responsive Pyruvate Dehydrogenase Deficiency 156
 6.3.1.3 2-Oxoglutarate Dehydrogenase and the γ-Aminobutyric Acid (GABA) Shunt 156
 6.3.1.4 Branched-Chain Oxo-acid Decarboxylase and Maple Syrup Urine Disease 158
 6.3.2 Transketolase 159
 6.3.3 The Neuronal Function of Thiamin Triphosphate 159
 6.4 Thiamin Deficiency 161
 6.4.1 Dry Beriberi 161
 6.4.2 Wet Beriberi 162
 6.4.3 Acute Pernicious (Fulminating) Beriberi – Shoshin Beriberi 162
 6.4.4 The Wernicke–Korsakoff Syndrome 163
 6.4.5 Effects of Thiamin Deficiency on Carbohydrate Metabolism 164
 6.4.6 Effects of Thiamin Deficiency on Neurotransmitters 165
 6.4.6.1 Acetylcholine 165
 6.4.6.2 5-Hydroxytryptamine 165
 6.4.7 Thiaminases and Thiamin Antagonists 166
Contents

6.5 Assessment of Thiamin Nutritional Status 167
 6.5.1 Urinary Excretion of Thiamin and Thiochrome 167
 6.5.2 Blood Concentration of Thiamin 167
 6.5.3 Erythrocyte Transketolase Activation 168
6.6 Thiamin Requirements and Reference Intakes 169
 6.6.1 Upper Levels of Thiamin Intake 169
 6.6.2 Pharmacological Uses of Thiamin 169

7 Vitamin B2 – Riboflavin 172
 7.1 Riboflavin and the Flavin Coenzymes 172
 7.2 The Metabolism of Riboflavin 175
 7.2.1 Absorption, Tissue Uptake, and Coenzyme Synthesis 175
 7.2.2 Riboflavin Binding Protein 177
 7.2.3 Riboflavin Homeostasis 178
 7.2.4 The Effect of Thyroid Hormones on Riboflavin Metabolism 178
 7.2.5 Catabolism and Excretion of Riboflavin 179
 7.2.6 Biosynthesis of Riboflavin 181
 7.3 Metabolic Functions of Riboflavin 183
 7.3.1 The Flavin Coenzymes: FAD and Riboflavin Phosphate 183
 7.3.2 Single-Electron-Transferring Flavoproteins 184
 7.3.3 Two-Electron-Transferring Flavoprotein Dehydrogenases 185
 7.3.4 Nicotinamide Nucleotide Disulfide Oxidoreductases 185
 7.3.5 Flavin Oxidases 186
 7.3.6 NADPH Oxidase, the Respiratory Burst Oxidase 187
 7.3.7 Molybdenum-Containing Flavoprotein Hydroxylases 188
 7.3.8 Flavin Mixed-Function Oxidases (Hydroxylases) 189
 7.3.9 The Role of Riboflavin in the Cryptochromes 190
 7.4 Riboflavin Deficiency 190
 7.4.1 Impairment of Lipid Metabolism in Riboflavin Deficiency 191
 7.4.2 Resistance to Malaria in Riboflavin Deficiency 192
 7.4.3 Secondary Nutrient Deficiencies in Riboflavin Deficiency 193
 7.4.4 Iatrogenic Riboflavin Deficiency 194
 7.5 Assessment of Riboflavin Nutritional Status 196
 7.5.1 Urinary Excretion of Riboflavin 196
 7.5.2 Erythrocyte Glutathione Reductase (EGR) Activation Coefficient 197
 7.6 Riboflavin Requirements and Reference Intakes 197
 7.7 Pharmacological Uses of Riboflavin 198

8 Niacin 200
 8.1 Niacin Vitamers and Nomenclature 201
 8.2 Niacin Metabolism 203
 8.2.1 Digestion and Absorption 203
 8.2.1.1 Unavailable Niacin in Cereals 203
 8.2.2 Synthesis of the Nicotinamide Nucleotide Coenzymes 203
8.2.3 Catabolism of NAD(P) 205
8.2.4 Urinary Excretion of Niacin Metabolites 206
8.3 The Synthesis of Nicotinamide Nucleotides from Tryptophan 208
 8.3.1 Picolinate Carboxylase and Nonenzymic Cyclization to Quinolinic Acid 210
 8.3.2 Tryptophan Dioxygenase 211
 8.3.2.1 Saturation of Tryptophan Dioxygenase with Its Heme Cofactor 211
 8.3.2.2 Induction of Tryptophan Dioxygenase by Glucocorticoid Hormones 211
 8.3.2.3 Induction Tryptophan Dioxygenase by Glucagon 212
 8.3.2.4 Repression and Inhibition of Tryptophan Dioxygenase by Nicotinamide Nucleotides 212
 8.3.3 Kynurenine Hydroxylase and Kynureninase 212
 8.3.3.1 Kynurenine Hydroxylase 213
 8.3.3.2 Kynureninase 213
8.4 Metabolic Functions of Niacin 214
 8.4.1 The Redox Function of NAD(P) 214
 8.4.1.1 Use of NAD(P) in Enzyme Assays 215
 8.4.2 ADP-Ribosyltransferases 215
 8.4.3 Poly(ADP-ribose) Polymerases 217
 8.4.4 cADP-Ribose and Nicotinic Acid Adenine Dinucleotide Phosphate (NAADP) 219
8.5 Pellagra – A Disease of Tryptophan and Niacin Deficiency 221
 8.5.1 Other Nutrient Deficiencies in the Etiology of Pellagra 222
 8.5.2 Possible Pellagragenic Toxins 223
 8.5.3 The Pellagragenic Effect of Excess Dietary Leucine 223
 8.5.4 Inborn Errors of Tryptophan Metabolism 224
 8.5.5 Carcinoid Syndrome 224
 8.5.6 Drug-Induced Pellagra 225
8.6 Assessment of Niacin Nutritional Status 225
 8.6.1 Tissue and Whole Blood Concentrations of Nicotinamide Nucleotides 226
 8.6.2 Urinary Excretion of N1-Methyl Nicotinamide and Methyl Pyridone Carboxamide 226
8.7 Niacin Requirements and Reference Intakes 227
 8.7.1 Upper Levels of Niacin Intake 228
8.8 Pharmacological Uses of Niacin 229

9 Vitamin B₆ 232
 9.1 Vitamin B₆ Vitamers and Nomenclature 233
 9.2 Metabolism of Vitamin B₆ 234
 9.2.1 Muscle Pyridoxal Phosphate 236
 9.2.2 Biosynthesis of Vitamin B₆ 236
 9.3 Metabolic Functions of Vitamin B₆ 236
 9.3.1 Pyridoxal Phosphate in Amino Acid Metabolism 237
 9.3.1.1 α-Decarboxylation of Amino Acids 239
Contents

9.3.1.2 Racemization of the Amino Acid Substrate 241
9.3.1.3 Transamination of Amino Acids (Aminotransferase Reactions) 241
9.3.1.4 Steps in the Transaminase Reaction 242
9.3.1.5 Transamination Reactions of Other Pyridoxal Phosphate Enzymes 243
9.3.1.6 Transamination and Oxidative Deamination Catalyzed by Dihydroxyphenylalanine (DOPA) Decarboxylase 243
9.3.1.7 Side-Chain Elimination and Replacement Reactions 244
9.3.2 The Role of Pyridoxal Phosphate in Glycogen Phosphorylase 244
9.3.3 The Role of Pyridoxal Phosphate in Steroid Hormone Action and Gene Expression 245
9.4 Vitamin B₆ Deficiency 246
9.4.1 Enzyme Responses to Vitamin B₆ Deficiency 247
9.4.2 Drug-Induced Vitamin B₆ Deficiency 249
9.4.3 Vitamin B₆ Dependency Syndromes 250
9.5 The Assessment of Vitamin B₆ Nutritional Status 250
9.5.1 Plasma Concentrations of Vitamin B₆ 251
9.5.2 Urinary Excretion of Vitamin B₆ and 4-Pyridoxic Acid 251
9.5.3 Coenzyme Saturation of Transaminases 252
9.5.4 The Tryptophan Load Test 252
9.5.4.1 Artifacts in the Tryptophan Load Test Associated with Increased Tryptophan Dioxygenase Activity 253
9.5.4.2 Estrogens and Apparent Vitamin B₆ Nutritional Status 254
9.5.5 The Methionine Load Test 255
9.6 Vitamin B₆ Requirements and Reference Intakes 256
9.6.1 Vitamin B₆ Requirements Estimated from Metabolic Turnover 256
9.6.2 Vitamin B₆ Requirements Estimated from Depletion/Repletion Studies 257
9.6.3 Vitamin B₆ Requirements of Infants 259
9.6.4 Toxicity of Vitamin B₆ 259
9.6.4.1 Upper Levels of Vitamin B₆ Intake 260
9.7 Pharmacological Uses of Vitamin B₆ 261
9.7.1 Vitamin B₆ and Hyperhomocysteinemia 261
9.7.2 Vitamin B₆ and the Premenstrual Syndrome 262
9.7.3 Impaired Glucose Tolerance 262
9.7.4 Vitamin B₆ for Prevention of the Complications of Diabetes Mellitus 263
9.7.5 Vitamin B₆ for the Treatment of Depression 264
9.7.6 Antihypertensive Actions of Vitamin B₆ 264
9.8 Other Carbonyl Catalysts 265
9.8.1 Pyruvoyl Enzymes 266
9.8.2 Pyrroloquinoline Quinone (PQQ) and Tryptophan Tryptophylquinone (TTQ) 266
9.8.3 Quinone Catalysts in Mammalian Enzymes 268
10 Folate and Other Pterins and Vitamin B₁₂

10.1 Folate Vitamers and Dietary Folate Equivalents
10.1.1 Dietary Folate Equivalents
10.2 Metabolism of Folates
10.2.1 Digestion and Absorption of Folates
10.2.2 Tissue Uptake and Metabolism of Folate
10.2.2.1 Poly-γ-glutamylation of Folate
10.2.3 Catabolism and Excretion of Folate
10.2.4 Biosynthesis of Pterins
10.3 Metabolic Functions of Folate
10.3.1 Sources of Substituted Folates
10.3.1.1 Serine Hydroxymethyltransferase
10.3.1.2 Histidine Catabolism
10.3.1.3 Other Sources of One-Carbon Substituted Folates
10.3.2 Interconversion of Substituted Folates
10.3.2.1 Methylene-Tetrahydrofolate Reductase
10.3.2.2 Disposal of Surplus One-Carbon Fragments
10.3.3 Utilization of One-Carbon Substituted Folates
10.3.3.1 Thymidylate Synthetase and Dihydrofolate Reductase
10.3.3.2 Dihydrofolate Reductase Inhibitors
10.3.3.3 The dUMP Suppression Test
10.3.3.4 The Methyl Folate Trap Hypothesis
10.3.4 Hyperhomocysteinemia and Cardiovascular Disease
10.4 Tetrahydrobiopterin
10.4.1 The Role of Tetrahydrobiopterin in Aromatic Amino Acid Hydroxylases
10.4.2 The Role of Tetrahydrobiopterin in Nitric Oxide Synthase
10.5 Molybdopterin
10.6 Vitamin B₁₂ Vitamers and Nomenclature
10.7 Metabolism of Vitamin B₁₂
10.7.1 Digestion and Absorption of Vitamin B₁₂
10.7.2 Plasma Vitamin B₁₂ Binding Proteins and Tissue Uptake
10.7.3 Bacterial Biosynthesis of Vitamin B₁₂
10.8 Metabolic Functions of Vitamin B₁₂
10.8.1 Methionine Synthetase
10.8.2 Methylmalonyl CoA Mutase
10.8.3 Leucine Aminomutase
10.9 Deficiency of Folic Acid and Vitamin B₁₂
10.9.1 Megaloblastic Anemia
10.9.2 Pernicious Anemia
10.9.3 Neurological Degeneration in Vitamin B₁₂ Deficiency
10.9.4 Folate Deficiency and Neural Tube Defects
10.9.5 Folate Deficiency and Cancer Risk
10.9.6 Drug-Induced Folate Deficiency
10.9.7 Drug-Induced Vitamin B₁₂ Deficiency
Contents

10.10 Assessment of Folate and Vitamin B\textsubscript{12} Nutritional Status 313
 10.10.1 Plasma and Erythrocyte Concentrations of Folate and Vitamin B\textsubscript{12} 314
 10.10.2 The Schilling Test for Vitamin B\textsubscript{12} Absorption 315
 10.10.3 Methylmalonic Aciduria and Methylmalonic Acidemia 316
 10.10.4 Histidine Metabolism – the FIGLU Test 316
 10.10.5 The dUMP Suppression Test 317
10.11 Folate and Vitamin B\textsubscript{12} Requirements and Reference Intakes 318
 10.11.1 Folate Requirements 318
 10.11.2 Vitamin B\textsubscript{12} Requirements 318
 10.11.3 Upper Levels of Folate Intake 319
10.12 Pharmacological Uses of Folate and Vitamin B\textsubscript{12} 321

11 Biotin (Vitamin H) 324
 11.1 Metabolism of Biotin 324
 11.1.1 Bacterial Synthesis of Biotin 327
 11.1.1.1 The Importance of Intestinal Bacterial Synthesis of Biotin 329
 11.2 The Metabolic Functions of Biotin 329
 11.2.1 The Role of Biotin in Carboxylation Reactions 330
 11.2.1.1 Acetyl CoA Carboxylase 330
 11.2.1.2 Pyruvate Carboxylase 331
 11.2.1.3 Propionyl CoA Carboxylase 331
 11.2.1.4 Methylcrotonyl CoA Carboxylase 332
 11.2.2 Holocarboxylase Synthetase 332
 11.2.2.1 Holocarboxylase Synthetase Deficiency 332
 11.2.3 Biotinidase 334
 11.2.3.1 Biotinidase Deficiency 335
 11.2.4 Enzyme Induction by Biotin 335
 11.2.5 Biotin in Regulation of the Cell Cycle 336
 11.3 Biotin Deficiency 337
 11.3.1 Metabolic Consequences of Biotin Deficiency 338
 11.3.1.1 Glucose Homeostasis in Biotin Deficiency 338
 11.3.1.1.2 Fatty Liver and Kidney Syndrome in Biotin-Deficient Chicks 338
 11.3.1.3 Cot Death 339
 11.3.2 Biotin Deficiency In Pregnancy 340
 11.4 Assessment of Biotin Nutritional Status 340
 11.5 Biotin Requirements 341
 11.6 Avidin 341

12 Pantothenic Acid 345
 12.1 Pantothenic Acid Vitamers 345
 12.2 Metabolism of Pantothenic Acid 346
 12.2.1 The Formation of CoA from Pantothenic Acid 348
 12.2.1.1 Metabolic Control of CoA Synthesis 349
12.2.2 Catabolism of CoA

12.2.3 The Formation and Turnover of ACP

12.2.4 Biosynthesis of Pantothenic Acid

12.3 Metabolic Functions of Pantothenic Acid

12.4 Pantothenic Acid Deficiency

12.4.1 Pantothenic Acid Deficiency in Experimental Animals

12.4.2 Human Pantothenic Acid Deficiency – The Burning Foot Syndrome

12.5 Assessment of Pantothenic Acid Nutritional Status

12.6 Pantothenic Acid Requirements

12.7 Pharmacological Uses of Pantothenic Acid

13 Vitamin C (Ascorbic Acid)

13.1 Vitamin C Vitamers and Nomenclature

13.1.1 Assay of Vitamin C

13.2 Metabolism of Vitamin C

13.2.1 Intestinal Absorption and Secretion of Vitamin C

13.2.2 Tissue Uptake of Vitamin C

13.2.3 Oxidation and Reduction of Ascorbate

13.2.4 Metabolism and Excretion of Ascorbate

13.3 Metabolic Functions of Vitamin C

13.3.1 Dopamine β-Hydroxylase

13.3.2 Peptidyl Glycine Hydroxylase (Peptide α-Amidase)

13.3.3 2-Oxoglutarate–Linked Iron–Containing Hydroxylases

13.3.4 Stimulation of Enzyme Activity by Ascorbate In Vitro

13.3.5 The Role of Ascorbate in Iron Absorption and Metabolism

13.3.6 Inhibition of Nitrosamine Formation by Ascorbate

13.3.7 Pro- and Antioxidant Roles of Ascorbate

13.3.7.1 Reduction of the Vitamin E Radical by Ascorbate

13.3.8 Ascorbic Acid in Xenobiotic and Cholesterol Metabolism

13.4 Vitamin C Deficiency – Scurvy

13.5 Assessment of Vitamin C Status

13.6 Vitamin C Requirements and Reference Intakes

13.6.1 The Minimum Requirement for Vitamin C

13.6.2 Requirements Estimated from the Plasma and Leukocyte Concentrations of Ascorbate

13.6.3 Requirements Estimated from Maintenance of the Body Pool of Ascorbate

13.6.4 Higher Recommendations

13.6.4.1 The Effect of Smoking on Vitamin C Requirements

Contents

13.6.5 Safety and Upper Levels of Intake of Vitamin C 380
 13.6.5.1 Renal Stones 380
 13.6.5.2 False Results in Urine Glucose Testing 381
 13.6.5.3 Rebound Scurvy 381
 13.6.5.4 Ascorbate and Iron Overload 382
13.7 Pharmacological Uses of Vitamin C 382
 13.7.1 Vitamin C in Cancer Prevention and Therapy 382
 13.7.2 Vitamin C in Cardiovascular Disease 383
 13.7.3 Vitamin C and the Common Cold 383

14 Marginal Compounds and Phytonutrients 385
 14.1 Carnitine 385
 14.1.1 Biosynthesis and Metabolism of Carnitine 386
 14.1.2 The Possible Essentiality of Carnitine 388
 14.1.3 Carnitine as an Ergogenic Aid 388
 14.2 Choline 389
 14.2.1 Biosynthesis and Metabolism of Choline 389
 14.2.2 The Possible Essentiality of Choline 391
 14.3 Creatine 392
 14.4 Inositol 393
 14.4.1 Phosphatidylinositol in Transmembrane Signaling 394
 14.4.2 The Possible Essentiality of Inositol 394
 14.5 Taurine 396
 14.5.1 Biosynthesis of Taurine 396
 14.5.2 Metabolic Functions of Taurine 398
 14.5.2.1 Taurine Conjugation of Bile Acids 398
 14.5.2.2 Taurine in the Central Nervous System 398
 14.5.2.3 Taurine and Heart Muscle 399
 14.5.3 The Possible Essentiality of Taurine 399
 14.6 Ubiquinone (Coenzyme Q) 400
 14.7 Phytonutrients: Potentially Protective Compounds in Plant Foods 401
 14.7.1 Allyl Sulfur Compounds 401
 14.7.2 Flavonoids and Polyphenols 402
 14.7.3 Glucosinolates 403
 14.7.4 Phytoestrogens 404

Bibliography 409
Index 463
List of Figures

1.1. Derivation of reference intakes of nutrients. 22
1.2. Derivation of requirements or reference intakes for children. 24
1.3. Derivation of reference intake (RDA) and tolerable upper level (UL) for a nutrient. 25
2.1. Major physiologically active retinoids. 32
2.2. Major dietary carotenoids. 34
2.3. Oxidative cleavage of β-carotene by carotene dioxygenase. 41
2.4. Potential products arising from enzymic or nonenzymic symmetrical or asymmetric oxidative cleavage of β-carotene. 44
2.5. Role of retinol in the visual cycle. 51
2.6. Interactions of all-trans- and 9-cis-retinoic acids (and other active retinoids) with retinoid receptors. 56
2.7. Retinoylation of proteins by retinoyl CoA. 59
2.8. Retinoylation of proteins by 4-hydroxyretinoic acid. 60
3.1. Vitamin D vitamers. 78
3.2. Synthesis of calcioI from 7-dehydrocholesterol in the skin. 81
3.3. Metabolism of calcioI to yield calcitriol and 24-hydroxycalcidiol. 84
4.1. Vitamin E vitamers. 110
4.2. Stereochemistry of α-tocopherol. 112
4.3. Reaction of tocopherol with lipid peroxides. 114
4.4. Resonance forms of the vitamin E radicals. 117
4.5. Role of vitamin E as a chain-perpetuating prooxidant. 118
4.6. Reactions of α- and γ-tocopherol with peroxynitrite. 119
5.1. Vitamin K vitamers. 132
5.2. Reaction of the vitamin K-dependent carboxylase. 137
5.3. Intrinsic and extrinsic blood clotting cascades. 140
6.1. Thiamin and thiamin analogs. 149
6.2. Reaction of the pyruvate dehydrogenase complex. 154
6.3. GABA shunt as an alternative to α-ketoglutarate dehydrogenase in the citric acid cycle. 157
List of Figures

6.4. Role of transketolase in the pentose phosphate pathway. 160
7.1. Riboflavin, the flavin coenzymes and covalently bound flavins in proteins. 173
7.2. Products of riboflavin metabolism. 180
7.3. Biosynthesis of riboflavin in fungi. 182
7.4. One- and two-electron redox reactions of riboflavin. 184
7.5. Reaction of glutathione peroxidase and glutathione reductase. 186
7.6. Drugs that are structural analogs of riboflavin and may cause deficiency. 195
8.1. Niacin vitamers, nicotinamide and nicotinic acid, and the nicotinamide nucleotide coenzymes. 202
8.2. Synthesis of NAD from nicotinamide, nicotinic acid, and quinolinic acid. 204
8.3. Metabolites of nicotinamide and nicotinic acid. 207
8.4. Pathways of tryptophan metabolism. 209
8.5. Redox function of the nicotinamide nucleotide coenzymes. 215
8.6. Reactions of ADP-ribosyltransferase and poly(ADP-ribose) polymerase. 216
8.7. Reactions catalyzed by ADP ribose cyclase. 220
9.1. Interconversion of the vitamin B₆ vitamers. 233
9.2. Reactions of pyridoxal phosphate-dependent enzymes with amino acids. 238
9.3. Transamination of amino acids. 241
9.4. Tryptophan load test for vitamin B₆ status. 248
9.5. Methionine load test for vitamin B₆ status. 255
9.6. Quinone catalysts. 267
10.1. Folate vitamers. 272
10.2. Biosynthesis of folic acid and tetrahydrobiopterin 277
10.3. One-carbon substituted tetrahydrofolic acid derivatives. 280
10.4. Sources and uses of one-carbon units bound to folate. 281
10.5. Reactions of serine hydroxymethyltransferase and the glycine cleavage system. 281
10.6. Catabolism of histidine – basis of the FIGLU test for folate status. 282
10.7. Reaction of methylene-tetrahydrofolate reductase. 284
10.8. Synthesis of thymidine monophosphate. 287
10.9. Metabolism of methionine. 290
10.10. Role of tetrahydrobiopterin in aromatic amino acid hydroxylases. 295
10.11. Reaction of nitric oxide synthase. 297
10.12. Vitamin B₁₂. 299
10.13. Reactions of propionyl CoA carboxylase and methylmalonyl CoA mutase. 305
11.1. Metabolism of biotin. 325
11.2. Biotin metabolites. 326
List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.3</td>
<td>Biosynthesis of biotin.</td>
<td>328</td>
</tr>
<tr>
<td>12.1</td>
<td>Pantothenic acid and related compounds and coenzyme A.</td>
<td>346</td>
</tr>
<tr>
<td>12.2</td>
<td>Biosynthesis of coenzyme A.</td>
<td>347</td>
</tr>
<tr>
<td>12.3</td>
<td>Biosynthesis of pantothenic acid.</td>
<td>351</td>
</tr>
<tr>
<td>13.1</td>
<td>Vitamin C vitamers.</td>
<td>358</td>
</tr>
<tr>
<td>13.2</td>
<td>Biosynthesis of ascorbate.</td>
<td>360</td>
</tr>
<tr>
<td>13.3</td>
<td>Redox reactions of ascorbate.</td>
<td>363</td>
</tr>
<tr>
<td>13.4</td>
<td>Synthesis of the catecholamines.</td>
<td>365</td>
</tr>
<tr>
<td>13.5</td>
<td>Reactions of peptidyl glycine hydroxylase and peptidyl hydroxyglycine α-amidating lyase.</td>
<td>366</td>
</tr>
<tr>
<td>13.6</td>
<td>Reaction sequence of prolyl hydroxylase.</td>
<td>368</td>
</tr>
<tr>
<td>14.1</td>
<td>Reaction of carnitine acyltransferase.</td>
<td>386</td>
</tr>
<tr>
<td>14.2</td>
<td>Biosynthesis of carnitine.</td>
<td>387</td>
</tr>
<tr>
<td>14.3</td>
<td>Biosynthesis of choline and acetylcholine.</td>
<td>390</td>
</tr>
<tr>
<td>14.4</td>
<td>Catabolism of choline.</td>
<td>391</td>
</tr>
<tr>
<td>14.5</td>
<td>Synthesis of creatine.</td>
<td>392</td>
</tr>
<tr>
<td>14.6</td>
<td>Formation of inositol trisphosphate and diacylglycerol.</td>
<td>395</td>
</tr>
<tr>
<td>14.7</td>
<td>Pathways for the synthesis of taurine from cysteine.</td>
<td>397</td>
</tr>
<tr>
<td>14.8</td>
<td>Ubiquinone.</td>
<td>400</td>
</tr>
<tr>
<td>14.9</td>
<td>Allyl sulfur compounds allicin and alliin.</td>
<td>402</td>
</tr>
<tr>
<td>14.10</td>
<td>Major classes of flavonoids.</td>
<td>403</td>
</tr>
<tr>
<td>14.11</td>
<td>Glucosinolates.</td>
<td>404</td>
</tr>
<tr>
<td>14.12</td>
<td>Estradiol and the major phytoestrogens.</td>
<td>405</td>
</tr>
</tbody>
</table>
List of Tables

1.1. The Vitamins 3
1.2. Compounds that Were at One Time Assigned Vitamin Nomenclature, But Are Not Considered to Be Vitamins 5
1.3. Marginal Compounds that Are (Probably) Not Dietary Essentials 6
1.4. Compounds that Are Not Dietary Essentials, But May Have Useful Protective Actions 7
1.5. Reference Nutrient Intakes of Vitamins, U.K., 1991 13
1.8. Recommended Nutrient Intakes for Vitamins, FAO/WHO, 2001 16
1.9. Terms that Have Been Used to Describe Reference Intakes of Nutrients 21
1.10. Toxicity of Vitamins: Upper Limits of Habitual Consumption and Tolerable Upper Limits of Intake 26
1.11. Labeling Reference Values for Vitamins 27
2.1. Prevalence of Vitamin A Deficiency among Children under Five 61
2.2. WHO Classification of Xerophthalmia 63
2.3. Biochemical Indices of Vitamin A Status 65
2.4. Reference Intakes of Vitamin A 67
2.5. Prudent Upper Levels of Habitual Intake 69
3.1. Nomenclature of Vitamin D Metabolites 79
3.2. Plasma Concentrations of Vitamin D Metabolites 80
3.3. Genes Regulated by Calcitriol 90
3.4. Plasma Concentrations of Calcidiol, Alkaline Phosphatase, Calcium, and Phosphate as Indices of Nutritional Status 104
3.5. Reference Intakes of Vitamin D 105
4.1. Relative Biological Activity of the Vitamin E Vitamers 111
4.2. Responses of Signs of Vitamin E or Selenium Deficiency to Vitamin E, Selenium, and Synthetic Antioxidants in Experimental Animals 123
List of Tables

4.3. Indices of Vitamin E Nutritional Status 126
5.1. Reference Intakes of Vitamin K 146
6.1. Indices of Thiamin Nutritional Status 168
6.2. Reference Intakes of Thiamin 170
7.1. Tissue Flavins in the Rat 176
7.2. Urinary Excretion of Riboflavin Metabolites 181
7.3. Reoxidation of Reduced Flavins in Flavoprotein Oxidases 187
7.4. Reoxidation of Reduced Flavins in Flavin Mixed-Function Oxidases 190
7.5. Indices of Riboflavin Nutritional Status 196
7.6. Reference Intakes of Riboflavin 198
8.1. Indices of Niacin Nutritional Status 227
8.2. Reference Intakes of Niacin 228
9.1. Pyridoxal Phosphate-Catalyzed Enzyme Reactions of Amino Acids 237
9.2. Amines Formed by Pyridoxal Phosphate-Dependent Decarboxylases 240
9.3. Transamination Products of the Amino Acids 242
9.4. Vitamin B6-Responsive Inborn Errors of Metabolism 250
9.5. Indices of Vitamin B6 Nutritional Status 251
9.6. Reference Intakes of Vitamin B6 258
10.1. Adverse Effects of Hyperhomocysteinemia 293
10.2. Indices of Folate and Vitamin B12 Nutritional Status 315
10.3. Reference Intakes of Folate 319
10.4. Reference Intakes of Vitamin B12 320
11.1. Abnormal Urinary Organic Acids in Biotin Deficiency and Multiple Carboxylase Deficiency from Lack of Holo-carboxylase Synthetase or Biotinidase 333
13.1. Vitamin C-Dependent 2-Oxoglutarate-linked Hydroxylases 367
13.2. Plasma and Leukocyte Ascorbate Concentrations as Criteria of Vitamin C Nutritional Status 375
13.3. Reference Intakes of Vitamin C 377
The Vitamins

The vitamins are a disparate group of compounds; they have little in common either chemically or in their metabolic functions. Nutritionally, they form a cohesive group of organic compounds that are required in the diet in small amounts (micrograms or milligrams per day) for the maintenance of normal health and metabolic integrity. They are thus differentiated from the essential minerals and trace elements (which are inorganic) and from essential amino and fatty acids, which are required in larger amounts.

The discovery of the vitamins began with experiments performed by Hopkins at the beginning of the twentieth century; he fed rats on a defined diet providing the then known nutrients: fats, proteins, carbohydrates, and mineral salts. The animals failed to grow, but the addition of a small amount of milk to the diet both permitted the animals to maintain normal growth and restored growth to the animals that had previously been fed the defined diet. He suggested that milk contained one or more “accessory growth factors” – essential nutrients present in small amounts, because the addition of only a small amount of milk to the diet was sufficient to maintain normal growth and development.

The first of the accessory food factors to be isolated and identified was found to be chemically an amine; therefore, in 1912, Funk coined the term vitamine, from the Latin vita for “life” and amine, for the prominent chemical reactive group. Although subsequent accessory growth factors were not found to be amines, the name has been retained – with the loss of the final “-e” to avoid chemical confusion. The decision as to whether the word should correctly be pronounced “vitamin” or “veitamin” depends in large part on which system of Latin pronunciation one learned – the Oxford English Dictionary permits both.
During the first half of the twentieth century, vitamin deficiency diseases were common in developed and developing countries. At the beginning of the twenty-first century, they are generally rare, although vitamin A deficiency (Section 2.4) is a major public health problem throughout the developing world, and there is evidence of widespread subclinical deficiencies of vitamins B2 (Section 7.4) and B6 (Section 9.4). In addition, refugee and displaced populations (some 20 million people according to United Nations estimates in 2001) are at risk of multiple B vitamin deficiencies, because the cereal foods used in emergency rations are not usually fortified with micronutrients [Food and Agriculture Organization/World Health Organization (FAO/WHO, 2001)].

1.1 Definition and Nomenclature of the Vitamins

In addition to systematic chemical nomenclature, the vitamins have an apparently illogical system of accepted trivial names arising from the history of their discovery (Table 1.1). For several vitamins, a number of chemically related compounds show the same biological activity, because they are either converted to the same final active metabolite or have sufficient structural similarity to have the same activity.

Different chemical compounds that show the same biological activity are collectively known as vitamers. Where one or more compounds have biological activity, in addition to individual names there is also an approved generic descriptor to be used for all related compounds that show the same biological activity.

When it was realized that milk contained more than one accessory food factor, they were named A (which was lipid-soluble and found in the cream) and B (which was water-soluble and found in the whey). This division into fat- and water-soluble vitamins is still used, although there is little chemical or nutritional reason for this, apart from some similarities in dietary sources of fat-soluble or water-soluble vitamins. Water-soluble derivatives of vitamins A and K and fat-soluble derivatives of several of the B vitamins and vitamin C have been developed for therapeutic use and as food additives.

As the discovery of the vitamins progressed, it was realized that “Factor B” consisted of a number of chemically and physiologically distinct compounds. Before they were identified chemically, they were given a logical series of alphanumeric names: B1, B2, and so forth. As can be seen from Table 1.2, a number of compounds were assigned vitamin status, and were later shown either not to be vitamins, or to be compounds that had already been identified and given other names.