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1  Structural equation modeling:
an introduction

Scott L. Hershberger, George A. Marcoulides,
and Makeba M. Parramore

Abstract

This chapter provides an introduction to structural equation modeling
(SEM), a statistical technique that allows scientists and researchers to quan-
tify and test scientific theories. As an example, a model from behavioral
genetics is examined, in which genetic and environmental influences on
a trait are determined. The many procedures and considerations involved
in SEM are outlined and described, including defining and specifying a
model diagrammatically and algebraically, determining the identification
status of the model, estimating the model parameters, assessing the fit of
the model to the data, and respecifying the model to achieve a better
fit to the data. Since behavioral genetic models typically require family
members of differing genetic relatedness, multisample SEM is introduced.
All of the steps involved in evaluating the behavioral genetic model are
accomplished with the assistance of LISREL, a popular software program
used in SEM.

Introduction

Structural equation modeling (SEM) techniques are considered today to be
a major component of applied multivariate statistical analyses and are used
by biologists, economists, educational researchers, marketing researchers,
medical researchers, and a variety of other social and behavioral scientists.
Although the statistical theory that underlies the techniques appeared
decades ago, a considerable number of years passed before SEM received the
widespread attention it holds today. One reason for the recent attention is
the availability of specialized SEM programs (e.g., AMOS, EQS, LISREL,
Mplus, Mx, RAMONA, SEPATH). Another reason has been the publica-
tion of several introductory and advanced texts on SEM (e.g., Hayduk, 1987,
1996: Bollen, 1989; Byrne, 1989, 1994, 2000; Bollen & Long, 1993; Hoyle,
1995; Marcoulides & Schumacker, 1996; Schumacker & Lomax, 1996;
Schumacker & Marcoulides, 1998; Raykov & Marcoulides, 2000), and a
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journal, devoted exclusively to SEM, entitled Structural Equation Modeling:
A Multidisciplinary Journal.

In its broadest sense, SEM models represent translations of a series of
hypothesized cause—effect relationships between variables into a composite
hypothesis concerning patterns of statistical dependencies (Shipley, 2000).
The relationships are described by parameters that indicate the magnitude
of the effect (direct or indirect) that independent variables (either observed
or latent) have on dependent variables (either observed or latent). By enab-
ling the translation of hypothesized relationships into testable mathematical
models, SEM offers researchers a comprehensive method for the quantifica-
tion and testing of theoretical models. Once a theory has been proposed, it
can then be tested against empirical data. The process of testing a proposed
theoretical model is commonly referred to as the “confirmatory” aspect of
SEM (Raykov & Marcoulides, 2000). Another aspect of SEM is the so-called
“exploratory” mode. This aspect allows for theory development and often
involves repeated applications of the same data in order to explore potential
relationships between variables of interest (either observed or latent).

Latent variables are hypothetical or theoretical variables (constructs)
that cannot be observed directly. Latent variables are of major importance
to most disciplines but generally lack an explicit or precise way of measur-
ing their existence or influence. For example, many behavioral and social
scientists study the constructs of aggression and dominance. Because these
constructs cannot be measured explicitly, they are are inferred through obser-
ving or measuring specific features that operationally define them (e.g.,
tests, scales, self-reports, inventories, or questionnaires). SEM can also be
used to test the plausibility of hypothetical assertions about potential inter-
relationships between constructs and their observed measures or indicators.
Latent variables are hypothesized to be responsible for the outcome of obser-
ved measures (e.g., aggression is the underlying factor influencing one’s
score on a questionnaire that attempts to assess oftensive driving behavior).
In other words, the score on the explicit questionnaire would be an indica-
tor of the construct or latent variable — aggression. Researchers often use a
number of indicators or observed variables to examine the influences of
a theoretical factor or latent variable. It is generally recommended that
researchers use multiple indicators (preferably more than two) for each latent
variable considered in order to obtain a more complete and reliable
“picture” than that provided by a single indicator (Raykov & Marcoulides,
2000). Because both observed and latent variables can be independent
or dependent in a proposed model, a more detailed description of this issue
will be provided later in this chapter.

4



STRUCTURAL EQUATION MODELING: AN INTRODUCTION

Definition and specification of a structural
equation model

The definition of a SEM model begins with a simple statement of the verbal
theory that makes explicit the hypothesized relationships among a set of
studied variables (Marcoulides, 1989). Typically, researchers communicate a
SEM model by drawing a picture of it (Marcoulides & Hershberger, 1997).
These pictures, or so-called path diagrams, are simple mathematical represen-
tations (but in graphical form) of the proposed theorical model. Figure 1.1
presents the most commonly used graphical notation for the representation
of SEM models. As will become clear later, path diagrams not only aid in
the conceptualization and communication of theoretical models, but also
substantially contribute to the creation of the appropriate input file that is
necessary to test and fit the model to collected data using particular software
packages (Raykov & Marcoulides, 2000).

Latent variable

Observed variable

D Recursive (unidirectional) relation

¢ Nonrecursive (bidirectional) relation

Disturbance or structural error in
latent variable

Measurement error in observed
variable

<

m Correlational (symmetric) relation

Figure 1.1. Commonly used graphical notation for the representation of
SEM models.
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Physical Behavioral Physical Physical Behavioral Physical
Similarities Similarities Proximity Similarities Similarities Proximity
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Figure 1.2. A model of sibling relatedness, in which the squares denote
observed variables; the circles denote latent variables; the ;& are paths
connecting latent with observed variables; and the §; are errors in the
observed variables.

Figure 1.2 presents a simple example of a proposed theoretical model
about sibling relatedness from the field of behavioral genetics. For years
researchers have tried to understand the the “nature—nurture” phenomena
by studying monozygotic twins, dizygotic twins, and nontwin siblings. To
assess the amount of “relatedness” between siblings, researchers often use
different types of questionnaire, standardized scales and tests, and indepen-
dent observations. Two possible sources of relatedness between siblings are
each sibling’s genotype and environment. One may therefore define two
different latent variables (i.e., genotype and environment) for each sibling,
and denote each latent variable in the model by using the Greek letter &
(ksi). Three possible observable variables (measures) of genotype and envi-
ronment might be physical similarities, behavioral similarities, and physical
proximity (Segal et al., 1997). As it turns out, the scores or results observed
for individuals on these variables will make up the correlation or covariance
matrix that is analyzed to test a proposed model. The x values, which rep-
resent the observed variables or so-called indicators, are representative of the
latent variables and make up the LAMBDA (A,) matrix. The error terms
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(error of measurement in each indicator) are denoted by the Greek letter
8 (delta) and are assumed to be associated with each indicator.

As indicated previously, the hypothesized relationships among the
various observed and/or latent variables in a model are typically the primary
focus of most SEM investigations. These relationships are represented graph-
ically by one-way and two-way arrows in the path diagram. These arrows or
paths are often interpreted as symbolizing a functional relationship. In other
words, the variable at the end of the arrow is assumed to be aftected by the
variable at the beginning of the path. Two-way arrows are representative of
a covariance or association between the connected variables. These paths
are not directional in nature, but are interpreted as correlational. Note that
in Figure 1.2 the two-way arrow between the latent genotype variables has
been set to 1, based upon known genetic relatedness between monozygotic
twins, and that the two-way arrow between the latent environment variables
hasbeen set to 1 as well. This setting of the two-way arrow between the envi-
ronments of the monozygotic twins forces the environment latent variables
to be interpreted as the twins’ shared environment, or those environmental
influences completely common to the twins.

The path coefficients from the proposed model are subsequently
derived from the following model definition equations:

x1 = A+ A2dx + 6

X2 = A21&1 + Anér + 52

x3 = A3161 + As2r + 03

X4 = Ag383 + Aaaby + 64

x5 = As5383 + Assbs + 05

x6 = Ao3&3 + Aesbs + 86
where x is the observed physical similarities for twin 1; x; is the observed
behavioral similarities for twin 1; x3 1s the observed physical proximity for
twin 1; x4 1s the observed physical similarities for twin 2; x5 1s the observed
behavioral similarities for twin 2; xq 1s the observed physical proximity for
twin 2; A11&; to Aga&s are the factor loadings that will be estimated based on
the observed data; & and &; are the genetic latent variables for twins 1 and 2,
respectively; & and &, are the environmental latent variables for twins 1and 2,

respectively; and §; through 8, are the measurement errors attributed to a
particular variable.'

! In the context of behavioral genetic modeling, the errors-in-variables (8) not only represent
measurement error but environmental influences unique to each twin.
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These coefficients or parameters can be free, i.e., to be estimated
from the collected data; fixed, i.e., set to some selected constant value; or
constrained, 1.e., set equal to one or more other parameters. In this model,
both the correlations between the monozygotic twins’ genotypes and their
environments have been fixed to 1 on the basis of quantitative genetic theory
(Plomin et al., 1997). Further, note that the variances of &; to &, have been
fixed to 1 as well. This is done to establish a metric for the latent variables.
Since latent variables cannot be measured directly, it is difficult to work
numerically with them without first assigning them some scale of measure-
ment. A natural choice is to standardize these variances to a value of 1. In
addition, comparable paths between the two twins should be constrained to
be equal, since there is no reason to believe genetic or environmental effects
will be stronger for one twin or the other:

A& = Agzés
A21€1 = As3és
A31€1 = Ag3és

for the genetic paths, and

A2 = Aysdy
A2b> = As46y
A326> = Aeaby

for the environmental paths.

Comparable measurement errors should similarly be constrained as
equal between the two twins; i.e.,

81 =64
8 =5
83 = 8.

Model identification

With the definition and specification of the model complete, the next im-
portant consideration is the identification of the model. It is important to
note that once the model and the parameters to be estimated are specified,
the parameters are combined to form a model-implied variance—covariance
matrix that will be tested against the observed variance—covariance matrix
(i.e., the variance—covariance matrix obtained from the empirical data). In
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a general way, the amount of unique information in the observed variance—
covariance matrix is what will determine whether the model will be iden-
tified, and this verification procedure must be performed before any model
can be appropriately tested. As it turns out, there are three levels of identi-
fication in SEM. The first and most problematic is that of an under-identified
model. An under-identified model exists if one or more parameters cannot
be estimated from the observed variance—covariance matrix. This type of
model should be looked at with skepticism because the parameter estimates
are most likely quite unstable. A just-identified model is a model that utilizes
all of the uniquely estimable parameters. This type of model will always result
in a “perfect fit” to the empirical data. Since there is no way one can really
test or confirm the plausibility of a just-identified model (also referred to as a
saturated model), this type of model is also problematic. As it turns out, the
most desirable type of identification is the over-identified model. This type
of model occurs when the number of available variance—covariances (units
of information) is greater in number than the number of parameters to be
estimated (Marcoulides & Hershberger, 1997). In other words, there is more
than one way to estimate the specified parameters. The difference between
the number of nonredundant elements of the variance—covariance matrix
and the number of model parameters to be estimated is known as the degrees
of freedom (df) of the model. For example, if the number of nonredundant
elements of a variance—covariance matrix was 20 and 10 parameters were
required to estimate the model, the degrees of freedom would be 20 minus
10, i.e., 10.

Model identification is an extremely complicated topic and
requires several procedures to verify the status of a proposed model (for
further discussion, see Marcoulides & Hershberger, 1997, or Raykov &
Marcoulides, 2000). The t-rule, ' p(p + 1) as cited by Marcoulides &
Hersberger (1997), is one of the most frequently used necessary identifi-
cation rules. Basically, the ¢-rule for identification is that the number of
nonredundant elements in the variance—covariance (or correlation) matrix
of the observed variables (p) must be greater than or equal to the number
of unknown parameters in the proposed model (Marcoulides & Hersberger,
1997, p. 225). For example, Figure 1.2 has six observed variables or (p = 6),
so there are 6(7) /2 = 21 nonredundant elements in the variance—covariance
matrix. If we attempt to estimate each path from an observed variable (x;
to xg) to each latent variable (§) and each error term associated with each
observed variable (8), we are estimating a total of 12 parameters. However,
the six paths for twin 1 have been constrained to equal the six paths of twin 2
(e.g., A2& = Auséy), and the three indicator errors of twin 1 have been
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constrained to equal the three indicator errors of twin 2 (e.g., §; = d4),
resulting in a reduction of six parameters to be estimated, or, altogether,
only six parameters are to be estimated. Therefore, we have an over-identified
model with 15 degrees of freedom (i.e., 21 unique elements of the variance—
covariance matrix minus six parameters to be estimated = 15 df’). Of course,
it is important to note that having positive degrees of freedom in a proposed
model is only a necessary condition for identification; it is not a sufficient
condition. There can be cases in which the degrees of freedom for a pro-
posed model are positive and yet some parameters remain under-identified
(Raykov & Marcoulides, 2000).

Suppose we wanted to expand our proposed model and incorpo-
rate another latent variable. In behavior genetic modeling, each of the twins’
observed variables is corrected for age, since twins within a pair are necessar-
ily of the same age — age creating a spurious source of twin similarity. If age is
incorporated as a latent variable, the new model appears as Figure 1.3. Note
that the genetic and environmental latent variables are now symbolized by

Physical Behavioral Physical Physical Behavioral Physical
Similarities Similarities Proximity Similarities Similarities Proximity

Figure 1.3. The model of sibling relatedness extended, with age as a
covariate. Symbols are explained in the text.

10
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the Greek letter n (eta). The indicators of these two latent variables, previ-
ously designated as x variables, are now designated as y variables. Further,
these y values of the latent variables make up the so-called LAMBDA-y
(A,) matrix. The error terms for the y variables are now denoted by the
Greek letter € (epsilon) and are associated (and correspondingly numbered)
with each indicator. Age is now the single x variable in the model, with its
latent variable denoted by & (ksi) and its error as § (delta). The path connec-
ting the observed variable age with the latent variable age is now the only
entry in the LAMBDA-x (A,) matrix.

Let us now consider the questions “Why have we changed the
symbolism of the x variables to y, and why has age been incorporated
into the model as an x variable?” The answer to these two questions lies
in the distinction between dependent and independent variables. Dependent
(or “endogenous”) wvariables are those variables that receive at least one
path (one-way arrow) from another variable in the model. Independent
(or “exogenous”) variables are those variables from which paths only em-
anate but to which none is directed. Independent variables can be correlated
among each other (i.e., connected in the path diagram by two-way arrows).
It is important to note that a dependent variable may act as an independent
variable with respect to one variable, but this does not change its dependent
variable status. As long as there is at least one path ending into the vari-
able, it is considered to be a dependent variable, no matter how many other
dependent variables in the model are explained by that variable (Raykov &
Marcoulides, 2000).

[t was necessary to incorporate age as an independent variable based
on our desire to have age act as a covariate of the original six observed in-
dicators. Note the path that connects the latent age variable to each of
the six original indicators. That parameter is expressed with the one-way
arrow from one latent factor to the other and is represented by the Greek
letter  (gamma)?. There are other features to note about the new model in
Figure 1.3. The loading of the age indicator variable on the latent age factor
in the A, matrix has been fixed to 1, with the indicator age error term (8) set

2 The reader will also note another change made to the original six indicators. Now each
indicator has been the sole indicator of a latent 1 variable. For theoretical reasons, this
change was unnecessary, but for practical reasons, this change was required. The LISREL
program used to solve the model parameters only defines a parameter (y) connecting latent
independent with latent independent variables and not a parameter that connects latent
independent variables with observed dependent variables. Again, this restriction requires a
symbolic reformulation of the model but not one that is either theoretical or substantive.
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to be zero and its variance freed. Due to identification difficulties, whenever
a single indicator exists for a latent variable, a choice must be made between
solving for either the value of the loading or the variance of the variable.
Measurement errors are not generally identifiable with a single indicator.
Another important feature to note is the two-way arrows connecting the
dependent latent variables (). This would seem to be in contradiction
to the statement made above that only independent, and not dependent,
latent variables may be correlated in a path model. Examining the two-way
arrows in Figure 1.3, it is apparent that they do not directly connect the latent
dependent variables, but rather connect another parameter denoted by the
Greek letter ¢ (zeta). Each dependent latent variable () has one ¥ which
represents the residual error in the variable. In other words, ¥ represents
all of the influences on the latent dependent variables not explicitly ac-
counted for in the model. Some authors refer to these residual errors as
structural errors. The two-way arrows between the ¢ values of the twins’ latent
dependent variables is algebraically equivalent to the original formulation
in Figure 1.2 of having the two-way arrows directly connect the twins’
latent independent variables. Further, now the variance of the ¢ values has
been fixed to 1 in order to establish a metric for the latent dependent
variables.

Our original model in Figure 1.3 was over-identified with 15 df.
The addition of an observed age variable requires that we recalculate the
degrees of freedom of the model. As before, comparable paths connecting
the indicators to the latent variables should also be equated between the
two twins (e.g., A1 = A4m2), as well as comparable indicator errors
(e.g., &1 = €4) and comparable gammas (e.g., 1 = V4). In addition, we will
be estimating the variance of age, and not its error or loading on &. In total,
the model requires that 10 parameters be estimated, with the proper con-
straints imposed on the model (i.e., 3A,,, 3¢, and 3y values, and 1 variance).
Using the f-rule to determine our model identification, one finds that there
are 7(8)/2 = 28 nonredundant elements in the variance—covariance matrix.
Thus, our degrees of freedom are 28 — 10 or 18 df, which results in an over-
identified model suitable for model estimation.

Model estimation

In any SEM model, paths or parameters are estimated in such a way that
the model becomes capable of “emulating” the observed sample variance—
covariance (or correlation) matrix. The proposed theoretical model repre-
sented by the path diagram and equations makes certain assumptions about

12
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the relationships between the involved variables, and hence has specific
implications for their variances and covariances. It turns out that these impli-
cations can be worked out using a few simple relations that govern the vari-
ances and covariances of linear combinations of variables. These relations
are illustrated below (for further details, see Raykov & Marcoulides, 2000,
p- 19).

Let us denote variance by the letters Var and covariance by the letters
Cov. For variable y (e.g., physical similarities) the first relation is stated as
follows:

e Relation 1: Cov(y, y) = Var(y).

This relation simply states that the covariance of a variable with itself is equal
to that variable’s variance.

e Relation2: Cov(ax + by, cz+ du)=acCov(x, 2) +adCov(x, u)
+bcCov(y, 2)
+ bdCov(y, u).

The second relation allows one to find out the covariance of two linear
combinations of variables. Suppose that a, b, ¢, and d are four constants and
assume that x, y, 2, and u are four variables, e.g., those denoting the scores
on tests of physical similarities, behavioral similarities, physical proximity,
and age. The relation is obtained according to the product of the constants
with the attached covariance of each combination of variables.

e Relation 3: Var(ax + by) = Cov(ax + by, ax + by)
= a?Cov(x, x) + b%Cov(y, y)
+ abCov (x, y) + abCov (x, y),

which, on the basis of Relation 1, leads to a®Var(x) + b>Var(y) + 2ab
Cov(x, y).

This relation simply states that the variance of a linear combination
of variables is equal to their covariance (e.g., see Relation 1). And in the
case that variables x and y are uncorrelated (i.e., Cov(x, y) = 0), leads to
Var(ax + by) = a*Var(x) + b*Var(y).

Any proposed theoretical model has certain implications for the
variances and covariances (and the means if considered) of the involved ob-
served variables. In order to see these implications, the above three relations
are generally used. For example, consider the first two manifest variables y;
and y, presented in Figure 1.3. Because both variables load on the same
latent factors 7y and 1, we obtain directly from Relations 1 and 2 the

13
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following equality:

Cov(y1, y2) = (A1 X m) + (A2 X m2) + (1 X n5) + &1, (A21 X M1)
+ Aoz X m2) + (1 X 16) + €2)
= (A1 X m1)(A21 X 1) + (A2 X 02)(A21 X 1)
+ (M5)(Aa1 X M) + (A1 X m1)(Aaz X 12)
+ (A2 X m2)(Aaz2 X m2) + (15)(A22 X 12)
+ (A1 X m)(M6) + (A2 X 12)(M6) + (15)(16)
+e1((A21 X m1) + (22 X 12) + 16)
+&((A1 X n1) + (A2 X n2) + 15) + (€1, €2)
= (A1A21 X Var(m)) + (A2A22 X Cov(n1, 112))
+ (A21 X Cov(ni, 15)) + (A11A22 X Cov(n2, Mm))
+ (A12A22 X Var(n2)) + (A22 X Cov(nz, 1s))
+ (211 X Cov(n1, 16)) + (Aa2 X Cov(na, N6))
+ Cov(ns, ne) + Cov(er, Az1) + Cov(er, Ax)
+ Cov(ey, 1) + Cov(ez, A11) + Cov(ez, A12)
+ Cov(es, n5) + Cov(ey, €2).

However, considerable simplification of the above expression is possible,
since Var(ny) = Var(n;) = 1,

Cov(n1, n2) = Cov(n1, ns) = Cov(n2, ns) = Cov(n1, 1)
= Cov(n2, ns) = Cov(ns, ns) = 0,

and

COV(81 , )\.21) + COV(81 y )\.22) -+ COV(81 y 7’}()) + COV(82, )\.11)
+ COV(82, )\,12) + COV(82, 7’)5) + COV(81, 82) = 0.

Therefore:
Cov(y1, y2) = M1t + A2Ax.

If this process were continued for every combination of p observed variables
(l.e., y1 to Y6 and x1), the result would be the determination of every
element of a model-implied variance—covariance matrix. This matrix can
be denoted by 3 (the capital Greek letter sigma) and is generally referred to
as the reproduced (or model implied) covariance matrix. For the proposed model
in Figure 1.3, the reproduced covariance matrix in Table 1.1 is determined.

14



Table 1.1. Reproduced covariance matrix of yy through ye and x1 for MZ twins

ALy 4 AT, 4 Var(ns) + &1
A X Aot 4 A X A+ yiyve X VarEr) A3, 4 A3, + Var(ne) + &2
it X Azt +Aia X Ao+ yivs X Var§1) Ayt X Azt + Ao X Asa + yays X Var(§r) A% + A, + Var(nr) + 3
i X Ags A2 X Agg +Vive X Var€1)  Aog X gz + Az X Aag 4 ova X Var(§1) Azt X Aaz 4 Az X Aus + y3ys X Var(§r) Ay + A3, + Var(ns) + &4
A1 X Asy + Az X Asg +y1ys X Var(§1) Ao X Asz + Ao X Asy +yays x Var(§) Az X Asz + Azz X Asy + y3ys X Var(§y)
Aaz X As3 + Aay X Asy + vays x Var(€) Ay 4 AL, 4 Var(no) + €5
Al X Ags + A1z X Aes + ViVe X Var(§1) Az X Agz + Ao X Agy + Y2V X Var(§1) Az X Aez + Asz X Aes + ¥3Y6 X Var(§y)
haz X hez -+ Aas X Aoa + Vave X Var(§1)  Ass X Aes + Asy X Aoy + ¥s¥e X Var(€)) A%y + A2, 4+ Var(ni) + &
V1 % Var(§)) y4 X Var(§y) & ya X Var(§:) ¥s X Var(§:) y3 X Var(§y) Yo X Var(§y)

Note: Rows 6 and 8 are continuations of rows 5 and 7 respectively. Row 9 contains all the elements but because of spatial restrictions
does not align with the elements in rows 5-9.
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It is important to note that the elements of 3 are all functions of model
parameters. In addition, each element of 3 has as a counterpart a correspond-
ing numerical element (entry) in the observed sample covariance matrix
obtained for the seven observed variables considered (i.e., y; to ye and x7).
Assume that the observed covariance matrix (denoted by S) was as follows:

[ 16.51

426 28.12

—2.10 3.38  3.35

10.04  3.40 —2.50 16.51

3.40 10.35  1.74 436 28.12
—250 174 112 —2.10 3.38 3.35
244 318  1.10 244 3.8 1.10 4.00

For example, the top element of S (i.e., 16.51) corresponds to A, + A3, +
Var(ns) + &1 in the reproduced matrix 3. Now imagine setting the coun-
terpart elements of S and X equal to one another. That is, according to the
proposed model displayed in Figure 1.3, set 16.51 = A3, + A7, + Var(s) +
€1, then 4.26 = A11 X A1 + A1z X Ap + V1Y X Var(§;), and so on until,
for the last element of S, 4.00 = & is set. As a result of this equality setting,
a system of 28 equations (i.e., the number of nonredundant elements, with
21 covariances and 7 variances) is generated. Thus one can conceive of the
process of fitting a structural equation model as a way of solving a system of
equations. For each equation, its left-hand side is a subsequent numerical
entry of the sample observed variance—covariance matrix S while its right-
hand side is the corresponding expression of model parameters defined in
the 3 matrix. Hence, fitting a structural equation model is conceptually
“equivalent” to solving in an optimal way (discussed in the next section)
this system of equations obtained according to the proposed model. This
discussion also demonstrates that the model presented in Figure 1.3, like any
structural equation model, implies a specific structuring of the elements of the
covariance matrix reproduced by the model in terms of specific expressions
(functions) of unknown model parameters. Therefore, if certain values for
the parameters were entered into these functions, one would obtain a co-
variance matrix that has numbers as elements. In fact, the process of fitting a
model to data with SEM programs can be thought of as repeated “insertion”
of appropriate values for the parameters in the matrix 3 until a certain op-
timality criterion (discussed in the next section) in terms of its proximity
to the matrix S is satisfied. Every available SEM program has built into its
“memory” the exact way in which these functions of model parameters in X
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can be obtained. Although for ease of computation most programs make use
of matrix algebra, the programs in eftect determine each of the expressions
presented in the above-mentioned 28 equations (for further discussion, see
Marcoulides & Hershberger, 1997). Fortunately, this occurs quite automati-
cally once the user has communicated to the program the model parameters.

Model assessment and fit

The previous section illustrated how a proposed SEM model leads to the
reproduction of a variance—covariance matrix 3 that is then fit to the ob-
served sample variance—covariance matrix S. Now it would seem that the
next logical question is “How can one measure or evaluate the extent to
which the matrices S and X differ?”. As it turns out, this question is par-
ticularly important in SEM because it actually permits one to evaluate the
goodness of fit of the model. Indeed, if the difference between S and X is
negligible, then one can conclude that the model represents the observed
data reasonably well. On the other hand, if the difference is large, one can
conclude that the proposed model is not consistent with the observed data.
There are at least two reasons for such inconsistencies: (1) the proposed
model may be deficient, in the sense that it is not capable of “emulating”
the analyzed matrix even with most favorable parameter values; and/or (2)
the data may not be good. Thus, in order to proceed with assessing model
fit, we need a method for evaluating the degree to which the reproduced
matrix 3 differs from the sample covariance matrix S.

In order to clarify this method, a new concept is introduced, that
of distance between matrices. Obviously, if the values to be compared were
scalars (single numbers) a simple subtraction of one from the other (and
possibly taking the absolute value of the resulting difference) would suffice to
evaluate the distance between them. However, this cannot be done directly
with the two matrices S and 3. Subtracting the matrix S from the matrix 3
does not result in a single number. Rather, a matrix of differences is obtained.

Fortunately, there are some meaningful ways to assess the distance
between two matrices and, interestingly, the resulting distance measure is a
single number that is easier to interpret. Perhaps the simplest way to obtain
this single number involves taking the sum of squares of the differences be-
tween the corresponding elements of the two matrices. Other more compli-
cated ways involve a multiplication of these squares with some appropriately
chosen weights and then taking their sum. Perhaps the most commonly used
weight is based on maximum likelihood estimation. In either case, the sin-
gle number represents a sort of generalized distance measure between the
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two matrices considered. The bigger the number, the more difterent are the
matrices, while the smaller the number, the more similar are the matrices.

Because in SEM this number results after comparison of the ele-
ments of S with those of the model-implied covariance matrix X, the
generalized distance 1s a function of the model parameters as well as the ele-
ments of the observed variances and covariances. Therefore it is customary
to refer to the relationship between the matrix distance, on the one hand,
and the model parameters and S on the other, as a fit function that is typically
denoted by F. Since it equals the distance between two matrices, F is always
equal to a positive value or 0. Whenever the value of F is 0, then the two
matrices considered are identical.

Before particular measures of model fit are discussed, a word of
warning is in order. Even if all possible fit indices point to an acceptable
model, one can never claim to have found the frue model that has generated
the analyzed data (of course, we exclude from consideration the cases where
data are simulated according to a preset known model). SEM is most con-
cerned with finding a model that does not contradict the data. That is to say,
in an empirical session of SEM, one is typically interested in retaining the
proposed model whose validity is the essence of the null hypothesis. Statis-
tically speaking, when using SEM methodology, one is usually interested in
not rejecting the null hypothesis (Raykov & Marcoulides, 2000, p. 34).

When testing a model for fit, the complete fit of the model as well as
the individual parameters should be examined. Typically, choosing the ap-
propriate fit statistic is difficult for many researchers. One of the most widely
used statistics for assessing the fit of a model is the x? (chi-square) goodness-
of-fit statistic. This statistic is an assessment of the magnitude of difference
between the initial observed covariance matrix and the reproduced matrix.
The probability level that is associated with this statistic indicates whether
the difference between the reproduced matrix and the original data is signif-
icant or not. A significant x? test states that the difference between the two
matrices is due to sampling error or variation. Typically, researchers are most
interested in a nonsignificant x 2 test. This indicates that the observed matrix
and the reproduced matrix are not statistically different, therefore indicating
a good fit of the model to the data. However, the x? test suffers from several
weaknesses, including a dependence on sample size, and vulnerability to
departures of the data from multivariate normality. Thus it is suggested that
a researcher should examine a number of fit criteria in addition to the x>
value to assess the fit of the proposed model (Raykov & Marcoulides, 2000).

To assist in the process of assessing model fit, there are many other
descriptive fit statistics that are typically formulated in values that range from
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1 (perfect fit) to zero (no fit ). One of the more popular fit indices is the
goodness-of-fit index (GFI), which can loosely be considered as a measure
of the proportion of variance and covariance that the proposed model is
able to explain. If the number of parameters is also taken into account
then the resulting index is the adjusted goodness of fit (AGFI) (Raykov &
Marcoulides, 2000, p. 38). Unfortunately, there is not a strict norm for these
indices. As a rough guide, it is currently viewed that a model with a GFI or
AGFT of 0.95 or above may well represent a reasonably good approximation
of the data (Hu & Bentler, 1999). Quite a few other indices of model fit
have been developed, each with its own strengths and weaknesses. For more
comprehensive discussions of evaluating model fit, see Bollen & Long (1993)
or Marsh et al. (1996).

The fit indices proposed above were concerned with evaluating
the fit of the entire model. Although this is certainly useful to have, one
should also be interested in how well various parts of the model fit. It is
entirely possible for the model as a whole to fit well, but for individual
sections not to fit well. Aside from this, if a model does not fit well, it is of
considerable value to determine which parts of the model are contributing
to model misfit. Perhaps the most useful way to determine the fit of specific
sections of the model is to examine the residual matrix (Bollen, 1989). The
residual matrix results from the difference between the S and ¥ matrices.
The individual residual covariances (or correlations) are (s;; — 0;;) where
sij is the ij-th element of S and oj; is the corresponding element in 3. A
positive residual means that the model underpredicts the covariance between
two variables, whereas a negative one means that the model overpredicts the
covariance. Of course it can be difficult to interpret the absolute magnitude
of the residuals, since the magnitude of a residual is in part a function of
the scaling of the two variables. Thus, examining the correlation residuals or
the normalized residuals can frequently better convey a sense of the fit of a
specific part of a model (Joreskog & Sorbom, 1996).

Model modification

The requirement for SEM is that the details of the proposed model be known
before the model is fit and tested with data (Marcoulides & Drezner, 2001).
Often, however, theories are poorly developed and require changes or ad-
justments throughout the testing process. Joreskog & Sorbom (1996) have
addressed three types of situation that concern model fitting and testing. The
first situation is the strictly confirmatory notion in which the initial model is
tested against empirical data and is either accepted or rejected. The second
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type is the competing or alternative model situation. This procedure entails sev-
eral proposed models that are then assessed and selected on the basis of
which model more appropriately fits the observed data. The final situation
is the model generating technique in which the scientist repeatedly modifies
the proposed model until some level of fit is acquired. The decision as to
which procedure will be utilized is based on the initial theory. A researcher
who is firmly entrenched in his or her theory or hypotheses will conduct
SEM differently from a scientist who is unsure of the interrelationships be-
tween the observed and latent variables. No matter how SEM is conducted,
however, once a researcher attempts to respecify an initial model after it
has been rejected by the data, the process of confirmation is over. Now
SEM enters into an exploratory mode, in which the researcher searches for
revisions to the model that will most significantly increase its fit to the data.
These revisions usually entail freeing a previously fixed parameter and/or
fixing a previously free parameter. Such a process of exploration is generally
referred to as a specification search (Leamer, 1978).

All SEM computer programs come equipped with various statistics
to assist in the specification search. Two of the most popular statistics are
the modification index (MI) and the t-ratio (Joreskog & Sorbom, 1996). The
MI is used to determine which parameter, if freed, would contribute most
to an increase in model fit and indicates the amount the x? goodness-of-fit
statistic would decrease if in fact the parameter were specified in the model.
(Recall that with 1 df, a single parameter would significantly improve the
fit of a model if it decreased the goodness of fit x 2 by at least 8.841 points,
p < 0.05.) On the other hand, the f-ratio assesses the significance of the
individual parameters in a specified model; f-ratios of less than 2 are gen-
erally considered nonsignificant, p = 0.05. Presumably, those parameters
which are not significant may be removed from the model without caus-
ing the model to fit significantly more badly (i.e., without causing the y?2
goodness-of-fit statistic to increase significantly). Generally, the best strat-
egy 1s first to determine which parameters should be added to the model
by examining their individual MlIs; then, once the list of significant MIs has
been exhausted, the f-ratios should be examined to decide which para-
metersshould be deleted from the model (Marcoulides & Hershberger, 1997).
Marcoulides & Drezner (2001) have also proposed automated specification
search procedures based on genetic algorithms and Tabu search procedures.

On the surface, the availability of Mls, f-ratios, similar indices, and
automated specification searches may appear to be of tremendous benefit to
the process of model respecification. However, certain cautionary remarks
are in order. First, parameters should be added (or deleted) to the model one
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at a time, each time the model is re-evaluated and the indices recalculated
because changes in the model result (sometimes) in dramatic changes in the
values of the indices. In other words, with one parameter not in the model,
another parameter may appear to be potentially significant on the basis of
its MI, but, with the addition of the first parameter, the significance of
the second parameter’s MI disappears (fortunately, this issue is addressed
in the automated specification searches proposed by Marcoulides and his
colleagues). Second, as can well be imagined, even covariance matrices of
moderate size (for instance, our example of a 7 X 7 covariance matrix) may
make possible the specification of hundreds of free parameters in a model.
Leaving aside the desirability of any one of these parameters, the possibility of
Type I errors looms (Green ef al., 1998). Green et al. (1999) have proposed
methods for controlling Type I errors during SEM specification searches.
Third, even though adding a parameter may cause the model to finally fit, if
the parameter is theoretically meaningless or statistically suspect, it should be
avoided. Similarly even though a parameter may appear to be nonsignificant
as indicated by its small r-value, it should not be removed from a model if it
is considered theoretically or logically important.

Multisample models

Before we introduce the LISREL program and its approach to the evaluation
of the model in Figure 1.3, a final, critical issue must be addressed. Although
we stated earlier that according to the ¢-rule, the model was identified, this is
in fact not so. The ¢-rule is a necessary but not sufficient criterion for model
identification. Rather than delve into a complex discussion as to why the
model is not identified, or introduce alternative sufficient criteria for model
identification, a simple demonstration will suffice to show why this model
in under-identified. Remember that the primary reason for solving this
behavioral genetic model is to estimate genetic and environmental influences
on the observed variables. R ecall also that we used one type of family relation
to do this, monozygotic or MZ twins. Since MZs share all of their genes and
all of their common environments, we can express the covariance between
MZs for an observed variables as

Cov(MZ) = Var(G) + Var(E) 4 2Cov(G, E),

where G denotes genotype and E environment. However, our model stipu-
lates no covariance between G and E, so the MZ covariance simplifies to

Cov(MZ) = Var(G) + Var(E).
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Astute readers will no doubt question how we are to solve for two unknowns,
the variance of G and the variance of E, with only one observed statistic — the
covariance between MZ twins. The answer is that we cannot. Including the
variance of the observed variables is of no help, for its expression is identical
to that for Cov(MZ):

Var(MZ) = Var(G) + Var(E).

How then are we to identify this model?

The solution is actually quite simple, and pre-dates the existence of
SEM methodology. If we also include family members of genetic relatedness
differing from that of MZs, we are now able to solve for the genetic and
environmental variances of the observed variables. Traditionally, dizygotic,
or DZ, twins have been used in conjunction with MZ twins, to solve for
the values of these variances. This method is referred to as the “classical twin
method”, first used by Galton in the 1870s (Eaves ef al., 1989). DZ twins
are a useful group to compare with MZ twins, since DZs share on average
only half their genes but all of their common environments. Thus

Cov(DZ) = 0.5 x Var(G) + Var(E).

In fact, if we had only a single observed variable, the genetic variance of
that variable® would be expressed as

Var(G) = 2 x (Cov(MZ) — Cov(DZ)).

Therefore, in order to solve for the genetic and environmental vari-
ances of our model, we include a sample of MZ twins as well as one of DZ
twins. For our model, the S (observed covariance matrix) for the DZ twins is

[ 16.51

426 28.12

—2.10 3.38  3.35

502 1.70 —1.25 16.51

1.70 518  0.87 436 28.12
—1.25 0.87 0.56 —2.10 3.38 3.35
244 318  1.10 244 3.18 1.10 4.00

° Both the SEM model and the simple solution of the classical twin method (i.e.,
2 x (Cov(MZ) — Cov(DZ)) rely on the validity of certain assumptions. If these assumptions
are incorrect, then the estimate of genetic variance will be inaccurate. Among these as-
sumptions are: (1) all genetic effects are additive (i.e., linear), (2) the covariance between
genetic and environmental effects is zero, and (3) there is no assortative mating for the
observed variable. For an extended discussion of the meaning and likelihood of these
assumptions being met, see Eaves et al. (1989).
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