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17.6 Connection with Continued Fractions 332

17.6.1 Definition and Algebraic Properties of Continued Fractions 332
17.6.2 Regular C-Fractions and the Padé Table 333
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18.4.1 Two-Point Padé Approximants 353
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1
The Richardson Extrapolation Process

1.1 Introduction and Background

In many problems of practical interest, a given infinite sequence {An} can be related
to a function A(y) that is known, and hence is computable, for 0 < y ≤ b with some
b > 0, the variable y being continuous or discrete. This relation takes the form An =
A(yn), n = 0, 1, . . . , for some monotonically decreasing sequence {yn} ⊂ (0, b] that
satisfies limn→∞ yn = 0. Thus, in case limy→0+ A(y) = A, limn→∞ An = A as well.
Consequently, computing limn→∞ An amounts to computing limy→0+ A(y) in such a
case, and this is precisely what we want to do.

Again, in many cases of interest, the function A(y) may have a well-defined expansion
for y → 0+ whose form is known. For example – and this is the case we treat in this
chapter – A(y) may satisfy for some positive integer s

A(y) = A +
s∑

k=1

αk yσk + O(yσs+1 ) as y → 0+, (1.1.1)

where σk 
= 0, k = 1, 2, . . . , s + 1, and �σ1 < �σ2 < · · · < �σs+1, and where αk are
constants independent of y. Obviously, �σ1 > 0 guarantees that limy→0+ A(y) = A.
When limy→0+ A(y) does not exist, A is the antilimit of A(y) for y → 0+, and in this
case �σi ≤ 0 at least for i = 1. If (1.1.1) is valid for all s = 1, 2, 3, . . . , and �σ1 <

�σ2 < · · · , with limk→∞ �σk = +∞, then A(y) has the true asymptotic expansion

A(y) ∼ A +
∞∑

k=1

αk yσk as y → 0+, (1.1.2)

whether the infinite series
∑∞

k=1 αk yσk converges or not. (In most cases of interest, this
series diverges strongly.) The σk are assumed to be known, but the coefficients αk need
not be known; generally, the αk are not of interest to us. We are interested in finding A
whether it is the limit or the antilimit of A(y) for y → 0+.

Suppose now that �σ1 > 0 so that limy→0+ A(y) = A. Then A can be approximated by
A(y) with sufficiently small values of y, the error in this approximation being A(y) − A =
O(yσ1 ) as y → 0+ by (1.1.1). If �σ1 is sufficiently large, A(y) can approximate A well
even for values of y that are not too small. If this is not the case, however, then we may have
to compute A(y) for very small values of y to obtain reasonably good approximations

21
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22 1 The Richardson Extrapolation Process

to A. Unfortunately, this straightforward idea of reducing y to very small values is not
always applicable. In most cases of interest, computing A(y) for very small values of
y either is very costly or suffers from loss of significance in finite-precision arithmetic.
The deeper idea of the Richardson extrapolation, on the other hand, is to somehow
eliminate the yσ1 term from the expansion in (1.1.1) and to obtain a new approximation
A1(y) to A whose error is A1(y) − A = O(yσ2 ) as y → 0+. Obviously, A1(y) will be a
better approximation to A than A(y) for small y since �σ2 > �σ1. In addition, if �σ2 is
sufficiently large, then we expect A1(y) to approximate A well also for values of y that
are not too small, independently of the size of �σ1. At this point, we mention only that
the Richardson extrapolation is achieved by taking an appropriate “weighted average”
of A(y) and A(ωy) for some ω ∈ (0, 1). We give the precise details of this procedure in
the next section.

From (1.1.1), it is clear that A(y) − A = O(yσ1 ) as y → 0+, whether �σ1 > 0 or not.
Thus, the function A1(y) that results from the Richardson extrapolation can be a useful
approximation to A for small values of y also when �σ1 ≤ 0, provided �σ2 > 0. That is
to say, limy→0+ A1(y) = A provided �σ2 > 0 whether limy→0+ A(y) exists or not. This
is an additional fundamental and useful feature of the Richardson extrapolation.

In the following examples, we show how functions A(y) exactly of the form we have
described here come about naturally. In these examples, we treat the classic problems
of computing π by the method of Archimedes, numerical differentiation by differences,
numerical integration by the trapezoidal rule, summation of an infinite series that is
used in defining the Riemann Zeta function, and the Hadamard finite parts of divergent
integrals.

Example 1.1.1 The Method of Archimedes for Computing π The method of Arch-
imedes for computing π consists of approximating the area of the unit disk (that is nothing
but π ) by the area of an inscribed or circumscribing regular polygon. If this polygon is
inscribed in the unit disk and has n sides, then its area is simply Sn = (n/2) sin(2π/n).
Obviously, Sn has the (convergent) series expansion

Sn = π + 1

2

∞∑
i=1

(−1)i (2π )2i+1

(2i + 1)!
n−2i , (1.1.3)

and the sequence {Sn} is monotonically increasing and has π as its limit.
If the polygon circumscribes the unit disk and has n sides, then its area is Sn =

n tan(π/n), and Sn has the (convergent) series expansion

Sn = π +
∞∑

i=1

(−1)i 4i+1(4i+1 − 1)π2i+1 B2i+2

(2i + 2)!
n−2i , (1.1.4)

where Bk are the Bernoulli numbers (see Appendix D), and the sequence {Sn} this time
is monotonically decreasing and has π as its limit.

As the expansions given in (1.1.3) and (1.1.4) are also asymptotic as n → ∞, Sn in
both cases is analogous to the function A(y). This analogy is as follows: Sn ↔ A(y),
n−1 ↔ y, σk = 2k, k = 1, 2, . . . , and π ↔ A. The variable y is discrete and assumes
the values 1/3, 1/4, . . . .
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Finally, the subsequences {S2m } and {S3·2m } can be computed recursively without
having to know π , their computation involving only square roots. (See Example 2.2.2 in
Chapter 2.)

Example 1.1.2 Numerical Differentiation by Differences Let f (x) be continuously
differentiable at x = x0, and assume that f ′(x0), the first derivative of f (x) at x0, is
needed. Assume further that the only thing available to us is f (x) , or a procedure that
computes f (x), for all values of x in a neighborhood of x0.

If f (x) is known in the neighborhood [x0 − a, x0 + a] for some a > 0, then f ′(x0)
can be approximated by the centered difference δ0(h) that is given by

δ0(h) = f (x0 + h) − f (x0 − h)

2h
, 0 < h ≤ a. (1.1.5)

Note that h here is a continuous variable. Obviously, limh→0 δ0(h) = f ′(x0). The ac-
curacy of δ0(h) is quite low, however. When f ∈ C3[x0 − a, x0 + a], there exists
ξ (h) ∈ [x0 − h, x0 + h], for which the error in δ0(h) satisfies

δ0(h) − f ′(x0) = f ′′′(ξ (h))

3!
h2 = O(h2) as h → 0. (1.1.6)

When the function f (x) is continuously differentiable a number of times, the error
δ0(h) − f ′(x0) can be expanded in powers of h2. For f ∈ C2s+3[x0 − a, x0 + a], there
exists ξ (h) ∈ [x0 − h, x0 + h], for which we have

δ0(h) = f ′(x0) +
s∑

k=1

f (2k+1)(x0)

(2k + 1)!
h2k + Rs(h), (1.1.7)

where

Rs(h) = f (2s+3)(ξ (h))

(2s + 3)!
h2s+2 = O(h2s+2) as h → 0. (1.1.8)

The proof of (1.1.7) and (1.1.8) can be achieved by expanding f (x0 ± h) in a Taylor
series about x0 with remainder.

The difference δ0(h) is thus seen to be analogous to the function A(y). This analogy
is as follows: δ0(h) ↔ A(y), h ↔ y, σk = 2k, k = 1, 2, . . . , and f ′(x0) ↔ A.

When f ∈ C∞[x0 − a, x0 + a], the expansion in (1.1.7) holds for all s = 0, 1, . . . .

As a result, we can replace it by the genuine asymptotic expansion

δ0(h) ∼ f ′(x0) +
∞∑

k=1

f (2k+1)(x0)

(2k + 1)!
h2k as h → 0, (1.1.9)

whether the infinite series on the right-hand side of (1.1.9) converges or not.
As is known, in finite-precision arithmetic, the computation of δ0(h) for very small

values of h is dominated by roundoff. The reason for this is that as h → 0 both f (x0 + h)
and f (x0 − h) tend to f (x0), which causes the difference f (x0 + h) − f (x0 − h) to
have fewer and fewer correct significant digits. Thus, it is meaningless to carry out the
computation of δ0(h) beyond a certain threshold value of h.
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Example 1.1.3 Numerical Quadrature by Trapezoidal Rule Let f (x) be defined on
[0, 1], and assume that I [ f ] = ∫ 1

0 f (x) dx is to be computed by numerical quadrature.
One of the simplest numerical quadrature formulas is the trapezoidal rule. Let T (h) be
the trapezoidal rule approximation to I [ f ], with h = 1/n, n being a positive integer.
Then, T (h) is given by

T (h) = h

[
1

2
f (0) +

n−1∑
j=1

f ( jh) + 1

2
f (1)

]
. (1.1.10)

Note that h for this problem is a discrete variable that takes on the values 1, 1/2, 1/3, . . . .

It is well known that T (h) tends to I [ f ] as h → 0 (or n → ∞), whenever f (x) is Riemann
integrable on [0, 1]. When f ∈ C2[0, 1], there exists ξ (h) ∈ [0, 1], for which the error
in T (h) satisfies

T (h) − I [ f ] = f ′′(ξ (h))

12
h2 = O(h2) as h → 0. (1.1.11)

When the integrand f (x) is continuously differentiable a number of times, the error
T (h) − I [ f ] can be expanded in powers of h2. For f ∈ C2s+2[0, 1], there exists ξ (h) ∈
[0, 1], for which

T (h) = I [ f ] +
s∑

k=1

B2k

(2k)!

[
f (2k−1)(1) − f (2k−1)(0)

]
h2k + Rs(h), (1.1.12)

where

Rs(h) = B2s+2

(2s + 2)!
f (2s+2)(ξ (h))h2s+2 = O(h2s+2) as h → 0. (1.1.13)

Here Bp are the Bernoulli numbers as before. The expansion in (1.1.12) with (1.1.13) is
known as the Euler–Maclaurin expansion (see Appendix D) and its proof can be found
in many books on numerical analysis.

The approximation T (h) is analogous to the function A(y) in the following sense:
T (h) ↔ A(y), h ↔ y, σk = 2k, k = 1, 2, . . . , and I [ f ] ↔ A.

Again, for f ∈ C2s+2[0, 1], an expansion that is identical in form to (1.1.12) with
(1.1.13) exists for the midpoint rule approximation M(h), where

M(h) = h
n∑

j=1

f ( jh − 1
2 h). (1.1.14)

This expansion is

M(h) = I [ f ] +
s∑

k=1

B2k( 1
2 )

(2k)!

[
f (2k−1)(1) − f (2k−1)(0)

]
h2k + Rs(h), (1.1.15)

where, again for some ξ (h) ∈ [0, 1],

Rs(h) = B2s+2( 1
2 )

(2s + 2)!
f (2s+2)(ξ (h))h2s+2 = O(h2s+2) as h → 0. (1.1.16)

Here Bp(x) is the Bernoulli polynomial of degree p and B2k( 1
2 ) = −(1 − 21−2k)B2k,

k = 1, 2, . . . .
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When f ∈ C∞[0, 1], both expansions in (1.1.12) and (1.1.15) hold for all s =
0, 1, . . . . As a result, we can replace both by genuine asymptotic expansions of the
form

Q(h) ∼ I [ f ] +
∞∑

k=1

ckh2k as h → 0, (1.1.17)

where Q(h) stands for T (h) or M(h), and ck is the coefficient of h2k in (1.1.12) or
(1.1.15). Generally, when f (x) is not analytic in [0, 1], or even when it is analytic there
but is not entire, the infinite series

∑∞
k=1 ckh2k in (1.1.17) diverges very strongly.

Finally, by h = 1/n, the computation of Q(h) for very small values of h involves a
large number of integrand evaluations and hence is very costly.

Example 1.1.4 Summation of the Riemann Zeta Function Series Let An =∑n
m=1 m−z , n = 1, 2, . . . . When �z > 1, limn→∞ An = ζ (z), where ζ (z) is the

Riemann Zeta function. For �z ≤ 1, on the other hand, limn→∞ An does not exist.
Actually, the infinite series

∑∞
m=1 m−z is taken as the definition of ζ (z) for �z > 1.

With this definition, ζ (z) is an analytic function of z for �z > 1. Furthermore, it can be
continued analytically to the whole z-plane with the exception of the point z = 1, where
it has a simple pole with residue 1.

For all z 
= 1, i.e., whether limn→∞ An exists or not, we have the well-known asymp-
totic expansion (see Appendix E)

An ∼ ζ (z) + 1

1 − z

∞∑
i=0

(−1)i

(
1 − z

i

)
Bi n

−z−i+1 as n → ∞, (1.1.18)

where Bi are the Bernoulli numbers as before and
(a

i

)
are the binomial coefficients. We

also recall that B3 = B5 = B7 = · · · = 0, and that the rest of the Bi are nonzero.
The partial sum An is thus analogous to the function A(y) in the following

sense: An ↔ A(y), n−1 ↔ y, σ1 = z − 1, σ2 = z, σk = z + 2k − 5, k = 3, 4, . . . , and
ζ (z) ↔ A provided z 
= −m + 1, m = 0, 1, 2, . . . . Thus, ζ (z) is the limit of {An} when
�z > 1, and its antilimit otherwise, provided z 
= −m + 1, m = 0, 1, 2, . . . . Obviously,
the variable y is now discrete and takes on the values 1, 1/2, 1/3, . . . .

Note also that the infinite series on the right-hand side of (1.1.18) is strongly divergent.

Example 1.1.5 Numerical Integration of Periodic Singular Functions Let us now
consider the integral I [ f ] = ∫ 1

0 f (x) dx , where f (x) is a 1-periodic function that
is infinitely differentiable on (−∞, ∞) except at the points t + k, k = 0, ±1,

±2, . . . , where it has logarithmic singularities, and can be written in the form f (x) =
g(x) log |x − t | + g̃(x) when x, t ∈ [0, 1]. For example, with u ∈ C∞(−∞, ∞) and
periodic with period 1, and with c some constant, f (x) = u(x) log (c| sin π (x − t)|)
is such a function. For this f (x), we have g(t) = u(t) and g̃(t) = u(t) log(πc). Sidi and
Israeli [310] derived the “corrected” trapezoidal rule approximation

T (h; t) = h
n−1∑
i=1

f (t + ih) + g̃(t)h + g(t)h log

(
h

2π

)
, h = 1/n, (1.1.19)
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for I [ f ], and showed that T (h; t) has the asymptotic expansion

T (h; t) ∼ I [ f ] − 2
∞∑

k=1

ζ ′(−2k)

(2k)!
g(2k)(t)h2k+1 as h → 0. (1.1.20)

Here ζ ′(z) = d
dz ζ (z). (See Appendix D.)

The approximation T (h; t) is analogous to the function A(y) in the following sense:
T (h; t) ↔ A(y), h ↔ y, σk = 2k + 1, k = 1, 2, . . . , and I [ f ] ↔ A. In addition, y
takes on the discrete values 1, 1/2, 1/3, . . . .

Example 1.1.6 Hadamard Finite Parts of Divergent Integrals Consider the inte-
gral

∫ 1
0 xρg(x) dx , where g ∈ C∞[0, 1] and ρ is generally complex such that ρ 
=

−1, −2, . . . . When �ρ > −1, the integral exists in the ordinary sense. In case g(0) 
= 0
and �ρ ≤ −1, the integral does not exist in the ordinary sense since xρg(x) is not inte-
grable at x = 0, but its Hadamard finite part exists, as we mentioned in Example 0.2.4.
Let us define Q(h) = ∫ 1

h xρg(x) dx . Obviously, Q(h) is well-defined and computable
for h ∈ (0, 1]. Let m be any nonnegative integer. Then, there holds

Q(h) =
∫ 1

h
xρ

[
g(x) −

m−1∑
i=0

g(i)(0)

i!
xi

]
dx +

m−1∑
i=0

g(i)(0)

i!

1 − hρ+i+1

ρ + i + 1
. (1.1.21)

Now let m > −�ρ − 1. Expressing the integral term in (1.1.21) in the form
∫ 1

h =∫ 1
0 − ∫ h

0 , using the fact that

g(x) −
m−1∑
i=0

g(i)(0)

i!
xi = g(m)(ξ (x))

m!
xm, for some ξ (x) ∈ (0, x),

and defining

I (ρ) =
∫ 1

0
xρ

[
g(x) −

m−1∑
i=0

g(i)(0)

i!
xi

]
dx +

m−1∑
i=0

1

ρ + i + 1

g(i)(0)

i!
, (1.1.22)

and ‖g(m)‖ = max0≤x≤1|g(m)(x)|, we obtain from (1.1.21)

Q(h) = I (ρ) −
m−1∑
i=0

g(i)(0)

i!

hρ+i+1

ρ + i + 1
+ Rm(h); |Rm(h)| ≤ ‖g(m)‖

m!

h�ρ+m+1

�ρ + m + 1
,

(1.1.23)

[Note that, with m > −�ρ − 1, the integral term in (1.1.22) exists in the ordinary sense
and I (ρ) is independent of m.] Since m is also arbitrary in (1.1.23), we conclude that
Q(h) has the asymptotic expansion

Q(h) ∼ I (ρ) −
∞∑

i=0

g(i)(0)

i!

hρ+i+1

ρ + i + 1
as h → 0. (1.1.24)

Thus, Q(h) is analogous to the function A(y) in the following sense: Q(h) ↔ A(y),
h ↔ y, σk = ρ + k, k = 1, 2, . . . , and I (ρ) ↔ A. Of course, y is a continuous variable
in this case. When the integral exists in the ordinary sense, I (ρ) = limh→0 Q(h); other-
wise, I (ρ) is the Hadamard finite part of

∫ 1
0 xρg(x) dx and serves as the antilimit of Q(h)
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as h → 0. Finally, I (ρ) = ∫ 1
0 xρg(x) dx is analytic in ρ for �ρ > −1 and, by (1.1.22),

can be continued analytically to a meromorphic function with simple poles possibly at
ρ = −1, −2, . . . . Thus, the Hadamard finite part is nothing but the analytic continuation
of the function I (ρ) that is defined via the convergent integral

∫ 1
0 xρg(x) dx , �ρ > −1,

to values of ρ for which �ρ ≤ −1, ρ 
= −1, −2, . . . .

Before going on, we mention that many of the developments of this chapter are due
to Bulirsch and Stoer [43], [45], [46]. The treatment in these papers assumes that the σk

are real and positive. The case of generally complex σk was considered recently in Sidi
[298], where the function A(y) is allowed to have a more general asymptotic behavior
than in (1.1.2). See also Sidi [301].

1.2 The Idea of Richardson Extrapolation

We now go back to the function A(y) discussed in the second paragraph of the preceding
section. We do not assume that limy→0+ A(y) necessarily exists. We recall that, when it
exists, this limit is equal to A in (1.1.1) ; otherwise, A there is the antilimit of A(y) as
y → 0+. Also, the nonexistence of limy→0+ A(y) immediately implies that �σi ≤ 0 at
least for i = 1.

As mentioned in the third paragraph of the preceding section, A(y) − A = O(yσ1 )
as y → 0+, and we would like to eliminate the yσ1 term from (1.1.1) and thus obtain
a new approximation to A that is better than A(y) for y → 0+. Let us pick a constant
ω ∈ (0, 1), and set y′ = ωy. Then, from (1.1.1) we have

A(y′) = A +
s∑

k=1

αkω
σk yσk + O(yσs+1 ) as y → 0 + . (1.2.1)

Multiplying (1.1.1) by ωσ1 and subtracting from (1.2.1), we obtain

A(y′) − ωσ1 A(y) = (1 − ωσ1 )A +
s∑

k=2

(ωσk − ωσ1 )αk yσk + O(yσs+1 ) as y → 0 + .

(1.2.2)

Obviously, the term yσ1 is missing from the summation in (1.2.2). Dividing both sides
of (1.2.2) by (1 − ωσ1 ), and identifying

A(y, y′) = A(y′) − ωσ1 A(y)

1 − ωσ1
(1.2.3)

as the new approximation to A, we have

A(y, y′) = A +
s∑

k=2

ωσk − ωσ1

1 − ωσ1
αk yσk + O(yσs+1 ) as y → 0+, (1.2.4)

so that A(y, y′) − A = O(yσ2 ) as y → 0+, as was required. It is important to note that
(1.2.4) is exactly of the form (1.1.1) with A(y) and the αk replaced by A(y, y′) and the
ωσk −ωσ1

1−ωσ1 αk , respectively.


