On the Success of Failure

A Reassessment of the Effects of Retention in the Primary Grades

Second Edition

KARL L. ALEXANDER
Johns Hopkins University

DORIS R. ENTWISLE
Johns Hopkins University

SUSAN L. DAUBER
The Spencer Foundation

CAMBRIDGE UNIVERSITY PRESS
Contents

Preface to the Second Edition
page vii

1. Grade Retention: Lingering Questions
2. Research on Grade Repetition: Strong Opinions, Weak Evidence
3. Retainees in the “Beginning School Study”
4. Children’s Pathways through the Elementary and Middle School Years: Retention+
5. Characteristics and Competencies of Repeaters: Who Is Held Back?
6. Achievement Scores before and after Retention
7. Adjusted Achievement Comparisons: The Need for Controlled Comparisons and the Multiple-Regression Approach
8. Academic Performance as Judged by Teachers: Report Card Marks before and after Retention
9. The Stigma of Retention
10. Retention in the Broader Context of Elementary and Middle School Tracking
11. Dropout in Relation to Grade Retention
12. The Retention Puzzle: Problem, Solution, or Signal?

Appendix: Authors Meet Critics, Belatedly
References
Author Index
Subject Index
Grade Retention

Lingering Questions

Each spring many thousands of children across the country receive the same dark message: they are failures. These youngsters are to be held back, retained, repeat a grade – all synonyms for failing. According to one national source (U.S. Department of Health and Human Services 2000: 299), 8% of second graders in 1999 were a year behind as a result of kindergarten or first grade retention. Applied to the roughly 7.2 million kindergartners and first graders in fall 1997 (U.S. Department of Education 2000a: 58), an 8% retention rate translates into well over a half million children. Academic difficulties during the early elementary years tend to persist (e.g., Entwisle and Alexander 1989; 1993), so the problems signaled by (and perhaps aggravated by) this setback likely will cast a very long shadow. With so many children involved, this is a matter of grave concern.

The decision to hold children back implies they have fallen short and are not yet ready for work at the next grade level. Unlike many other educational decisions, this one is highly public. The pupil’s classmates go on, but the retained child must start over, with new classmates, most of whom are younger, smaller, and brighter. The new teacher knows the child is repeating; so do the new classmates. Furthermore, the judgment of failure is almost never reversed. Most children who repeat a grade will be “off-time” for the rest of their time in school.

Schools use retention to help children who have fallen behind catch up, but does it really help? There are many skeptics, who do not see “catching up,” but instead humiliation and harm. Are these apprehensions warranted? Despite strong opinion and much study, the issue is not decided. In the next chapter we review what is known (and believed)
about the consequences of retention. First, though, we sketch the dimen-
sions of the problem. There may be disagreement about the pros and
cons of retention, but no one disputes its seriousness. We first consider
retention rates, then some of its possible “costs.”

Falling Behind: The Magnitude of the Problem

Estimates vary, but into the 1990s close to 30% of 12- to 14-year-olds were
overage for grade, many no doubt because of earlier retentions (Heubert
and Hauser 1999: 150). Next to dropout, failing a grade is probably the
most ubiquitous and vexing issue facing school people today. In these
days, children can “fail” kindergarten – on the order of 4%–5% do so
according to recent national estimates (Karweit 1999: 7; Reaney, West,
and Denton 2001; Zill, Loomis, and West 1997) – and in many school
systems failing first grade is common.

Astonishing though it is, no authoritative source monitors retention
trends on a national level, a result of what Weiss and Gruber (1987) call
the “managed irrelevance of federal statistics.” The Common Core of
Data, the primary set of federal statistics on elementary and secondary
education, does not include data on such sensitive matters as retention.
“In a delicately balanced political environment… they [the National
Center for Education Statistics] have enough trouble getting local dis-
tricts to categorize grade levels and instructional staff in comparable
ways without getting into emotionally laden issues.” This leaves a
critical void, prompting Hauser (2001: 155) to comment, “I doubt that
governments currently make important policy decisions about any other
social process with so little sound, basic, descriptive information.”

As a consequence, assorted second best options have to do. At the
national level, retention rates usually are inferred from annual census
data that map the distribution of October school enrollments by age
and grade for large, nationally representative samples. Panel surveys
like the National Educational Longitudinal Study of 1988 (NELS88)
project are a second source for estimating retention rates across the
country. Individual school systems and states, of course, also often
keep records on retention, but with definitions and the quality of record
keeping uneven, it hard to piece together a general picture from local
sources.

The Census Bureau regularly monitors children’s grade in school
in relation to their age. These enrollment data, available since 1966 in
the Current Population Survey (CPS) school enrollment supplements,
are representative of the civilian noninstitutional U.S. population in the 50 states plus the District of Columbia and can be used to identify children who are in a grade below the modal grade of children their age. They permit educated guesses at overall retention rates, but with no allowance for differences across states or districts in age of school entry, cutoff dates, late starts, and the like, such CPS estimates are best thought of as approximations.

Using these CPS data, Hauser and his colleagues (Hauser 2001; Hauser, Pager, and Simmons 2000; Heubert and Hauser 1999; see also Roderick 1995a) report prevalence estimates for grade retention back to the 1960s. They identify children who are a year or more older than is typical for their grade in school, but retention is not the only reason for being overage for grade (sometimes referred to as “age grade retardation”). Starting school late generates the same pattern, and children assigned to special education classes also often fall off the normal grade progression timetable. And, too, state policies differ. Twelve states, for example, have kindergarten cutoff dates after the October reference date used in the CPS; in five others the cutoff is established at the level of school districts (Corman 2001). For these reasons, CPS overage for grade calculations are but a rough guide.

Hauser and his colleagues focus on changes in overage enrollments, comparing successive grades between years as opposed to the number or proportion of overage children in a given grade in a given year. Their reports cover roughly three decades for different cohorts of school beginners. For that reason, their many comparisons are hard to summarize. Still, Hauser concludes (2001: 163) that “grade retention is pervasive in American schools.” For example, 21% of children ages 6–8 in 1987 were overage for grade according to his calculations. Because being overage could be due to retention, late start, or other considerations, Hauser uses the 21% figure not as an estimate of retention, but as a baseline for anchoring the same children’s later experience (a conservative approach). And what happens to this cohort later? At ages 9–11, the percentage overage stands at 28%, and at age 12–14 it is 31% (see pp. 159–161).

Overage enrollments thus increase roughly 10 percentage points over the elementary and middle school years. An indeterminate, but presumably large, fraction of the 21% baseline rate would have to be added onto this figure to gauge the group’s retention experience. According to the National Household Education Surveys for 1993 and 1995, about 9% of children who meet the age eligibility cutoff for kindergarten are
held out a year by their parents, so-called academic redshirts;¹ another 5%–6% are identified as repeating kindergarten (Zill et al. 1997: 17; see also Meisels 1992). The late starters would show up in CPS data as overage for grade, but not because of retention. In the NHES surveys, then, roughly two-thirds of the overage first grade enrollment traces to delayed kindergarten entry and a third to kindergarten retention.²

The percentage of overage first graders rose steadily from the early 1970s through the late 1980s and leveled off thereafter (Hauser 2001: 160). Applying the NHES two-third–one-third divide for delayed entry versus retention to overage 6- to 8-year-olds in 1987, that cohort’s cumulative retention through middle school (age 12–14) would be on the order of 17%–18% – that is, Hauser’s 21% baseline figure less 14% due to delayed kindergarten entry plus 10% increase from baseline.

The estimates described apply to the country as a whole, but for certain children in certain settings, retention rates are much higher. Hauser’s report documents large differences in overage enrollments when comparing Whites, Blacks, and Hispanics, differences that increase over the course of children’s schooling. All three groups had roughly similar rates at ages 6–8, but by ages 9–11 minority children were 5 to 10 percentage points above Whites, and the difference increased further at ages 15–17. In recent years, by high school almost half of African-American males are overage for grade as against roughly 30% of Whites (these last figures combine overage enrollments with dropout). Also, boys’ retention rates exceed girls’ for all racial and ethnic groups.

Analyzing CPS enrollment data for 1979, Bianchi (1984) estimates that in an “average” household (husband–wife family with income above the poverty level, where the wife has a high school education and either does not work outside the family or works part-time) about 18% to 19% of males aged 7 to 15 were enrolled below their modal grade. This estimate is close to Hauser’s estimate through middle school for 6- to 8-year-olds in 1987 and close also to the 19.3% overall level of grade retention reported retrospectively by the parents of eighth graders in the NELS88 project, a national longitudinal survey of an eighth grade cohort begun in 1988 (Meisels and Liaw 1993). Retrospective accounts of this sort probably are not completely reliable, but neither is inferring

¹ Later-maturing boys are the children most often held out, usually middle class and born in the late months of the calendar year (Graue and DiPerma 2000; Zill et al. 1997).

² Another fraction would be children held out on entering first grade, but as 98% of children now attend kindergarten (U.S. Census Bureau 1999), the number of such children must be small.
retention from overage enrollments using CPS data (e.g., Corman 2001). Still, with figures from two such different data sources so well aligned, these estimates probably are reasonable for this period.

In Bianchi’s analysis retention rates were about the same for “average household” Whites, African-Americans, and Hispanics, but rates escalated rapidly with other risk factors. For children of high school dropout parents who were living in poverty, the rate was about 50% for males of all three racial/ethnic groups, and around 40% for comparably disadvantaged females. Bianchi’s findings reveal that the likelihood of retention differs greatly according to a child’s level of family resources, a pattern also seen in later studies. For example, 31.3% of NELS88 eighth graders in the lowest family socioeconomic status (SES) quartile had repeated a grade versus 8.2% in the highest quartile (National Center for Education Statistics 1990: 9).

A like pattern is evident too in more recent data for early retentions specifically. Among second graders in 1999, 5% of those in families above the poverty level repeated either kindergarten or first grade as against 16% of poor children. Likewise, the risk of retention for children of college graduate mothers is less than half that for children whose mothers lack high school degrees: 6% versus 16%. And although in these data differences associated with race/ethnicity are negligible (U.S. Department of Health and Human Services 2000: 299), that is true also of CPS estimates for the earliest grades (e.g., Hauser 2001: 164).

State level sources also afford a sense of overall retention levels. However, as noted, not all states report retention rates and their reporting procedures vary. Thirteen of the 36 states covered in the National Research Council’s survey of state practices (Heubert and Hauser 1999: 136–137) collect no retention data at all; others provided figures for two or three grades only; and still others just gave an overall total for all grades. Likewise, 5 of 15 southern and border states covered in a recent Southern Region Education Board (SREB) survey of retention provided figures grade by grade (Denton 2001: 3).

With the understanding that these data are incomplete and may not be strictly comparable (or altogether reliable), Table 1.1 reports state retention levels, by grade. These data are compiled from several sources: Shepard and Smith (1989: 6–7) for the early years; Heubert and Hauser (1999: 137–147) for the 1990s, updated for five southern states with information from Denton (2001: 2). Because the present volume focuses on retention over the elementary and middle school years, Table 1.1
<table>
<thead>
<tr>
<th>Grade Level</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alabama</td>
<td>90s</td>
<td>4.70</td>
<td>8.03</td>
<td>3.00</td>
<td>2.40</td>
<td>2.17</td>
<td>2.17</td>
<td>3.00</td>
<td>6.70</td>
</tr>
<tr>
<td>Arizona</td>
<td>79–80</td>
<td>5.20</td>
<td>7.70</td>
<td>4.00</td>
<td>2.40</td>
<td>1.90</td>
<td>1.40</td>
<td>1.30</td>
<td>3.10</td>
</tr>
<tr>
<td></td>
<td>85–86</td>
<td>8.00</td>
<td>20.0</td>
<td>8.00</td>
<td>5.00</td>
<td>4.00</td>
<td>4.00</td>
<td>4.00</td>
<td>8.00</td>
</tr>
<tr>
<td>Delaware</td>
<td>79–80</td>
<td>NA</td>
<td>11.40</td>
<td>5.10</td>
<td>2.90</td>
<td>2.40</td>
<td>2.17</td>
<td>3.00</td>
<td>6.70</td>
</tr>
<tr>
<td></td>
<td>85–86</td>
<td>5.40</td>
<td>17.20</td>
<td>4.90</td>
<td>2.80</td>
<td>2.00</td>
<td>3.00</td>
<td>3.20</td>
<td>9.60</td>
</tr>
<tr>
<td>D.C.</td>
<td>79–80</td>
<td>NA</td>
<td>15.30</td>
<td>10.00</td>
<td>7.20</td>
<td>7.20</td>
<td>6.30</td>
<td>3.10</td>
<td>NA</td>
</tr>
<tr>
<td>Florida</td>
<td>79–80</td>
<td>6.10</td>
<td>13.70</td>
<td>7.40</td>
<td>7.00</td>
<td>5.90</td>
<td>5.90</td>
<td>5.80</td>
<td>2.93</td>
</tr>
<tr>
<td>Georgia</td>
<td>79–80</td>
<td>NA</td>
<td>11.00</td>
<td>4.70</td>
<td>3.80</td>
<td>2.80</td>
<td>2.50</td>
<td>2.60</td>
<td>7.90</td>
</tr>
<tr>
<td>Hawaii</td>
<td>77–78</td>
<td>NA</td>
<td>8.30</td>
<td>4.40</td>
<td>3.50</td>
<td>2.70</td>
<td>2.50</td>
<td>2.60</td>
<td>3.50</td>
</tr>
<tr>
<td>Kentucky</td>
<td>79–80</td>
<td>2.30</td>
<td>12.60</td>
<td>5.70</td>
<td>3.40</td>
<td>2.20</td>
<td>1.80</td>
<td>1.90</td>
<td>4.20</td>
</tr>
<tr>
<td>Louisiana</td>
<td>90s</td>
<td>8.70</td>
<td>11.80</td>
<td>5.95</td>
<td>5.10</td>
<td>5.40</td>
<td>4.60</td>
<td>8.10</td>
<td>10.80</td>
</tr>
<tr>
<td>Maryland</td>
<td>79–80</td>
<td>NA</td>
<td>7.60</td>
<td>3.50</td>
<td>3.30</td>
<td>2.50</td>
<td>2.50</td>
<td>1.80</td>
<td>8.50</td>
</tr>
<tr>
<td>Mississippi</td>
<td>79–80</td>
<td>NA</td>
<td>15.10</td>
<td>6.90</td>
<td>4.80</td>
<td>5.00</td>
<td>5.60</td>
<td>5.10</td>
<td>13.50</td>
</tr>
<tr>
<td>Missouri</td>
<td>79–80</td>
<td>NA</td>
<td>10.50</td>
<td>7.00</td>
<td>3.80</td>
<td>3.80</td>
<td>5.00</td>
<td>6.60</td>
<td>11.20</td>
</tr>
<tr>
<td>North Carolina</td>
<td>79–80</td>
<td>6.00</td>
<td>9.30</td>
<td>5.00</td>
<td>3.00</td>
<td>2.70</td>
<td>3.00</td>
<td>2.60</td>
<td>7.10</td>
</tr>
<tr>
<td>Ohio</td>
<td>90s</td>
<td>3.83</td>
<td>5.43</td>
<td>2.98</td>
<td>2.35</td>
<td>1.33</td>
<td>0.93</td>
<td>2.63</td>
<td>3.33</td>
</tr>
<tr>
<td>South Carolina</td>
<td>77–78</td>
<td>NA</td>
<td>8.30</td>
<td>4.40</td>
<td>3.50</td>
<td>2.70</td>
<td>2.60</td>
<td>3.50</td>
<td>3.80</td>
</tr>
<tr>
<td>Tennessee</td>
<td>79–80</td>
<td>2.40</td>
<td>10.70</td>
<td>5.60</td>
<td>3.90</td>
<td>3.10</td>
<td>3.30</td>
<td>2.80</td>
<td>7.30</td>
</tr>
<tr>
<td>Texas</td>
<td>90s</td>
<td>1.60</td>
<td>5.90</td>
<td>2.63</td>
<td>1.27</td>
<td>1.10</td>
<td>0.87</td>
<td>1.70</td>
<td>2.80</td>
</tr>
<tr>
<td>Vermont</td>
<td>90s</td>
<td>1.83</td>
<td>1.90</td>
<td>1.10</td>
<td>0.60</td>
<td>0.47</td>
<td>0.30</td>
<td>0.33</td>
<td>1.50</td>
</tr>
<tr>
<td>Virginia</td>
<td>79–80</td>
<td>6.20</td>
<td>11.00</td>
<td>6.30</td>
<td>5.30</td>
<td>4.40</td>
<td>4.02</td>
<td>4.20</td>
<td>7.70</td>
</tr>
<tr>
<td>West Virginia</td>
<td>79–80</td>
<td>1.70</td>
<td>10.80</td>
<td>3.40</td>
<td>2.20</td>
<td>1.90</td>
<td>1.80</td>
<td>1.40</td>
<td>3.50</td>
</tr>
<tr>
<td>Wisconsin</td>
<td>96–97</td>
<td>1.20</td>
<td>2.20</td>
<td>1.00</td>
<td>0.50</td>
<td>0.30</td>
<td>0.20</td>
<td>0.60</td>
<td>1.00</td>
</tr>
</tbody>
</table>

* NA, not available.
Grades 1 through 8, with kindergarten and ninth grade (usually the first year of high school) included for comparison. Starting with the 1994–1995 school year, the “90s” entries are the average of the available annual data (usually 3 years; see the table legend). This “smoothing” does no great harm because fluctuations year to year in most localities are not large.\(^3\)

From Table 1.1 we see that retention rates “spike” at certain points in the student career. During the elementary years, the rate generally is highest in first grade, often two or three times rates over grades 2 through 5. And it is impressive that this holds whether rates are high or low in absolute terms (compare Mississippi and Virginia, for example). But it also is the case in most states that levels of first grade retention are much reduced in the 1990s relative to earlier periods, often dramatically so. There are exceptions (e.g., the District of Columbia, South Carolina), but the most striking time trend in Table 1.1 is this broad-based retreat from early grade retention specifically.

In many localities rates begin inching up again in middle school (grades 6–8). Then in ninth grade, the first year of high school in most localities, they soar, often surpassing even the heretofore peak rates from first grade.\(^4\) This holds especially in the 1990s, so the ninth grade trend runs counter to the historic trend for first grade. Ninth grade retention rates generally have not declined over time; indeed, in many places they have increased.

School transitions, and the adjustments they require, we know challenge young people (e.g., Entwisle and Alexander 1989; 1993; Roderick 1995b). Transition shock no doubt helps account for the high rates of retention evident in Table 1.1. for first and ninth grades (a pattern observed by Morris [1993], also), but why the former rates have declined over time and the latter not can only be surmised. Perhaps problems skipped over in the early years later become so severe they can no longer be ignored, or possibly younger children are deemed better prospects for growing out of their problems.

Many critics of retention (e.g., Epstein 1987; Shepard and Smith 1988) object especially to the practice of holding children back in the early grades. For them, Table 1.1 holds much good news. Good news, yes; but far from a sweeping victory, as the grade specific retention rates

\(^3\) Table 1.1 does not include states for which data are available only for the earlier periods or are spotty for the elementary and middle grades.

\(^4\) Our table does not cover the remaining years of high school, but the figures for ninth grade generally exceed those for later years as well (e.g., Heubert and Hauser 1999: 138–146).
displayed in Table 1.1 imply high cumulative risk of retention across the student career. And more than that, these statewide figures obscure local highs and lows. In high-poverty school systems, for instance, it is not unusual for half the student population to repeat one or more grades before high school (e.g., Education Week 1998). From all of this it seems safe to conclude that, despite recent reductions in early retention specifically, retention rates remain high in general and are especially high for poverty level children and minority youth – so-called at-risk students, whose academic problems dominate educational policy discussions.

Shepard and Smith (1989: 9) attribute the high rates of retention that prevailed through the mid- to late 1980s to the education reform movement ushered in by the 1983 report “A Nation at Risk” (National Commission on Excellence in Education 1983). Although widely credited with prompting the “excellence movement” of the 1980s, this report probably instead helped crystallize trends already gathering steam. A “swelling chorus of complaints” about social promotion in the public schools extends back at least to the 1970s (Larabee 1984; for historical perspective, see Rothstein 1998) and so predate the commission’s work.

The Excellence Commission focused its recommendations on a narrow set of policy options, such as the “New Basics” high school curriculum and higher educational standards. In consequence, “social promotion” declined for a time, as presumably is reflected in the high “baseline” retention figures in Table 1.1. But the educational reform movement is not the only factor behind high retention rates. Large demographic shifts in the school-age population no doubt also have played a role. In 1980 about 74% of U.S. children age 18 and under were classified as non-Hispanic White. By 1999 this percentage had shrunk to 65%, and projections to 2020 anticipate a further decline to 55%. Non-Hispanic Blacks, by way of comparison, made up 9.3% of youth age 18 and under in 1980, increased to 10.5% in 1999, and are projected to rise to 12.2% by 2020. The trend for Hispanic youth (any race) is more dramatic still. Their share of the total increased from 5.7% in 1980 to 10.8% in 1999 and is projected to soar to 17.2% by 2020 (U.S. Department of Health and Human Services 2000: 20).

Minority group youngsters who are poor are at great risk of school failure (e.g., Kaufman, Bradby, and Owings 1992), so over the next few decades rates of retention may rise considerably above current levels if the momentum to limit social promotion continues. As reviewed, retention rates in many localities already are quite high and “tightening up” policies could well drive them higher still. By one estimate, for
example, two-thirds of Los Angeles’s 1.1 million children were reading below grade level in 1999 (Sahagun 1999). Is it practical or wise to hold back so many youngsters? How can marginal students who have experienced only failure be shielded from further failure? For many of these youth enforcing rigid standards will backfire: they will be encouraged to drop out, to act out, or to do both (McDill, Natriello, and Pallas 1986; Pallas, Natriello, and McDill 1987). Poor, inner city minority youth are those whose promotion prospects are most in jeopardy. For many of them flunking a grade could well shape life chances and incur costs for years to come. The next section reviews some of these possible costs.

Some Costs of Retention, in Dollars and Otherwise

Although retention is commonplace, its costs and benefits are not easily calculated. Some costs are clear-cut, but others are hard to assess because firm evidence is lacking. One obvious consequence of grade retention is increased educational expenditure. The extra year of schooling demanded of repeaters was estimated in the mid-1980s to add about $10 billion to the nation’s school bill, on the basis of the then average annual per pupil expenditure of $4,051 and a national annual retention rate of 6% (yielding 2.4 million repeaters per year: Center for Policy Research in Education 1990; see also Dyer and Binkney 1995). The 1985/86 figure for per pupil expenditures (based on enrollments, not attendance) would be just over $5,000 in 1998/99 dollars, but expenditures per pupil today are higher still (a bit under $6,400: U.S. Department of Education 2000a: 187). Additionally, repeaters often receive extra services, including special education services – for example, 8.5% of children age 5–18 with no disabilities were identified as repeaters in 1995 versus just over a third of those with a learning disability (U.S. Department of Education 1997: 54). If $10 billion was a reasonable estimate for 1985, then almost certainly the cost associated with repeaters’ “extra” year now is well beyond $10 billion – retention rates remain high, per pupil expenditures are up, and extra services are more costly. Retaining up to half the children in a district one or more times by the fifth year of elementary school is roughly equivalent to increasing its elementary school population by 10%, and the associated costs almost certainly exceed 10%.

One cost especially hard to calculate is a deferred one: school discontinuation. Failing a grade in school is a major risk factor for high school dropout, increasing dropout odds in many studies two- and threefold (e.g., Jimerson 2000). High school dropout entails severe costs. To cite
but one example, in 1999 a high school diploma or general equivalency diploma (GED) conferred a wage premium of about a third, comparing dropouts in the 25–34 age range with comparably aged high school graduates (U.S. Department of Education 2001: 137–139). This sizable 1-year differential implies much larger differences over a lifetime – on the order of $100,000 according to one estimate, even after adjusting for related disadvantages that would depress dropouts’ earnings for other reasons (McDill et al. 1986). Being behind in school is one of the strongest predictors of dropout even when other risk factors such as minority status and poverty background are taken into account (Grissom and Shepard 1989; Rumberger 1995; Rumberger and Larson 1998; Temple, Reynolds, and Ou 2000). Indeed, connections between dropout and early retention specifically are documented in several sources (Cairns, Cairns, and Neckerman 1989; Ensminger and Slusarcick 1992; Lloyd 1978; and Stroup and Robins 1972; Temple, Reynolds, and Ou 2000), including the BSS (e.g., Alexander, Entwisle, and Horsey 1997; Alexander, Entwisle, and Kabbani 2001).

Retention affects life success after high school in other ways as well. For example, Royce, Darlington, and Murray (1983: 444–445) report that, compared to similar students who had not repeated a grade, repeaters were more likely later to be unemployed or not seeking work, to be living on public assistance, or to be in prison. Here too the retention–dropout linkage no doubt is relevant, as about half the prison population and half of welfare recipients lack high school degrees (Educational Testing Service 1995; National Research Council 1993). The excess costs for teaching students who repeat a year is thus in actuality only a small fraction of the long-term costs to the student and to society.

Beyond costs calculated in dollars, there also may be psychological costs involving self-esteem and personal happiness. These costs are borne by both children and their families – parents because dreams for their children are compromised, and children because they grow to see themselves as failures or misfits. Teachers and parents worry a great deal about the socioemotional consequences of children’s being off-time in school, and with good reason. Repeating a grade seems to increase children’s adjustment problems in school (Kellam, Branch, Agrawal, and Ensminger 1975), perhaps because it disrupts peer relations. When children move from grade to grade they generally keep the same peers, but retention separates children from their peers. Evidence indicates that school performance deteriorates when peer groups are disrupted (Felner and Adan 1988; Felner, Ginter, and Primavera 1982).
Does retaining pupils in grade accomplish enough good to warrant the risks and costs it entails? No one knows. Despite extensive study and strong opinions, the jury is still out.

Retention: Solution or Problem?

When children fail to master the curriculum at an acceptable level of proficiency, there are at least three courses of action. The first is to alter policies so students will not have to be held back: redesign schooling so everyone can be promoted. But promoting children who fall short of prescribed standards (e.g., social promotion) is now out of favor (American Federation of Teachers 1997; U.S. Department of Education 1999), and many children, unfortunately, still fall short. In the context of the recent debate over social promotion versus rigorous promotion standards, it is interesting that retention is less common in many other countries, even developed countries whose educational systems are seen as equal to or better than our own. Though coverage is spotty (and reliability hard to assess), recent figures on grade repetition at the primary and secondary levels for industrial and industrializing countries in Europe and Asia all are single digit, mostly in the vicinity of 1%-3% (e.g., UNESCO 2000: Table 5; World Bank 2001: Table 2.13). And in most places these low levels of grade retention extend back at least to the 1960s (i.e., Haddad 1979; Lockheed and Verspoor 1991: 12 and Table A-11). Thus far, though, the option of promoting everyone has not proved practical on a broad scale here in the United States.

Another possibility is for students to make up ground by attending summer school. As an alternative to retention, summer remediation has considerable appeal and programs have proliferated in recent years (e.g., Abercrombie 1999; Gewertz 2000; Stenvall 2001). However, for reasons not well understood, summer programs at the elementary level are not successful in making up for academic deficiencies (Cooper, Charlton, Valentine, and Muhlenbruck 2000; Entwistle, Alexander, and Olson 2000a; Heyns 1987) and certainly have not eliminated the need for retention. The experience from Chicago’s ambitious “Summer Bridge” program is that about half the children who fail to meet promotion standards are able to advance to the next grade level after summer school and other interventions (Chicago Public Schools 1998; Roderick, Bryk, Jacob, Easton, and Allensworth 1999). Half is an impressive figure, but it still leaves many students behind. Results elsewhere typically are no better and sometimes are much worse. In Cincinnati, for example, only about
10% of children assigned to a summer remediation program after first grade achieved satisfactory levels of reading achievement and advanced to second grade; the other 90% had to repeat first grade anyway (Mueller 1989).

The third solution when performance is below standard is for youngsters to repeat the school year. As reviewed earlier, this course of action is far more common in the United States than most people probably realize. In many high-poverty school systems retention rates over the primary grades approach 50%. Baltimore, the site of our study, is one such community.

Repeating a Grade: The Fairness Issue

Popular sentiment and probably most practitioners would have youngsters repeat a year rather than pass them along ill prepared for the work that lies ahead (e.g., Byrnes 1989; Byrnes and Yamamoto 1986; Lombardi, Odell, and Novotny 1990; Tomchin and Impara 1992). According to a Public Agenda survey (2000), 66% of public school parents would approve (strongly or somewhat) the school’s recommendation to hold their child back if he/she failed to meet academic standards after attending summer school, and 77% of respondents to a recent Gallup poll (2001) agree that students should be required to pass a standardized test in order to be promoted to the next grade. As to professional sentiment, Smith and Shepard (1988: 330) find a strong achievement orientation among kindergarten teachers: “Teachers believe…the pupil career should be driven by competence or readiness rather than by social promotion and…for the most part, they act according to these beliefs.”

Is this unreasonable? According to the American Federation of Teachers (1997: 1) promoting children who clearly are not prepared sets them up for further failure and poses challenges for teachers, who then must instruct children with widely varying competencies and motivation. Their report describes social promotion as an insidious practice that hides school failure and creates problems for everyone – for kids who are deluded into thinking they have learned the skills to be successful or get the message that achievement doesn’t count; for teachers who must face students who know that teachers wield no credible authority to demand hard work; for the business community and colleges that must spend millions of dollars on remediation; and for society that must deal with a growing proportion of uneducated citizens, unprepared to contribute productively to the economic and civic life of the nation.
Grade Retention: Lingering Questions

Even if a bit overstated, this indictment hardly reflects a mean-spirited desire to penalize those who fail to make the grade. Yet according to much commentary on the topic, harm is the actual, if unintended, result.

The “mean-spirited” idea subsumes two themes. The first is “effectiveness,” the surface concern. Sometimes this expands to “cost effectiveness,” but whether cast in bookkeeping terms or not, educational interventions are expected to do more good than harm, and preferably at least some good and no harm. Most research on retention takes this perspective, if only implicitly: if retained children are worse off later than if they had been passed along, then the intervention is judged unsuccessful or ineffective. And if this deficit could reasonably have been anticipated by those responsible for the decision, then mean-spirited would seem an apt characterization.

But with “harm” and “good” on the table, we also need to ask “to whom” and “for whom.” This takes us to the second theme, which involves “fairness” or “equity” issues. Schools in the modern era shoulder many responsibilities. Helping children of poverty background who enter school poorly prepared is one of those. “Compensatory education,” after all, exists for a reason. One particularly compelling study (Hart and Risley 1995:76) finds that 3-year-olds in professional families have a more extensive working vocabulary than do adults in welfare families!

Despite many exceptions, as a group poor children and disadvantaged minority children already are behind when they begin school (e.g., West, Denton, and Germino-Hausken 2000). And barring a mid-course correction, the prognosis is that over time they will fall further and further back, mainly because of hardships outside school (e.g., Entwisle, Alexander, and Olson 1997; Frymier 1992; 1997). For such children to do well in school can be a Herculean struggle, and schools must be meticulous in serving their needs.

Impressive progress has been made over the years in furthering equal opportunity for the less advantaged. To mention but one example, African-American and White rates of high school dropout (e.g., Hauser, Pager, and Simmons 2001) and high school completion (Day and

5 We suppose it should also be stipulated that there are no advantages accruing to other classes of students large enough or important enough to justify the harm to some. Research evaluations rarely consider such tradeoffs, but they are commonplace in the real world, and somehow to resolve them is one of the heavy burdens of education administration. For relevant comment, see Natriello (1998).
Curry 1998) are closer now than ever before in U.S. history. Vigilance still is needed, though. Even if most teachers rate children strictly in terms of classroom performance, there is always the possibility of so-called institutionalized discrimination – that is, practices taken for granted as right and proper that can have the effect of denying opportunities to poor and minority youngsters. In the minds of some, retention is one of these practices. According to Smith and Shepard (1987: 133), retention and homogeneous grouping by ability “[help] advantaged groups, [create] further barriers for the disadvantaged, and [promote] segregation and stratification.”

Such concerns are longstanding (see, e.g., Abidin, Golladay, and Howerton 1971) and of course are not peculiar to the practice of retention. In fact, the potential for unfairness is present whenever instructional and organizational interventions separate students from one another on the basis of skill or achievement level and then treat them differently thereafter. Because academic and social disadvantage overlap, minority and disadvantaged youngsters almost always rank lower than Whites and advantaged youth on so-called merit selection criteria, and so lag behind under such systems. To mention some of the more obvious examples, minority and/or disadvantaged children are assigned in disproportionate numbers to special education classes, to low-ability instructional groups, and to general or vocational tracks at the secondary level; they are underrepresented in programs for the gifted and talented and in admission to select colleges and universities; and they are more likely to be held back, the focus of our interest here.

Some critics view merit criteria as either unnecessary or inappropriate, because using them has the effect of perpetuating historic inequalities, and of legitimating them under a veneer of “equal opportunity.” Even though it may be an unintended consequence of well-intentioned procedures, relying on merit criteria tends to relegate minority and disadvantaged youth to the bottom rung of most education ladders.

“Meritocrats” and their “cognitive elite” first cousins (e.g., Henry 1994; Herrnstein and Murray 1994) view these same selection criteria as necessary and appropriate. Although they may regret that minorities and the disadvantaged fall at the low end, such an outcome is viewed as society’s failing, not a reason to compromise academic standards. In fact, the argument goes, merit standards serve all children’s interests,

6 Patterson Research Institute (1999) affords a good overview of progress made in the education arena, and of challenges that remain.
because they channel youth into the education “slots” best suited to their
talent and aptitude. Put differently, this view holds that most children
will make better use of their potential under merit-based sorting than
they would under any reasonable alternative.

The weak line here is “their potential.” Transactional notions of
development are absent from many of these arguments. Human develop-
ment, whether involving growth of the brain or skill as a dancer in
adolescence, is very much a product of the interactions between humans
and their institutional contexts. “Merit standards” suffer from the draw-
back of being static and one-sided. They assess a student with respect
to final standards at one point in time. This assessment may or may not
reflect their potential.

This particular debate will continue for many years to come.7 Equity
concerns almost always hover in the background when educational
practices are being scrutinized, especially for practices involving a reme-
diation component. Under such circumstances, questions of “effectiveness”
take on added significance. If retention hurts rather than helps, this
fact needs to be known. As Shepard and Smith (1988: 142) say, “Special
placements require evidence of effectiveness . . . good intentions are not
sufficient.” The reason is straightforward: an intervention that has good
consequences for its recipients is not likely to be deemed unfair. Fairness
and effectiveness thus are joined.

The analyses presented in this volume speak most directly to the ques-
tion of effectiveness. In the narrow context of program evaluation, this
sort of separation is possible, but whether a particular practice is good
or wise is much more complicated. Some of these broader questions
surrounding retention are addressed in the concluding chapter.

7 For overview and comment in the context of so-called high stakes testing, see Madaus
and Clarke (2001) and Natriello and Pallas (2001). For discussion of the conceptual and
value underpinnings of the debate, see Husén (1976), Miller (1976), Roemer (2000), and