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Elements of the theory of finite
elasticity
R.W. Ogden

Department of Mathematics
University of Glasgow, Glasgow G12 8QW, U.K.
Emasil: rwo@maths.gla.ac.uk

In this chapter we provide a brief overview of the main ingredients of the
nonlinear theory of elasticity in order to establish the basic background material
as a reference source for the other, more specialized, chapters in this volume.

1.1 Introduction

In this introductory chapter we summarize the basic equations of nonlinear
elasticity theory as a point of departure and as a reference source for the other
articles in this volume which are concerned with more specific topics.

There are several texts and monographs which deal with the subject of non-
linear elasticity in some detail and from different standpoints. The most impor-
tant of these are, in chronological order of the publication of the first edition,
Green and Zerna (1954, 1968, 1992), Green and Adkins (1960, 1970), Truesdell
and Noll (1965), Wang and Truesdell (1973), Chadwick (1976, 1999), Marsden
and Hughes (1983, 1994), Ogden (1984a, 1997), Ciarlet (1988) and Antman
(1995). See also the textbook by Holzapfel (2000), which deals with viscoelas-
ticity and other aspects of nonlinear solid mechanics as well as containing an
extensive treatment of nonlinear elasticity. These books may be referred to for
more detailed study. Subsequently in this chapter we shall refer to the most re-
cent editions of these works. The review articles by Spencer (1970) and Beatty
(1987) are also valuable sources of reference.

Section 1.2 of this chapter is concerned with laying down the basic equa-
tions of elastostatics and it includes a summary of the relevant geometry of
deformation and strain, an account of stress and stress tensors, the equilibrium
equations and boundary conditions and an introduction to the formulation of
constitutive laws for elastic materials, with discussion of the important notions
of objectivity and material symmetry. Some emphasis is placed on the spe-
cial case of isotropic elastic materials, and the constitutive laws for anisotropic
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2 R.W. Ogden

material consisting of one or two families of fibres are also discussed. The mod-
ifications to the constitutive laws when internal constraints such as incompress-
ibility and inextensibility are present are provided. The general boundary-value
problem of nonlinear elasticity is then formulated and the circumstances when
this can be cast in a variational structure are discussed briefly.

In Section 1.3 some basic examples of boundary-value problems are given.
Specifically, the equations governing some homogeneous deformations are high-
lighted, with the emphasis on incompressible materials. Other chapters in this
volume will discuss a range of different boundary-value problems involving non-
homogeneous deformations so here we focus attention on just one problem as
an exemplar. This is the problem of extension and inflation of a thick-walled
circular cylindrical tube. The analysis is given for an incompressible isotropic
elastic solid and also for a material with two mechanically equivalent symmet-
rically disposed families of fibres in order to illustrate some differences between
isotropic and anisotropic response.

The (linearized) equations of incremental elasticity associated with small de-
formations superimposed on a finite deformation are summarized in Section
1.4. The incremental constitutive law for an elastic material is used to iden-
tify the (fourth-order) tensor of elastic moduli associated with the stress and
deformation variables used in the formulation of the governing equations, and
explicit expressions for the components of this tensor are given in the case of
an isotropic material. For the two-dimensional specialization, necessary and
sufficient conditions on these components for the strong ellipticity inequalities
to hold are given for both unconstrained and incompressible materials. A brief
discussion of incremental uniqueness and stability is then given in the context
of the dead-load boundary-value problem and the associated local inequalities
are given explicit form for an isotropic material, again for both unconstrained
and incompressible materials. A short discussion of global aspects of non-
uniqueness for an isotropic material sets the incremental results in a broader
context.

In Section 1.5 the equations of incremental deformations and equilibrium
given in Section 1.4 are specialized to the plane strain context in order to
provide a formulation for the analysis of incremental plane strain boundary-
value problems. Specifically, we provide an example of a typical incremental
boundary-value problem by considering bifurcation of a uniformly deformed
half-space from a homogeneously deformed configuration into a non-homogene-
ous local mode of deformation. An explicit bifurcation condition is given for this
problem and the results are illustrated for two forms of strain-energy function.

Finally, in Section 1.6 we summarize the equations associated with the (non-
linear) dynamics of an elastic body at finite strain. The (linearized) equations
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for small motions superimposed on a static finite deformation are then given
and these are applied to the analysis of plane waves propagating in a homoge-
neously deformed material.

References are given throughout the text but these are not intended to pro-
vide an exhaustive list of original sources. Where appropriate we mention
papers and books where more detailed citations can be found. Also, where a
topic is to be dealt with in detail in one of the other chapters of this volume
the appropriate citations are included there.

1.2 Elastostatics

In this section we summarize the basic equations of the static theory of non-
linear elasticity, including the kinematics of deformation, the analysis of stress
and the governing equations of equilibrium, and we introduce the various forms
of constitutive law for an elastic material, including a discussion of isotropy and
anisotropy. We then formulate the basic boundary-value problem of nonlinear
elasticity. The development here is a synthesis of the essential material taken
from the book by Ogden (1997) with some minor differences and additions.

1.2.1 Deformation and strain

We consider a continuous body which occupies a connected open subset of a
three-dimensional Euclidean point space, and we refer to such a subset as a
configuration of the body. We identify an arbitrary configuration as a reference
configuration and denote this by B,. Let points in B, be labelled by their
position vectors X relative to an arbitrarily chosen origin and let 3, denote
the boundary of B,. Now suppose that the body is deformed quasi-statically
from B, so that it occupies a new configuration, B say, with boundary 0B. We
refer to B as the current or deformed configuration of the body. The deformation
is represented by the mapping x : B, — B which takes points X in B, to points
x in B. Thus,

x=x(X), XeB, (2.1)

where x is the position vector of the point X in B. The mapping X is called
the deformation from B, to B. We require x to be one-to-one and we write its
inverse as x !, so that

X=x"'x), xe€B. (2.2)
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Both x and its inverse are assumed to satisfy appropriate regularity conditions.
Here, it suffices to take x to be twice continuously differentiable, but different
requirements may be specified in other chapters of this volume.

For simplicity we consider only Cartesian coordinate systems and let X and
x respectively have coordinates X, and z;, where o, i € {1,2,3}, so that
z; = xi(Xa). Greek and Roman indices refer, respectively, to B, and B and
the usual summation convention for repeated indices is used.

The deformation gradient tensor, denoted F, is given by

F = Gradx (2.3)

and has Cartesian components F;, = 0z;/0X,, Grad being the gradient op-
erator in B,. Local invertibility of x requires that F be non-singular, and we
adopt the usual convention that det F > 0. Similarly, for the inverse deforma-
tion gradient

Fl=gradX, (F = aa);j‘, (2.4)
where grad is the gradient operator in B. With use of the notation defined by
J =detF (2.5)
we then have
0<J<oo. (2.6)
The equation
dx =FdX (2.7)

(in components dz; = F;,dX,) describes how an infinitesimal line element dX
of material at the point X transforms linearly under the deformation into the
line element dx at x.

We now set down how elements of surface area and volume transform. Let
dA = NdA denote a vector surface area element on 9B,, where N is the unit
outward normal to the surface, and da = nda the corresponding area element
on 8B. Then, the area elements are connected according to Nanson’s formula

nda = JF~TNdA4, (2.8)

where F~T = (F~1)T and 7 denotes the transpose. Note that, unlike a line
element, the normal vector is not embedded in the material, i.e. n is not in
general aligned with the same line element of material as N.

If dV and dv denote volume elements in B, and B respectively then we also
have

dv = Jav. (2.9)
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For a volume preserving (isochoric) deformation we have
J=detF=1. (2.10)

A material for which (2.10) is constrained to be satisfied for all deformation
gradients F is said to be incompressible.
The identities

Div(JF™1) =0, div(J7'F)=0 (2.11)

are important tools in transformations between equations associated with the
reference and current configurations, where Div and div are the divergence
operators in B, and B respectively. The first identity in (2.11) can readily
be established by integrating (2.8) over an arbitrary closed surface in B and
applying the divergence theorem and the second similarly by integrating NdA
over an arbitrary closed surface in B,.

From (2.7) we have

|dx[2 = (FM) - (FM) [dX[? = (FTFM) - M |dX|?, (2.12)

where we have introduced the unit vector M in the direction of dX and -
signifies the scalar product of two vectors. Then, the ratio |dx|/|dX]| of the
lengths of a line element in the deformed and reference configurations is given
by

[dx| _ _ (wT 1/2 —

x| = IFM| = M- (F'FM)]"/* = A(M). (2.13)
Equation (2.13) defines the stretch A(M) in the direction M at X, and we note
that it is restricted according to the inequalities

0 < A(M) < oo. (2.14)
If there is no stretch in the direction M then A(M) = 1 and hence
(FTFM) M =1. (2.15)

If there is no stretch in any direction, i.e. (2.15) holds for all M, then the
material is said to be unstrained at X, and it follows that FTF = I, where I is
the identity tensor. A suitable tensor measure of strain is therefore FTF — I
since this tensor vanishes when the material is unstrained. This leads to the
definition of the Green strain tensor

E= %(FTF -1, (2.16)

where the 1/2 is a normalization factor. If, for a given M, equation (2.15) holds
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for all possible deformation gradients F then the considered material is said to
be inezrtensible in the direction M.

The deformation gradient can be decomposed according to the polar decom-
positions

F=RU=VR, (2.17)

where R, is a proper orthogonal tensor and U, V are positive definite and sym-
metric tensors. Each of the decompositions in (2.17) is unique. Respectively,
U and V are called the right and left stretch tensors.

These stretch tensors can also be put in spectral form. For U we have the
spectral decomposition

3
U= Zx\iu(i) ®u®, (2.18)
=1
where A; > 0, 7 € {1,2, 3}, are the principal stretches, u(?| the (unit) eigenvec-
tors of U, are called the Lagrangian principal azes and ® denotes the tensor
product. Note that A(u(?) = ); in accordance with the definition (2.13). Sim-
ilarly, V has the spectral decomposition

3
V=) avl ey, (2.19)
=1
where
v = Ru®, i€{1,2,3}). (2.20)
It follows from (2.5), (2.17) and (2.18) that
J = /\1/\2/\3. (221)

Using the polar decompositions (2.17) for the deformation gradient F, we
may also form the following tensor measures of deformation:

C=FF=U?  B=FFT =V2 (2.22)

These define C and B, which are called, respectively, the right and left Cauchy-
Green deformation tensors.

More general classes of strain tensors, i.e. tensors which vanish when there
is no strain, can be constructed on the basis that U = I when the material is
unstrained. Thus, for example, we define Lagrangian strain tensors

EM™ = —%(U"‘ -I), m#0, (2.23)
E® =InU, m=0, (2.24)
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where m is a real number (not necessarily an integer). Eulerian strain tensors
based on the use of V may be constructed similarly. See, for example, Doyle
and Ericksen (1956), Seth (1964) and Hill (1968, 1970, 1978). Note that for
m = 2 equation (2.23) reduces to the Green strain tensor (2.16). For discussion
of the logarithmic strain tensor (2.24) we refer to, for example, Hoger (1987).

Let p. and p be the mass densities in B, and B respectively. Then, since
the material in the volume element dV is the same as that in dv the mass is
conserved, i.e. pdv = p,.dV, and hence, from (2.9), we may express the mass
conservation equation in the form

pr = pd. (2.25)

1.2.2 Stress tensors and equilibrium equations

The surface force per unit area (or stress vector) on the vector area element da
is denoted by t. It depends on n according to the formula

t =0"n, (2.26)

where o, a second-order tensor independent of n, is called the Cauchy stress
tensor.
By means of (2.8) the force on da may be written as

tda = STNdA, (2.27)
where the nominal stress tensor S is related to o by
S =JFlo. (2.28)

The first Piola-Kirchhoff stress tensor, denoted here by =, is given by w = ST
and this will be used in preference to S in some parts of this volume.

Let b denote the body force per unit mass. Then, in integral form, the
equilibrium equation for the body may be written with reference either to B or
B,. Thus,

/ pbdv + / oTnda = / p-bdV + STNdA = 0. (2.29)
B aB B, a8,

On use of the divergence theorem equations (2.29) yield the equivalent equi-
librium equations

dive + pb =0, (2.30)

DivS + p,b =0, (2.31)

where again div and Div denote the divergence operators in B and B, respec-
tively. The derivation of the pointwise equations (2.30) and (2.31) requires
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that the left-hand sides of these equations are continuous (in B and B, respec-
tively). Note that on use of (2.11) and (2.25) equation (2.31) may be converted
immediately to (2.30). In components, (2.31) has the form
asai
00X,
and similarly for (2.30), where S,; are the components of S and b; those of b.

Balance of the moments of the forces acting on the body yields simply o7 =
o, which may also be expressed as

STFT = FS. (2.33)

+ prb; =0, (2.32)

The Lagrangian formulation based on the use of S and equation (2.31), with
X as the independent variable, is normally preferred in nonlinear elasticity to
the Eulerian formulation based on use of o and equation (2.30) with x as the
independent variable since the initial geometry is known, whereas x depends
on the deformation to be determined.

We now consider the work done by the surface and body forces in a virtual
displacement §x from the current configuration B. By using the divergence
theorem and equation (2.31) we obtain the virtual work equation

/ prb - 6xdV + (STN).é6xdA = [ tr(S6F)dV, (2.34)
B, 8B, B,

where the left-hand side of (2.34) represents the virtual work of the body and
surface forces and in the integrand on the right-hand side tr denotes the trace
of a second-order tensor and 6F = Grad éx. The term on the right-hand side is
the virtual work of the stresses in the bulk of the material. For a conservative
system this latter work is recoverable and is stored as elastic strain energy (this
will be discussed in Section 1.2.5.1) but in general it includes a dissipative part.
In either case the integrand, which represents the virtual work increment per
unit volume in B,, may be expressed in many alternative forms using different
deformation and strain measures.

For example, using (2.16), (2.17) and the symmetry (2.33), we obtain

tr (S6F) = tr (TW6U) = tr (TP SE), (2.35)

in which we have defined the Biot stress tensor T() (Biot, 1965) and the second
Piola-Kirchhoff stress tensor T(® (both symmetric) by

T = %(SR +RTST), T® =8F-T = JF'oF 7. (2.36)

We note the connection

W = %(T(Z)U +UT®). (2.37)
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More generally, the expression in (2.35) may be written in terms of the strain
tensors E(™) given by (2.23) and (2.24) and their (symmetric) conjugate stress
tensors T(™) as

tr (T SEM™), (2-38)

Note that the examples m = 1 and m = 2 from (2.35) are included in (2.38) as
special cases. The notion of conjugate stress and strain tensors was introduced
by Hill (1968) and applies more generally than to the special class of strain
tensors (2.23). A more detailed discussion can be found in Ogden (1997). We
observe that the definition of conjugate stress and strain tensors is independent
of any choice of material constitutive law.

1.2.3 Elasticity

The constitutive equation of an elastic material is given in the form
o = G(F), (2.39)

where G is a symmetric tensor-valued function, defined on the space of defor-
mation gradients F. In general the form of G depends on the choice of reference
configuration and G is referred to as the response function of the material rel-
ative to B,. For a given B,, therefore, the stress in B at a (material) point
X depends only on the deformation gradient at X and not on the history of
deformation. A material whose constitutive law has the form (2.39) is gener-
ally referred to as a Cauchy elastic material. Its specialization to the situation
when there exists a strain-energy function will be considered in Section 1.2.4.
If the stress vanishes in B, then

G(I) = 0, (2.40)

and B, is called a natural configuration. If the stress does not vanish in B, then
there is said to be residual stress in this configuration. In a residually-stressed
configuration the traction must vanish at all points of the boundary, so that a
fortiori residual stress is inhomogeneous in character. For detailed discussion of
residual stress we refer to the work of Hoger and co-workers (see, for example,
Hoger, 1985, 1986, 1993a, b and Johnson and Hoger 1993, 1995, 1998).

1.2.3.1 Objectivity
Suppose that a rigid-body deformation

x*=Qx+c (2.41)
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is superimposed on the deformation x = x(X), where Q and c are constants,
Q being a rotation tensor and ¢ a translation vector. Then, the resulting
deformation gradient, F* say, is given by

F* =QF. (2.42)
For an elastic material with response function G relative to B,, the Cauchy
stress tensor, o* say, associated with the deformation gradient F* is o*

G(F*).
Under the transformation (2.41) o transforms according to the formula

o* = QoQT. (2.43)

The response function G must therefore satisfy the invariance requirement
G(F*) = G(QF) = QG(F)Q" (2.44)

for each deformation gradient F and all rotations Q. This expresses the fact
that the constitutive law (2.39) is objective. The terminology material frame-
indifference is also used for this concept of objectivity (see, for example, Trues-
dell and Noll, 1965). In essence, this means that material properties are inde-
pendent of superimposed rigid-body deformations.

A second-order Eulerian tensor, such as o, which satisfies the transforma-
tion rule (2.43) is said to be an (Eulerian) objective second-order tensor. We
now expand on this notion slightly. Let ¢,u, T be (Eulerian) scalar, vector
and (second-order) tensor functions defined on B. Let ¢*,u*, T* be the cor-
responding functions defined on B*, where B* is obtained from B by the rigid
deformation (2.41). The functions are said to be (Eulerian) objective scalar,
vector and tensor functions (or fields) if, for all such deformations,

¢*=¢, u' =Qu, T*=QTrQl. (2.45)

We observe that the density p is an example of an objective scalar function
and that the normal vector n, which appears in (2.8), and the traction vector
t, given by (2.26), are examples of objective vector functions, while the left
Cauchy-green deformation tensor B is an objective tensor function.

It is important to distinguish between the behaviour of Lagrangian and Eule-
rian vector and tensor functions as far the definition of objectivity is concerned.
The vector function N, which is related to n by (2.8), and the right Cauchy-
Green deformation tensor C, given by (2.22), for example, are unchanged under
the transformation (2.41). They are Lagrangian functions defined on B,. Thus,
objectivity may equally well be defined in terms of Lagrangian functions. An
objective Lagrangian (scalar, vector or tensor) function is one which is un-
changed by the transformation (2.41). Other examples of objective Lagrangian
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tensors are the Biot and second Piola-Kirchhoff stress tensors defined in (2.36).
Objective mixed tensors, such as F, which are partly Lagrangian and partly
Eulerian, change either as in (2.42) or its transpose. Thus, the nominal stress
tensor S, given by (2.28), transforms like S* = SQ7 (for more detailed discus-
sion, see Ogden, 1984b).

We mention here that Lagrangian vectors and tensors can be transformed
into Eulerian vectors and tensors by appropriate ‘push-forward’ operations and
this process is reversed by ‘pull-back’ transformations in the sense described in
Marsden and Hughes (1994); see also Holzapfel (2000). The form of the push-
forward and pull-back transformations depends on whether the vectors and
tensors in question have covariant or contravariant character. For example,
the push forward of the (covariant) Green strain tensor E is F~TEF~!, which
is an Eulerian strain tensor, while the push forward of the (contravariant)
second Piola-Kirchhoff stress tensor T(?) is FT)FT, which is just J times
the (Eulerian) Cauchy stress tensor. Partial push forward or pull back can be
applied to either type of tensor to obtain mixed tensors or to mixed tensors to
obtain Lagrangian or Eulerian tensors.

1.2.3.2 Material symmetry
Let o be the stress in configuration B, and let F and F’ be the deformation
gradients in B relative to two different reference configurations, B, and B.
respectively. We denote by G and G’ the response functions relative to B, and
Bl so that

o = G(F) = G'(F'). (2.46)

Let P = Grad X' be the deformation gradient of B!, relative to B,., where X' is
the position vector of a point in B]. Then

F = F'P. (2.47)

Substitution of (2.47) into (2.46) then gives G(F'P) = G'(F’).
In general, the response of the material relative to B, differs from that relative
to B,, i.e G’ # G. However, for specific P we may have G’ = G, in which case

G(F'P) = G(F) (2.48)

for all deformation gradients F/ and for all such P. Equation (2.46) then gives
o = G(F) = G(F'), and, in order to calculate o, it is not necessary to distin-
guish between B, and B,.

The set of tensors P for which (2.48) holds forms a multiplicative group,
called the symmetry group of the material relative to B,. This group charac-
terizes the physical symmetry properties of the material.
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Let P be the deformation gradient B, — B!, and now we do not assume that
P is a member of the symmetry group. Then, if G is the symmetry group of
the material relative to B, and G’ that relative to B, these groups are related
according to Noll’s rule

¢ =PgP L. (2.49)

Clearly, for the special case in which P € G, we have §’' = G.

1.2.8.8 Isotropic elasticity

If G is the proper orthogonal group then the material is said to be isotropic
relative to B,, and then

o = G(FQ) = G(F) (2.50)

for all proper orthogonal Q and for every deformation gradient F. Physically,
this means that the response of a small specimen of material is independent of
its orientation in B,.

Before proceeding further we require some definitions and results relating to
isotropic functions of a second-order tensor. Firstly, the scalar function ¢(T)
of a symmetric second-order tensor T is said to be an isotropic function of T if

#(QTQT) = ¢(T) (2.51)

for all orthogonal tensors Q. An isotropic scalar-valued function of T is also
called a scalar invariant of T. It may easily be checked that the principal
invariants of T, defined by

L(T) = (D), B(T) = J[h(TF (1Y), I(T) =det T, (25

are scalar invariants in accordance with the definition (2.51). It may be shown
that ¢(T) is a scalar invariant of T if and only if it is expressible as a function
of I1(T), I(T), I3(T).

Secondly, suppose that G(T) is a symmetric second-order tensor function of
T. Then, G(T) is said to be an isotropic tensor function of T if

G(QTQ") = QG(T)Q” (2.53)

for all orthogonal Q. Consequences of this are (i) if G(T) is isotropic then its
eigenvalues are scalar invariants of T, (ii) G(T) is coaxial with T, i.e.

G(T)T = TG(T), (2.54)
and (iii) G(T) is isotropic if and only if it has the representation

G(T) = ¢ol + ¢1 T + ¢, T, (2.55)
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where ¢o, ¢1, ¢2 are scalar invariants of T and hence functions of I; (T), I(T),
L(T).
The choice Q = R” and use of the polar decomposition F = VR in (2.50)
gives
o =G(V). (2.56)

We then obtain
QG(V)QT = G(QvQ") (2.57)

for all proper orthogonal Q. In fact, since Q occurs twice on each side of (2.57),
allowing Q to be improper orthogonal does not affect (2.57), which then states
that G(V) is an isotropic function of V in accordance with the definition (2.53).

In particular, for an isotropic elastic material, ¢ = G(V) is coazial with V,
i.e. with the Eulerian principal axes, and we therefore have

o =G(V)=¢ol+ NV + ¢ VZ, (2.58)
where ¢q, ¢1, ¢2 are scalar invariants of V, i.e. functions of
i1 =L(V)=tr (V) = A1 + Az + s, (2.59)
iy = I(V) = %[ﬁ —tr (V)] = Ada 4 Aadt 4 Ade,  (260)
13 = I3(V) = det V = A\ Aa)s, (2.61)

where the expressions have also been given in terms of the principal stretches
and the notation ¢1,12,%3 has been introduced specifically for the principal
invariants of V (and hence of U). Alternatively, we may write

3
o= ovli) v, (2.62)
=1
where
0i = o + d1Ai + po A i €{1,2,3}, (2.63)
and this allows us to introduce the scalar response function g, such that
i = g(Mis Ajy M) = 90, A, Ag) = do + di i + d2A7, (2.64)

where (3, j, k) is permutation of (1,2, 3).
The expansion (2.58) may be written, equivalently, in terms of B = V2. For
example,

o=ol+a1B+ O£2B2, (2.65)

or
o=03I1+5B+ ﬁ_1B_1, (2.66)
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where ag, a1, a2, Bo, B1, f—1 are scalar invariants of B (and hence of V); see,
for example, Beatty (1987). Connections between these different coefficients
are determined by using the Cayley-Hamilton theorem in the form

V3 i) V244,V —-i3I=0 (2.67)

or its counterpart for B. It is convenient in what follows to use the standard
notation I, I, I for the principal invariants of B (also of C). Thus, specifically,
we write

L =L(B) =tr (B) = A + A2 + )2, (2.68)
1

I =L(B) = 5[13 —tr(B2)] = A2A2 + 2202 + 222, (2.69)

Iy = I3(B) = det B = A2)2)3. (2.70)

In view of the connection (2.28) between S and o we may also define the
response function, H say, associated with S (relative to B,) by

S = H(F) = JF!G(F). (2.71)
The objectivity requirement (2.44) then becomes
H(QF) = HF)QT. (2.72)

A corresponding change for the material symmetry transformation (2.48) can
be written down, and, in particular, for an isotropic elastic solid, we have

H(FQ) = QTH(F). (2.73)
Moreover, it follows from (2.73) that
H(F) = HU)RT = RTH(V), (2.74)

with H(U) being symmetric and coaxial with U.

1.2.8.4 Internal constraints

In Section 1.2.1 the (internal) constraints of incompressibility and inextensibil-
ity were mentioned. More generally, a single constraint may be written in the
form

C(F) =0, (2.75)

where C is a scalar function. Equation (2.75) holds for all possible deformation
gradients F. For the incompressibility and inextensibility constraints we have,
respectively,

C(F)=detF -1, C(F)=M-(FTFM) -~ 1. (2.76)



